A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Moulik, Satya Priya
- Physicochemisty and Applications of Micro-Emulsions
Authors
1 Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, IN
2 Department of Biotechnology, West Bengal University of Technology, BF 142, Sector 1, Salt Lake, Kolkata 700 064, IN
Source
Journal of Surface Science and Technology, Vol 22, No 3-4 (2006), Pagination: 159-186Abstract
Microemulsions are a class of microheterogeneous systems having unique features of stability, solubilization capacity, structural morphology, physical property and applicability. Depending on the types of oil and amphiphile, and environmental conditions, microemulsion systems of varied categories, consistencies and internal structures may result. The essentials of microemulsion systems are thus controlled by external factors and internal chemistry. The underlying physicochemical principles controlling their formation, phase behaviour and related properties supplemented with experimental observations need time to time assessment and appraisal to scientists and technologists. This review aims at such a purpose and makes a concise presentation of the physicochemistry and applications of microemulsions to bring the readers up-to-date with the present state of knowledge on the subject. The features that will be presented in some details are the theory of microemulsion formation, general procedure for their preparation, phase forming behaviour of mixed water, amphiphile and oil systems, viscosity and conductance behaviour in relation to internal consistency and structure. Important applications of microemulsions in enhnanced petroleum recovery, biotechnology, pharmaceutics, nanoparticle preparation, corrosion inhibition, etc. will also be discussed.Keywords
Microemulsion, Theory, Preparation, Phase Behaviour, Structure, Properties, Viscosity, Conductance, Application.- Studies on Structure and Dynamics of Microemulsions II: Viscosity Behaviour of Water-in-Oil Microemulsions
Authors
1 Department of Chemistry, Jadavpur University, Calcutta 700032, IN
Source
Journal of Surface Science and Technology, Vol 8, No 2 (1992), Pagination: 191-208Abstract
Results of a detailed viscometric investigation on water-in-oil microemulsions using hexane, heptane, octane, iso-octane, decane, cyclohexane, xylene, and toluene as oils and Aerosol Orange-T (AOT) as the amphiphile are presented. Attempts have been made to examine the overall geometry and oilation of the dispersed particles. It has been found that the particles are close to spheres and the solvation by the oil is insignificant. The performance of the viscosity equations of Vand, Moulik, and Thomas on all the systems have been tested. Striking validity of all the three equations has been observed at constant water/AOT mole ratio (ω). A combined unified viscosity equation can also correlate the results. With variable ω all the equations fail to correlate the experimental results. Correlation of the equation parameters with both the carbon number and the molar mass of the open chain hydrocarbon oils has been attempted. Effects of added salts viz. NaC and NaCl on the viscosity behaviour of iso-octane based microemulsion have been also studied.Keywords
AOT, Hydrocarbon, Viscosity Equation, Solvation, Shape Factor.- Surface Tension of Binary Liquid Mixtures Including Ionic Liquids and the Gibbs Surface Excess
Authors
1 Department of Chemistry, Centre for Surface Science, Jadavpur University, Kolkata - 700032, IN
Source
Journal of Surface Science and Technology, Vol 31, No 1-2 (2015), Pagination: 1-8Abstract
In this study binary mixtures of several organic solvents with water as well as with ionic liquids are considered to understand the interfacial adsorption of these organic liquids at the air/water, and the air/ionic liquid interfaces. Tensiometric method is used and the measured surface tensions of the organic solvents at different concentrations are processed in terms of Gibbs adsorption equation to evaluate the surface excess quantities of the organic solvents. The plots of surface tension versus partial pressure of the organic solvents at different mole fractions as well as their surface tension versus solvent concentrations in both water and in ionic liquids are processed in terms of suitable polynomial relations in the evaluation of the surface excess quantities. The results show new and conspicuous features which are attempted to address on the physicochemical basis. In this endeavor, the past literature results on the ethanol-water system are revisited and compared with the current repeat measurements for a comprehensive comparison of similarities and otherwise. The features of the aqueous systems are found to be much different from the IL systems. A physicochemical rationale of the varied nature of the adsorption processes is presented.Keywords
Binary Solvent Mixtures, Gibbs Adsorption, Ionic Liquid-Water, Organic Solvent-Ionic Liquid, Organic Solvents-Water, Surface Excess, Surface TensionReferences
- A. W. Adamson, ‘Physical Chemistry of Surfaces’, Ch 2, 75. Interscience Publishers (John Wiley), (1963).
- R. K. Schofield and E. K. Rideal, Proc. Roy. Soc. A, 109, 57 (1925).
- E. A. Guggenheim and N. K. Adam, Proc. Roy. Soc. A, 139,218 (1933).
- J. A. V. Butler and A. Wightman, J. Chem. Soc., 293, 2089 (1932).
- M. Aratono, T. Toyomasu, M. Villeneuve, Y. Uchizono, T.Takiue, K. Motomura and N. Ikeda, J. Colloid Interface Sci.,191, 146 (1997).
- K. A. Connors and J. L. Wright, Anal. Chem., 61, 194 (1989).
- M. Geppert-Rybczy?ska, J. K. Lehmann and A. Heintz, J.Chem. Eng. Data., 56, 1443 (2011).
- Vapor Pressure data of Ethanol-water system collected from; www.chegg.com.
- A. L. Bacarella, A. Finch and E. Grunwald, J. Phys. Chem.,60, 573 (1956).
- A. Pan, B. Naskar, G. K. S. Prameela, B. V. N. Phani Kumar, V. K. Aswal, S. C. Bhattacharya, A. B. Mandal and S. P. Moulik, Soft Matter, 10, 5682 (2014).
- E. Rilo, J. Pico, S. García-Garabal, L. M. Varela and O.Cabeza, Fluid Phase Equilibria, 83, 285 (2009).
- A. Dan, I. Chakraborty, S. Ghosh and S. P. Moulik, Langmuir,23, 7531 (2007).
- Physicochemical Investigation on the Pulmonary Surfactant of Some Vertebrates
Authors
1 Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata - 700032, West Bengal, IN
2 Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, AU
3 Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore– 721102, West Bengal, IN
4 Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India, IN
Source
Journal of Surface Science and Technology, Vol 33, No 3-4 (2017), Pagination: 127-136Abstract
Large aggregate (LA) fraction of the pulmonary surfactant (PS) isolated from five different animals of the vertebrate group, lungfish, chicken, crocodile, stumpie lizard and guinea pig were isolated and characterized. Active pulmonary surfactant components were obtained by chloroform-methanol extraction of the saline suspended LA fraction. Total phospholipid (PL) and protein content were estimated biochemically by standard enzymatic methods. A systematic progression in the PL and protein content was noticed with the developmental sequence of the animals, except the crocodile, which could be due to the difficulty in the PS isolation procedure. In vitro functionality of the solvent spread film was carried out in a Langmuir surface balance by way of surface pressure (π)-area (A) measurements. PS from all the species exhibited reversible compression and expansion cycles. A clear correlation between the maximum attainable surface pressure (πmax), also known as the collapse pressure (πc) and the developmental sequence, with some exceptions, could have been established. Langmuir-Blodgett deposits, transferred onto freshly cleaved mica, were imaged by atomic force microscopy for the five different species. DPPC enriched domains showed different dimensions for the five different species. The comprehensive set of studies shed light on the composition, film functionality and structure of the pulmonary surfactants of the vertebrates where a correlation with the evolution sequence is observed.
Keywords
Cholesterol, Domain, Lipid, Protein, Pulmonary Surfactant, AFM.References
- A. D. Bangham, Lung, 165, 17 (1987). Crossref.
- J. A. Clements, J. Nellenbogen and H. J. Trahan, Science, 169, 603(1970). Crossref.
- I. Frerking, A. Gunther, W. Seeger and U. Pison, Intensive Care Med., 27, 1699(2001). Crossref.
- J. Goerke, Biochim. Biophys. Acta, Mol. Basis Dis. 1408, 79 (1998). Crossref.
- Y.Y. Zuo, S.M. Tadayyon, E. Keating, L. Zhao, R.A.W. Veldhuizen, N.O. Petersen, M. W. Amrein and F. Possmayer, Biophys. J., 95, 2779 (2008). Crossref.
- K. V. Neergaard, Z. Ges. Exp. Med. 66, 373(1929). Crossref.
- M. Griese, Eur. Respir. J., 13, 1455 (1999). Crossref.
- H. Nakahara, S. Lee and O. Shibata, Biophys. J., 96, 1415 (2009). Crossref PMid:19217859 PMCid:PMC2717221
- H. Nakahara, S. Lee, G. Sugihara and O. Shibata, Langmuir 22, 5792 (2006). Crossref.
- J. Pérez-Gil and K.M.W. Keough, Biochimi. Biophys. Acta Mol. Basis Dis., 1408, 203 (1998). Crossref.
- S. Schurch, J. Goerke and J.A. Clements, Proc. Natl. Acad. Sci. USA., 73, 4698 (1976). Crossref PMid:1070020 PMCid:PMC431602
- S. Schurch, R. Qanbar, H. Bachofen and F. Possmayer, Biol Neonate.1, 61 (1995). Crossref.
- M. Amrein, A. von Nahmen, M. Sieber, Eur. Biophys. J.26, 349 (1997). Crossref PMid:9352639
- S. Krol, M. Ross, M. Sieber, S. Kunneke, H. J. Galla and A. Janshoff, Biophys. J., 79, 904 (2000). Crossref.
- D.Y. Takamoto, M.M. Lipp, A. von Nahmen, K.Y. Lee, A. J. Waring and J.A. Zasadzinski, Biophys. J. 81, 153 (2001). Crossref.
- R.H. Notter, S. A. Tabak and R.D. Mavis, J. Lipid Res., 21, 10 (1980). PMid:6892572
- J.G. Turcotte, A.M. Sacco, J.M. Steim, S. A. Tabak and R.H. Notter, Biochimi. Biophys. Acta - Lipids and Lipid Metabolism, 488, 235 (1977). Crossref.
- J.C. Watkins, Biochimi. Biophys. Acta - Lipids and Lipid Metabolism, 152, 293 (1968). Crossref.
- H.M. McConnell, Annu. Rev. Phys. Chem., 42, 171 (1991). Crossref.
- H. M. McConnell and R. De Koker, Langmuir, 12, 4897 (1996). Crossref.
- L.M. van Golde, Biol. Neonate., 1, 2 (1995). Crossref.
- R. E. Pattle and D.A. Hopkinson, Nature, 200, 894 (1963). Crossref PMid:14096074
- C. B. Daniels, S. Orgeig and A.W. Smits, Physiol. Zool., 68, 539 (1995). Crossref.
- C.B. Daniels, S. Orgeig, P.G. Wood, L.C. Sullivan, O. V. Lopatko and A.W. Smits, Am. Zool.,38, 305 (1998). Crossref.
- A. Günther, C. Ruppert, R. Schmidt, P. Markart, F. Grimminger, D. Walmrath and W. Seeger, Respir. Res.2, 353 (2001). Crossref PMCid:PMC64803
- J.F. Lewis and R. Veldhuizen, Annu. Rev. Physiol.,65, 613 (2003). Crossref PMid:12517997
- B. Robertson and H.L. Halliday, Biochim. Biophys. Acta., 19, 2(1998). Crossref.
- C.B. Daniels, H.A. Barr, J. H. Power and T.E. Nicholas, Exp. Lung. Res., 16, 435 (1990). Crossref PMid:2226354
- C.B. Daniels, O. V. Lopatko and S. Orgeig, Clin. Exp. Pharmacol. Physiol., 25, 716 (1998). Crossref PMid:9750962
- C. B. Daniels and S. Orgeig, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 129, 9 (2001). Crossref.
- C. B. Daniels, S. Orgeig and A.W. Smits, Respir. Physiol., 102, 121 (1995). Crossref.
- C.B. Daniels, S. Orgeig, A. W. Smits and J.D. Miller, Exp. Lung. Res.,22, 267 (1996). Crossref PMid:8792121
- C.B. Daniels, S. Orgeig, J. Wilsen and T.E. Nicholas, Respir. Physiol., 95, 249 (1994). Crossref.
- R.E. Pattle, Nature. 175, 1125 (1955). Crossref PMid:14394123
- G.M. Hughes, Ultrastructure of the air-breathing organs of some lower vertebrates, Societe Francaise de Microscopie Electronique, Paris, 1970.
- G.M. Hughes, J. W. Ryan and U. Ryan, J. Physiol.236, 15P (1974). PMid:4406159
- B.M. Discher, K.M. Maloney, D.W. Grainger, C. A. Sousa and S.B. Hall, Biochemistry, 38, 374(1999). Crossref PMid:9890919 PMCid:PMC3517734
- B.M. Discher, K.M. Maloney, W.R. Schief, D. W. Grainger, V. Vogel and S.B. Hall, Biophys. J., 71, 2583 (1996). Crossref.
- S. Mukherjee, K. Maiti, M. Fritzen-Garcia, S. Bhattacharya, K. Nag, A. Panda and S. Moulik, Biophys. Chem., 134, 1 (2008). Crossref PMid:18241975
- K. Nag, M. Fritzen-Garcia, R. Devraj, A.K. Panda, Langmuir. 23, 4421 (2007). Crossref PMid:17341098
- K. Nag, J. Perez-Gil, M.L. Ruano, L.A. Worthman, J. Stewart, C. Casals and K.M. Keough, Biophys. J., 74, 2983 (1998). Crossref.
- A.K. Panda, K. Nag, R.R. Harbottle, K. Rodriguez-Capote, R.A. Veldhuizen, N. O. Petersen and F. Possmayer, Am. J. Respir. Cell. Mol. Biol., 30, 641 (2004). Crossref PMid:14630614
- M. Nanjundan and F. Possmayer, Biochem. J., 358, 637 (2001). Crossref PMid:11535125 PMCid:PMC1222098
- E. G. Bligh and W.J. Dyer, Can. J. Biochem. Physiol., 37, 911(1959). Crossref PMid:13671378
- J. Riley and R.J. Henderson, Parasitology, 119, S89 (1999). PMid:11254150
- A.J. McCabe, D.T. Wilcox, B. A. Holm and P.L. Glick, J. Pediatr. Surg., 35, 1687 (2000). Crossref PMid:11101717
- M.R. Fedde, Poult. Sci., 77, 1130 (1998). Crossref PMid:9706077
- H.R. Duncker, Ergeb. Anat. Entwicklungsgesch., 45, 7 (1971). PMid:4258755
- H.R. Duncker, General Morphological Principles of Amniotic Lungs, in: J. Piiper, (Ed), Respiratory Function in Birds, Adult and Embryonic, Proceedings in Life Sciences, Springer Berlin Heidelberg, 1978, pp. 2. Crossref.
- S. Yu, P.G. R. Harding, N. Smith and F. Possmayer, Lipids, 18, 522 (1983). Crossref PMid:6688646
- L.K. McGregor, C. B. Daniels and T.E. Nicholas, Copeia, 1993, 326 (1993). Crossref.
- E.R. Schachner, J. R. Hutchinson and C.G. Farmer, Peer. J. 1, e60 (2013). Crossref PMid:23638399 PMCid:PMC3628916
- J.S. Torday, V.K. Rehan, J.W. Hicks, T. Wang, J. Maina, E.R. Weibel, C.C.W. Hsia, R. J. Sommer and S.F. Perry, Integr. Comp. Biol.,47, 601(2007). Crossref PMid:20607138 PMCid:PMC2895359
- S. Orgeig, H. A. Barr and T.E. Nicholas, Exp. Lung. Res., 21, 157 (1995). Crossref PMid:7729374
- S. Orgeig, C. B. Daniels and A.W. Smits, J. Comp. Physiol B., 164, 337 (1994). Crossref PMid:7983248
- D.B. Gutierrez, A. Fahlman, M. Gardner, D. Kleinhenz, M. Piscitelli, S. Raverty, M. Haulena and P.V. Zimba, Respir. Physiol. Neurobiol. 211, 29(2015). Crossref PMid:25812797 PMCid:PMC4450144
- N.J. Miller, A.D. Postle, S. Orgeig, G. Koster and C.B. Daniels, Respir. Physiol. Neurobiol., 152, 152(2006). Crossref PMid:16140043
- P. Wydro, B. Krajewska and K. Hac-Wydro, Biomacromolecules,8, 2611 (2007). Crossref PMid:17630796
- R. Banerjee and J. R. Bellare, J. Appl. Physiol., 90, 1447(1985).
- R.G. Spragg, P.J. Ponganis, J.J. Marsh, G. A. Rau and W. Bernhard, J. Appl. Physiol., 96, 1626 (1985). Crossref PMid:14688033
- W. Bernhard, A. Gebert, G. Vieten, G.A. Rau, J.M. Hohlfeld, A.D. Postle and J. Freihorst, Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, R327 (2001). PMid:11404309
- R.R. Harbottle, K. Nag, N.S. McIntyre, F. Possmayer, N.O. Petersen, Langmuir, 19, 3698 (2003). Crossref.
- M. Deleu, K. Nott, R. Brasseur, P. Jacques, P. Thonart, Y.F. Dufrêne, Biochimi. Biophys. Acta - Biomembranes, 1513, 55 (2001). Crossref.
- E. Sparr, K. Ekelund, J. Engblom, S. Engström and H. Wennerström, Langmuir, 15, 6950 (1999). Crossref.
- E. Sparr, L. Eriksson, J.A. Bouwstra, K. Ekelund, Langmuir,17, 164 (2001). Crossref.
- One Hundred Years of Ghosh’s Strong Electrolyte Theory
Authors
1 Indian Society for Surface Science and Technology, Jadavpur University, Kolkata 700 032, IN
2 Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700 032, IN
Source
Journal of Surface Science and Technology, Vol 34, No 1-2 (2018), Pagination: 1-6Abstract
Abnormal behaviour of strong electrolytes was a hot research topic around the turn of twentieth century. In 1918, J. C. Ghosh published a series of articles dealing with this abnormal behaviour and suggested a cube ischolar_main law for data correlation. The publications were both praised and criticised. Debye and Huckel published in 1923 their well-known theory of strong electrolytes, the square ischolar_main law, which completely overshadowed Ghosh’s theory. By the middle of twentieth century, however, Ghosh’s theory became prominent again, particularly for concentrated electrolyte solutions, in the light of pseudo-lattice theory of strong electrolytes. In this article, we discuss some features and historical developments of Ghosh’s theory to commemorate its centenary year.References
- J. C. Ghosh, Chem. Soc. J., 113, 449; 627; 707; 790 (1918).
- S. Arrhenius, Z. Phys. Chem., 1, 481; 631 (1887).
- W. Ostwald, Z. Phys. Chem., 2, 36; 270 (1888).
- N. Bjerrum, Proc. Seventh International Congress of Applied Chemistry, Section X, pp. 55-60, London, 1909.
- J. H. Wolfenden, Ambix, 19, 175 (1972).
- G. N. Lewis and M. Randall, Thermodynamics, McGraw Hill, N.Y. 1923.
- K. Bhattacharyya, IJHS, 49. 4, 371 (2014).
- N. R. Dhar, Nature, 183, 645 (1959).
- W. Sutherland, Phil. Mag., 3, 161 (1902).
- W. Sutherland, Phil. Mag., 12, 1 (1906).
- S. R. Milner, Phil. Mag., 25, 742 (1913).
- J. Walker, Introduction to Physical Chemistry, 9th ed., London, 1922, 262.
- H. J. S. Sand, Trans. Faraday Soc., 15, 172 (1919).
- J. R. Partington, Trans. Faraday Soc., 15, 162 (1919).
- J. C. Ghosh, Trans. Faraday Soc., 15, 154 (1919-20).
- C. A. Krauss, J. Amer. Chem. Soc., 43, 2514(1921).
- J. Kendall, J. Amer. Chem. Soc., 44, 717 (1922).
- P. J. Debye and E. Huckel, Z. Phys., 24, 185; 305 (1923).
- A. Karachalios, Erich Huckel (1896-1980): Physics to Quantum Chemistry (trans. by A. M. Hentschel) Springer, N.Y. 2010.
- N. Ise and I. S. Sagami, Structure Formation in Solution : Ionic Polymer and Colloid particles, Springer, Berlin 2005.
- A. Chagnes, B. Carre, P. Willmann and D. Lamordant, Electrochim. Acta 46, 1783 (2001).
- E. Moggia, Fluid Phase Equilibria, 427, 231 (2016).
- H. Ozaki, K. Kuratani, H. Sano, and T. Kiyobayashi, J. Chem. Phys., 147, 034904 (2017). crossref PMid:28734311
- J. E. Desnoyers and B. E. Conway, J. Phys. Chem, 68, 2305 (1964). https://doi.org/10.1021/j100790a047
- L. M. Varela, J. Carrete, M. García, J. R. Rodríguez, L. J. Gallego, M. Turmine and O. Cabeza, in Ionic Liquids: Theory, Properties, New Approaches, Prof. Alexander Kokorin (Ed.), ISBN: 978-953-307-349-1, InTech, Available from: crossref theory-properties-new-approaches/pseudolatticetheory-of-ionic-liquids.
- L. W. Bahe, J. Phys. Chem., 76, 1062 (1972).
- E. Rilo; M. Dominguez-Perez; L. M. Varela and O. Cabeza, J. Chem. Thermodyn., 54, 68 (2012).
- R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London, 1955.
- P. van Rysselberghe, J. Chem. Phys. 1, 205 (1933).
- H. A. Kramers, Proc. Roy. Acad. Amsterdam, 30, 145 (1927).
- B. N. Ghosh, J. Ind. Chem. Soc., 63, 390 (1986).
- B. N. Ghosh, J. Ind. Chem. Soc., 60, 141
- (1983).
- B. N. Ghosh, J. Ind. Chem. Soc., 61, 213; 420 (1984).
- B. N. Ghosh, J. Ind. Chem. Soc., 62, 189; 855 (1985).
- B. N. Ghosh, J. Ind. Chem. Soc., 57, 398 (1980).
- J. B. Conant, Science and Common Sense, Yale Univ. Press, New Haven, 1951, p 173.