Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Saini, R. C.
- Fabrication of TiO2-Carbon Paste Modified Electrochemical Sensor for 4-Aminophenol in Pharmaceutical Samples
Abstract Views :344 |
PDF Views:2
Authors
Affiliations
1 Department of Chemistry, Wollo University, P.O. Box 1145, Dessie, ET
2 Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, ET
3 SBMN Institute of Pharma Sci and Res, Baba Mastnath University, Asthal Bohar - 124021, Harayana, IN
1 Department of Chemistry, Wollo University, P.O. Box 1145, Dessie, ET
2 Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, ET
3 SBMN Institute of Pharma Sci and Res, Baba Mastnath University, Asthal Bohar - 124021, Harayana, IN
Source
Journal of Surface Science and Technology, Vol 32, No 1-2 (2016), Pagination: 58-66Abstract
In this study the electrochemical behavior of 4-aminophenol at titanium dioxide modified carbon paste electrode was investigated using cyclic voltammetry. The working parameters for both, cyclic- and square wave- voltametric studies have been optimized using 5.0 mM 4-aminophenol (4-APOH) in 0.1 M NaH2PO4.2H2O buffer solution. The modified rather than unmodified carbon paste sensor, in neutral medium, has exhibited strong electro-catalytic activity towards the redox characteristics of 4-aminophenol by showing two-fold peak current enhancement and 174 mV peak potential shift towards negative direction. The red-ox peak current ratio (I pa/I pc = 1.6) suggested high accumulation efficiency of 4-APOH at the modified sensor. The redox process is quasi reversible and involves the transference of 2e-s and 2H+s followed by diffusion controlled, non-adsorptive behavior of 4-APOH on the surface of sensor at the interface. Further, the electro-catalytic behavior of the modified sensor has been exploited for quantitative determination of 4-aminophenol in pharmaceutical samples using square wave voltammetry. Under optimal experimental conditions, there was a linear relationship between peak current and concentration in the range 2.5 × 10-5 to 2.0 × 10-4 M with a correlation coefficient of 0.998 and limit of detection 1.38 × 10-8 M. The method was successfully applied for the quantitative determination of 4-aminophenol in pharmaceutical formulations against the commercial drugs viz., PANADOL, and Paracetamol at recovery level of 100 ± 1.7 %.Keywords
4-Aminophenol, Cyclic Voltammetry, Commericial Drugs, TiO2-Carbon Sensor, Square Wave Voltammetry.References
- T. Li, G. An, Y. Xiong, X. Zhu, H. Xing and G. Liu, Mater Phys. Mec., 4, 101 (2001).
- V. Augugliaro, M. Litter, L. Palmisano and J. Photochem. Photobiol. C. Photochem. Rev. 7, 123 (2006).
- C. Berrios, R. Arce, M. C. Rezende, M. S. Ureta-Zanartu, and C. Gutieerrez, Electrochim. Acta., 53, 2768 (2008).
- E. Brillas, E. Mur, R. Sauleda, L. Sánchez, J. Peral, X. Domenech, and J. Casado, Appl Catal B: Environ., 16, 31 (1998).
- P. Canizares, L. Martínez R. Paz, C. Saez, J. Lobato, and M. A. Rodrigo, J. Chem. Technol. Biotechnol., 81, 1331 (2006).
- P. Canizares, C. Saez, J. Lobato, and M. A. Rodrigo, Electrochim. Acta., 49, 4641 (2004).
- T. Charoenraks, S. Chuanuwatanakul, K. Honda, Y. Yamaguchi, and O. Chailapakul, Anal. Sci., 21, 241 (2005).
- D. Li, L. Qin, W. Dai, Y. Y. J. Chem. Ind. Eng. (China), 54, 1017 (2003).
- K. Polat, Turk. J. Chem., 27, 501 (2003).
- M.Y. Li, Q. S. Yan, J. Z. Fang, X. H. Tang and Q. H. Tang, J. Chem. Ind. Eng. (China), 54, 1650 (2003).
- Kirk-Othmer, Encyclopedia of Chemical Technology, 4th edition, Wiley Inter science, Vol. 2. (1995).
- S. Mitchell and R. Waring, Ullamann’s Encyclopedia of Industrial Chemistry, 5th edition VCH, Weinheim. A2 (1985).
- IARC, Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Man. WHO, International Agency for Research on Cancer: Geneva, 71, 758 (1999).
- R. Yoshida, S. Oikawa, Y. Ogawa, Y. Miyakoshi, M. Ooida, K. Asanuma, and H. Shimizu, Mater. Res., 415, 139 (1998).
- D. Li, X. Sun, H. Zhang and X. Xie, J. Environ. Anal. Chem., 92, 324 (2012).
- H. Filik, M. Hayvali, and E. Kilic. Anal. Chim. Acta, 535, 177 (2005).
- S. D. Cekic, H. Filik, and R. J. Anal. Chem., 60, 1019 (2005).
- H. Filik and A. Tavman, J. Anal. Chem., 62, 530 (2007).
- M. A. Karimi, M. R. Nateghi, M. Malekzadeh, F. Banifatemeh, and O. Moradlou, Asian J. Chem., 19, 4533 (2007).
- N. G. Karousos and S. M. Reddy, Analyst, 127, 368 (2002).
- E. Wyszecka-Kaszuba, M. Warowna-Grzeskiewicz, and Z. Fijalek, J. Pharm. Biomed. Anal., 32, 1081 (2003).
- M. S. Ali, M. Ghori, S. Rafiuddin and A. R. Kahtri, J. Pharm. Biomed. Anal., 43, 158 (2007).
- Q. Chu, L. Jiang, X. Tian and J. Ye., Anal. Chim. Acta., 606, 246 (2008).
- H. Xu, C. F. Duan, Z. F. Zhang, J. Y. Chen, C. Z. Lai, M. Lain and H. Cui, Water Res., 39, 396 (2005).
- E. P. Gil, H. T. Tang, H. B. Halsall, W. R. Heineman, and A. S. Clinical Chem, 36, 662 (1990).
- R. H. Baughman, A. A. Zakhidov, W. A. De Heer, Science, 297, 787 (2002).
- S. W. Seo and W. S. Jung, Bull. Korean Chem. Soc., 33, 2435 (2012).
- H. Lu, L. Song, and Y. Hu, Polym. Adv. Technol., 22, 379 (2011).
- G. Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, Crit. Rev. Solid State Mater. Sci., 29, 111 (2004).
- J. G. Lu, P. Chang and Z. Fan, Mater. Sci. Engg., 52, 49. (2006).
- N. Barsan, D. Koziej and U. Weimar, Sensors Actuators B: Chem., 121, 18 (2007).
- Y. Fan, J. H. Liu, C. P. Yang, M. Yu, and P. Liu, Sensors Actuators B: Chem., 157, 669 (2011).
- K. R. Mahanthesha, B. E. K. Swamy, K. V. Pai, U. Chandra, and B. S. Sherigara, Int. J. Electro-chem. Sci., 5, 1962 (2010).
- Y. Tadesse, A. Tadese, R. C. Saini, R. Pal, Int. J. Electro-chem., doi.org/10.1155/2013/849327 (2013).
- Y. Tadesse, R. Pal, A. Tadese, A. Woldu and R. C. Saini, Int. J. Sci. Res. Pubs., 5, 1 (2015).
- R. S. Nicholson, Anal. Chem., 37, 1351 (1965).
- B. Habibi, M. Jahanbakhshi, and M. Abazari, J. Iran. Chem. Soc., 3, 324 (2013).
- S. Mehretie , S. Admassie, T. Hunde, M. Tessema and http://ischolarglobal.com/index.php/JSSTISSST/editor/viewMetadata/107853#T. Solomon, Talanta, 85, 1376 (2011).
- N. R. Hegde, R. R. Hosamani and S. T. Nadibewoor, Anal. Lett., 42, 1665 (2009).
- R. S. Chen, W. H. Huang, H. Tong, Z. L. Wang, and J. K. Cheng, Anal. Chem., 75, 6341 (2003).
- M. Boas, K. M. Main, U. Feldt-Rasmussen, J. D. Meeker, K. K. Ferguson, C. M. Hall and K. B. Paul, Eur. J. Endocrinol., 154, 599 (2009).
- A. Safavi, N. Maleki, and O. Moradlou, Electroanalysis, 20, 2158 (2008).
- A Study on Voltametric Electro-Kinetic Mechanism of Catechol at l-Glutamic Acid-Carbon Paste Sensor
Abstract Views :388 |
PDF Views:4
Authors
Affiliations
1 Department of Natural Science and Mathematics, Abbiyi Addi College of Education and Educational Leadership, Abbiyi Addi, P. O. Box -11, Tigray, ET
2 SBMN Institute of Pharma Sciences and Research, Mastnath University, Asthal-Bohr, Rohtak - 124021, Haryana, IN
3 Department of Applied Sciences, Guru Gobind Singh College of Engineering and Technology, Guru Kashi University, Talwandi-Sabo, Punjab, IN
1 Department of Natural Science and Mathematics, Abbiyi Addi College of Education and Educational Leadership, Abbiyi Addi, P. O. Box -11, Tigray, ET
2 SBMN Institute of Pharma Sciences and Research, Mastnath University, Asthal-Bohr, Rohtak - 124021, Haryana, IN
3 Department of Applied Sciences, Guru Gobind Singh College of Engineering and Technology, Guru Kashi University, Talwandi-Sabo, Punjab, IN
Source
Journal of Surface Science and Technology, Vol 33, No 1-2 (2017), Pagination: 1-11Abstract
Quinones and quinoles, the pervasive components of living organism, perform different biochemical and physiological activities. These compounds have found their widespread applications as life saving drugs in cancer chemotherapy, antioxidant, anti bacterial and antifungal agents. These contribute as components of biological electron transfer chains located indifferent body parts. Electrochemical redox behavior of catechol using cyclic and differential pulse voltammetry at the surface of ℓ-glutamic acid modified carbon paste sensor was observed quite sensitive. There was a remarkable increase in the magnitude of both peak currents of catechol at the surface of modified electrode as compared to that of bare carbon paste electrode. Optimizations of working parameters for both techniques have been performed to perk up the working efficiency during experimentation. The electrochemical process occurs under both the diffusion and adsorption controlled conditions. The kinetic parameters such as heterogeneous electron transfer rate constant for electrode process (Kh), diffusion coefficient (D), standard rate constant of surface reaction (k°), electron transfer coefficient (α) and the average surface concentrations of electro-active species (χ1&χ2) at the electro-chemical barriers catechol/o-quinone radical and o-quinone radical/o-quinone were calculated. The calculated value of Kh lie in close vicinity to limiting value of a complete irreversible process and in far range of quasi-reversible process. In the higher range of applied scan rates at lower potentials of the used potential window, the forward scan revealed the formation of well stable reaction intermediate, at relatively slower rate. This is the rate determining step of the oxidation process but in case of reduction pulse of the same scan rate, there is no indication of any reduction intermediate moieties. The chemical process during electrochemical oxidation of catechol follows pseudo first order kinetics. Furthermore, a two step oxidation, Electronic-Chemical-Electronic-Chemical reactions (ECEC) mechanism has been proposed and single step reduction has been observed for the coupled redox process at the sensor/analyte interface.Keywords
Cyclic and Differential Pulse Voltametry, Kinetic Parameters, ℓ-Glutamic Acid, Modified Graphite Sensor, Redox Mechanism.References
- W. W. Anku, M. A. Mamo and P. P. Govender 2017. (http:/creativecommon.org/licenses/by/3.0)
- A. L. Cukierman, Chem. Engg., 2013, 31 (2013). AID 261523.
- E. O. Igbinosa, E. E. Odjadjare, V. N. C. I. H. Igbinosa, A. O. Emoghene, F. O. Ekhaise, N. O. Igiehon and O. G. Idemudia, Sci. W. Journal, 2013, 11 (2013). AID 460215.
- J. Michałowicz and W. Duda, Polish J. Env. Studies, 16, 3 (2007).
- D. P. Yang, H. F. Ji, G. Y. Tang, W. Ren and H. Y. Zhang, Molecules, 12, 878 (2007).
- J. Svitkova, M. Martina, P. Satkovska, K. Chinkova and L. Svorc, Acta chim. Slovaca., 5, 42 (2012).
- A. W. Taylor, F. Qiu, J. Hu, P. Licence and D. A. Walsh, J. Phys. Chem. B., 112, 13292 (2008).
- H. Wang, L. He, L. Wu, A. J. Zhang, H. Kajiura, Y. M. Li and J. X. Lu, Int. J. Electrochem. Sci., 7, 5616 (2012).
- H. C. Xu, and K. D. Moeller, J. Am. Chem. Soc., 132, 2839 (2010).
- A. Kiani, J. B. Raoof and R. Ojani, Bull. Electrochem., 22, 203 (2006).
- D. Nematollahi and L. M. Behzad, Int. J.Electrochem. Sci., 4, 1583 (2009).
- Y. Tadesse, R. Pal, A. Tadese, A. Woldu and R. C. Saini, Inter. J. Sci. Res. Pub., 5, 1 (2015).
- P. S. Da-Silva, B. C. Gasparini, H. A. Magosso and A. Spinelli, J. Braz. Chem. Soc., 24, 529 (2013).
- L. Fotouhi, S. Asadi, E. Tammari, M. M. Heravi and D. Nematollahi, J. Iran. Chem. Soc., 5, 712 (2008).
- F. Khaleghi, A. Khalilzadeh, J. B. Raoof, M. Tajbakhsh and H. Karimi-Maleh, J. Appl. Electrochem., 3, 1651 (2009).
- L. A. Alshahrani, X. Li, H. Luo, L. Yang, M. Wang, S. Yan, P. Liu, Y. Yang and Q. Li Sensors, 14, 22274 (2014).
- Rekha, B. E. K. Swamy and P. S. Ganesh, J. Biosens. Bioelectron., 7, 217 (2016).
- A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd Ed, John Wiley and Sons, New York (2001).
- C. D. Richard and E. B. Craig, Understanding Voltametry, 2nd Ed., Imperial College Press, 2010. ISBN:1848165854.
- M. Zhang, Y. Dai, L. Fan, L, Lu and X. Kan, Analyst’s, 140, 6047 (2015).
- A. Kiani, J. B. Raoof, D. Nematollahi and R. Ojani, Electroanalysis. 17, 1755 (2005).
- M. Fekadu, R. Mesfin, T. Merid and A. Esayas, Nat. Sci., 5 , 888 (2013).
- J. I. Gowda and S. T. Nandibewoor, Asian J. Pharma. Sci., 9, 42 (2014).
- S. N. Prasanth, K. C. Ramesh and J. Seetharamappa, Int. J. Electrochem., 2011, 1 (2011).
- L. Fotouhi, M. Fatollahzadeh and M. M. Heravi, Int. J. Electrochem. Sci., 7, 3919 (2012).
- R. Ojani, J. B. Raoof, R. Hosseinzadeh and A. Alinezhad, Asian J. Chem., 20, 5863 (2008).
- E. Laviron, J. Electroanal. Chem. and Interfac. Electrochem., 101, 19 (1979).
- D. Thomas, J. Rasheed, J. S. Jagan and K. G. Kumar, J. Food Sci. Tech. doi: 10.1007/s13197-1796-1, (2015).
- F. Lida, K. Mona, N. Davao, and M. H. Majid, General Papers ARKICOC, 2008(ii), 43 (2008).
- G. A. M. Mersal, Int. J. Electrochem. Sci., 4, 1167 (2009).
- Y. Yaqian, W. Linjing, G. Qianqiong and H. Shasheng, J. Anal. & Bioanal. Tech., 6, 290 (2015).
- D. P. Santos, M. F. Bergamini and M. V. B. Zanoni, Int. J. Electrochem. Sci., 5, 1399 (2010).
- H. C. Xu and K. D. Moeller, Org. Lett., 12, 1720 (2010).
- H. C. Xu and K. D. Moeller, Angew. Chem. Int. Ed. Eng., 4, 8004 (2010).