Refine your search
Collections
Co-Authors
Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Syed Naser, S.
- Characterization of P-type Nickel Oxide (NiO) Thin Films Prepared by RF Magnetron Sputtering
Abstract Views :341 |
PDF Views:2
Authors
Affiliations
1 Department of Physics, Bharath Institute of Science and Technology, Bharath Institute of Higher Education and Research, Chennai - 600073, Tamil Nadu, IN
1 Department of Physics, Bharath Institute of Science and Technology, Bharath Institute of Higher Education and Research, Chennai - 600073, Tamil Nadu, IN
Source
Journal of Surface Science and Technology, Vol 36, No 1-2 (2020), Pagination: 1–5Abstract
In the present work, NiO thin films were prepared on glass and silicon substrates by Radio Frequency (RF) magnetron sputtering technique. NiO films are deposited with the argon flow rate of 10 and 20 sccm at room temperature. The 2” NiO target was used for the deposition of NiO films and was characterized using X-Ray Diffraction (XRD), Photoluminescence (PL), UV-Visible spectroscopy and Hall Effect measurement to study the structural, optical and electrical properties of the films. The XRD pattern shows the small intense peak, revealing the nanocrystallinity of the NiO film. The transmittance spectra indicated the high transmittance in the order of ~90%. The photoluminescence studies indicated the bandgap of 3.52 eV. The Hall Effect studies demonstrated the p-type behaviour of NiO films. The film showed the p-type conductivity and hole concentration ∼5.34 x1019 cm−3 with Hall mobility of ∼612 cm2/V·s for the film deposited at 20 sccm.Keywords
Photoluminescence and Hall Measurement, Thin Films, UV-Visible Spectroscopy, X-Ray Diffraction, NiO.References
- W. J. Nam, Z. Gray, J. Stayancho, V. Plotnikov, D. Kwon, S. Waggoner, D. V. Shenai-Khatkhate, M. Pickering, T. Okano, A. Compaan, S. J. Fonash, ECS Trans, 66, 275 (2015). https://doi.org/10.1149/06601.0275ecst
- C.-C. Wu, C.-F. Yang, Sol. Energy Mater. Sol. Cells, 132, 492 (2015).
- Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S.Yang, Angew. Chem. Int. Ed., 53, 1 (2014).
- N. Park, K. Sun, Z. Sun, Y. Jing, D. Wang, J. Mater. Chem, C 1, 7333 (2013). https://doi.org/10.1039/c3tc31444h
- C. Magana, D. Acosta, A. Martinez, J. Ortega, Solar Energy, 80, 161 (2006). https://doi.org/10.1016/j.solener. 2005.04.006
- M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater., 18, 789 (2006). https://doi.org/10.1002/adma.200501717
- H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, 236, 27 (1993). https://doi.org/10.1016/0040- 6090(93)90636-4
- S. Kerli, U. Alver, H. Yaykaşl, Appl. Surf. Sci. 318, 164 (2014). https://doi.org/10.1016/j.apsusc.2014.02.141
- C. Rameshkumar, R. Subalakshmi, J. Surf. Sci. Technol., 31, 176 (2015).
- Y. Reddy, B. Ajitha, P. S. Reddy, Mater. Express, 4, 32 (2014). https://doi.org/10.1166/mex.2014.1145
- D. J. Sharmila, J. Brijitta, J. Surf. Sci. Technol., 33, 115 (2017) https://doi.org/10.18311/jsst/2017/16187
- X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells, 92, 628 (2008). https:// doi.org/10.1016/j.solmat.2008.01.009
- T. S. Yang, W. Cho, M. Kim, K.S. An, T.M. Chung, C.G. Kim, J. Vac. Sci. Tech. A, 23, 1238 (2005). https://doi. org/10.1116/1.1875172
- M. Krunks, J. Soon, T. Unt, A. Mere, V. Mikli, Vacuum, 107, 242 (2014). https://doi.org/10.1016/j.vacuum.2014.02.013
- N. Wang, C. Q. Liu, B. Wen, H. L. Wang, S.M. Liu, W. P. Chai, Mater. Lett., 122, 269 (2014). https://doi.org/10.1016/j.matlet. 2014.02.040
- I. Sta, M. Jlassi, M. Hajji, H. Ezzaouia, Thin Solid Films, 555, 131 (2014). https://doi.org/10.1016/j.tsf.2013.10.137
- H.-L. Chen, Y.-M. Lu, W.-S. Hwang, Surf. Coat. Tech., 198, 138 (2005).
- Y. A. K. Reddy, A. M. Reddy, A. S. Reddy, P. S. Reddy, J. Nano. Elec. Phys., 4, 04002 (2012).
- Y. Zhao, H. Wang, C. Wu, Z.F. Shi, F.B. Gao, W.C. Li, G.G. Wu, B. L. Zhang , G. T. Du, Vacuum, 103, 14 (2014). https:// doi.org/10.1016/j.vacuum.2013.11.009
- I. Manouchehri, S. A. O. AlShiaa, D. Mehrparparvar, M. I. Hamil, R. Moradian, Optik, 127, 9400 (2016). https://doi. org/10.1016/j.ijleo.2016.06.092
- L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, Q. Zhang, J. Li, X. Zhao, Appl. Surf. Sci., 254, 2401 (2008).
- S. T. Akinkuade, W. E. Meyer, J. M. Nel, Physica B, 575, 411694 (2019). https://doi.org/10.1016/j.physb.2019.411694
- V. Gowthami, M. Meenakshi, P. Perumal, R. Sivakumar, C. Sanjeeviraja, Int J Chem Tech Res., 6, 5196 (2014).
- F. I. Ezema, A. B. C. Ekwealor, R. U. Osuji, J. Optoelectron Adv, M 9, 1898 (2007).
- A. H. Hammad, M.Sh. Abdel-wahab, S. Vattamkandathil, A. R. Ansari, Physica B, 568, 6 (2019). https://doi. org/10.1016/j.physb.2019.05.012
- Attieh A. Al-Ghamdi, M. Sh. Abdel-wahab, A. A. Farghali, P.M.Z. Hasan, Mater. Res. Bull., 75, 71 (2016). https://doi. org/10.1016/j.materresbull.2015.11.027
- J. D. Hwang, T. H. Ho, Mat. Sci. Semicon Proc., 71, 396. (2017). https://doi.org/10.1016/j.mssp.2017.09.002