Open Access Open Access  Restricted Access Subscription Access

On Non-Spherical Models for Spiral Galaxy Gravitation Potential Yielding Rotation Curve


Affiliations
1 HSBC, Edinburgh, United Kingdom
 

A two component model of gravitation potential for spiral galaxies has been proposed which couples a spherically symmetric component with a second component that observes planar radial symmetry on the galactic plane and vanishes outside an annular disk beyond the edge of galaxy’s effective radius. It is shown that such a model for potential satisfying Poisson Equation would produce rotation velocity curve towards the edge of the galaxy which is flat over distance from the galactic centre. This relationship, which is experimentally observed in many spiral galaxies, is shown as a consequence of classical understanding of gravity and specific symmetry of the gravitational potential without any extrinsic requirement of dark matter. It is also demonstrated that this potential directly yields a relationship between inner mass of the galaxy and terminal rotation velocity, which has been empirically observed and known as Baryonic Tully-Fisher relations. Furthermore a direct test has been proposed for experimental verification of the proposed theory.

Keywords

Galaxies : Kinematics and Dynamics, Galaxies : Spira, Cosmology : Dark Matter, Cosmology: Theory.
User
Notifications
Font Size

  • Babcock HW. The rotation of the Andromeda Nebula. Lick Obs Bull. 1939; 19:41-51.
  • Van de Hulst HC, Raimond E, Van Woerden H. Rotation and density distribution of the Andromeda nebula derived from observations of the 21-cm line. Bull Astron Inst Neth. 1957; 14:1.
  • Schmidt M. The distribution of mass in M 31. Bull Astron Inst Neth. 1957; 14:17. , Chen W, et al. Dark matter results from 54-ton-day exposure of PandaX-II experiment. Phys rev lett. 2017;119(18):181302.
  • Oort JH. Some problems concerning the structure and dynamics of the galactic system and the elliptical nebulae NGC 3115 and 4494. Astrophys J. 1940:91-273.
  • Rubin VC, Ford Jr WK. Rotation of the Andromeda nebula from a spectroscopic survey of emission regions. Astrophys J. 1970; 159:379.
  • Persic M, Salucci P, Stel F. The universal rotation curve of spiral Galaxies-I. The dark matter connection. Mon Not R Astron Soc. 1996;281(1):27-47.
  • Navarro JF. The structure of cold dark matter halos. In symposium int astron union. 1996; 171:255-258.
  • Ashman KM, Salucci P, Persic M. The mass function of spiral galaxy haloes. Mon Not R Astron Soc. 1993;260(3):610-616.
  • Broeils AH. The mass distribution of the dwarf spiral NGC 1560. Astron astrophys. 1992; 256:19-32.
  • Carignan C, Charbonneau P, Boulanger F, et al. Observational study of the spiral galaxy NGC 6946. II-HI kinematics and mass distribution. Astron Astrophys. 1990; 234:43-52.
  • Hernquist L. An analytical model for spherical galaxies and bulges. Astrophys J. 1990; 356:359-64.
  • Jaffe W. A simple model for the distribution of light in spherical galaxies. Mon Not R Astron Soc.1983;202(4):995-9.
  • Merritt D, ‘Empirical models for dark matter halos. i. nonparametric construction of density profiles and comparison with parametric models’. Astrophys J. 2006;132(6):2685-2700.
  • Merritt D, Navarro JF, Ludlow A, et al. A universal density profile for dark and luminous matter? Astrophys J Lett. 2005;624(2):85.
  • De Vaucouleurs G. General physical properties of external galaxies. InAstrophysik IV: Sternsysteme/Astrophysics IV: Stellar Systems 1959; 311-372.
  • Eddington AS. The distribution of stars in globular clustersMon. Not R Astron Soc. 1916; 76:572-585.
  • Binney J, Tremaine S. Galactic Dynamics 2nd ed.1-920.
  • Rubin VC, Ford Jr WK, Thonnard N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii. Astrophys J. 1980; 238:471-87.
  • Luminet JP. The Dark Matter Enigma. 2021;1-11.
  • Zwicky F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys J. 1937;86:217.
  • De Swart JG, Bertone G, van Dongen J. How dark matter came to matter. Nat Astron. 2017;1(3):1-9.
  • Burbidge GR, Sargent WL. The case of the missing mass. Comments Astrophys Space Phys. 1969; 1:220.
  • Emerson DT, Baldwin JE. The rotation curve and mass distribution in M31. Mon Not R Astron Soc. 1973;165(1):9-13.
  • Aprile E, Aalbers J, Agostini F, et al. First dark matter search results from the XENON1T experiment. Phys rev lett. 2017;119(18):181301.
  • Cui X, Abdukerim A, Chen W, et al. Dark matter results from 54-ton-day exposure of PandaX-II experiment. Phys rev lett. 2017;119(18):181302.
  • Ackermann M, Ajello M, Albert A, et al. The Fermi galactic center GeV excess and implications for dark matter. Astrophys J. 2017;840(1):43.
  • Yegorova IA, Salucci P. The radial Tully-Fisher relation for spiral galaxies-I. Mon Not R Astron Soc. 2007 May 11;377(2):507-15.
  • Tully RB, de Marseille O, Fisher JR. A New Method of Determining Distances to Galaxies. In Bull Am Astron Soc. 1975; 7:426.
  • McGaugh SS, Schombert JM, Bothun GD, et al. The baryonic tully-fisher relation. Astrophys J Lett. 2000;533(2):99.
  • Torres-Flores S, Epinat B, Amram P, et al. GHASP: An Hα kinematic survey of spiral and irregular galaxies-IX. The near-infrared, stellar and baryonic Tully–Fisher relations. Mon Not R Astron Soc. 2011;416(3):1936-48.
  • Lelli F, Mc Gaugh SS, Schombert JM, et al. One law to rule them all: the radial acceleration relation of galaxies. Astrophys J. 2017;836(2):152.
  • Milgrom M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys J. 1983; 270:365-70.
  • Bekenstein J, Milgrom M. Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys J. 1984; 286:7-14.
  • McGaugh SS. A tale of two paradigms: the mutual incommensurability of ΛCDM and MOND. Can J Phys. 2015;93(2):250-9. 10
  • Kroupa P, Pawlowski M, Milgrom M. The failures of the standard model of cosmology require a new paradigm. Int J Mod Phys. D. 2012;21(14):1230003.
  • Boylan-Kolchin M, Bullock JS, Kaplinghat M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon Not R Astron Soc Lett. 2011;415(1):L40-44.
  • McGaugh SS. The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND. Astrophys J. 2012;143(2):40.
  • Famaey B, McGaugh SS. Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living rev relativ. 2012a;15(1):1-59.
  • Romanowsky AJ, Douglas NG, Arnaboldi M, et al. A dearth of dark matter in ordinary elliptical galaxies. Science. 2003;301(5640):1696-8.
  • Milgrom M, Sanders RH. Modified newtonian dynamics and the “dearth of dark matter in ordinary elliptical galaxies”. Astrophys J Lett. 2003;599(1):25.
  • Yunes N, Siemens X. Gravitational-wave tests of general relativity with ground-based detectors and pulsar-timing arrays. Living Reviews in Relativity. 2013;16(1):1-24.
  • Seifert MD. Stability of spherically symmetric solutions in modified theories of gravity. Phys Rev D. 2007;76(6):064002.
  • Famaey B, McGaugh SS. Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living rev relativ. 2012b;15(1):1-59.
  • Bekenstein JD. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys Rev D. 2004;70(8):083509.
  • Buchdahl HA. Non-linear Lagrangians and cosmological theory. Mon Not R Astron Soc. 1970;150(1):1-8.
  • Jacobson T, Mattingly D. ‘Gravity with a dynamical preferred frame’. Phys Rev D. 2001;64, 024028.
  • Contaldi CR, Wiseman T, Withers B. TeVeS gets caught on caustics. Phys Rev D. 2008;78(4):044034.
  • Clowe D, Bradač M, Gonzalez AH, et al. A direct empirical proof of the existence of dark matter. Astrophys J Lett. 2006;648(2):109.
  • Aguirre A, Schaye J, Quataert E. Problems for modified Newtonian dynamics in clusters and the Lyα forest? Astrophys J. 2001;561(2):550.
  • Angus GW, Famaey B, Zhao H. Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry. Mon Not R Astron. Soc. 2006;371(1):138-146.
  • Cooperstock FI, Tieu S. General relativity resolves galactic rotation without exotic dark matter. 2005.
  • Cooperstock FI, Tieu S. Galactic dynamics via general relativity: a compilation and new developments. Int J Mod Phys A. 2007;22(13):2293-2325.
  • Balasin H, Grumiller D. Non-Newtonian behavior in weak field general relativity for extended rotating sources. Int J Mod Phys D. 2008; 17:475-488.
  • Brownstein JR, Moffat JW. Galaxy rotation curves without nonbaryonic dark matter. Astrophys J. 2006;636(2):721.
  • Zhang F. Modeling the Rising Tails of Galaxy Rotation Curves. Galaxies. 2019;7(1):27.
  • Trevese D, Vignato A. Galaxy clusters as relativistic spherically-symmetrical in homogeneities. Astrophys. Space Sci. 1977;49(1):229-40.
  • Limousin M, Morandi A, Sereno M, et al. The three-dimensional shapes of galaxy clusters. Space Sci Rev. 2013;177(1-4):155-94.
  • Piffaretti R, Jetzer P, Schindler S. Aspherical galaxy clusters: Effects on cluster masses and gas mass fractions. Astron Astrophys. 2003;398(1):41-8.
  • Ferreras I. Fundamentals of Galaxy Dynamics, Formation and Evolution. UCL Press; 2019;1-200.
  • Madejski G. Recent and Future Observations in the X‐ray and Gamma‐ray Bands: Chandra, Suzaku, GLAST, and NuSTAR. InAIP Conference Proceedings. Am Inst Phys. 2005; 801(1):21-30.
  • Navarro J F and Benz W. ‘Dynamics of Cooling Gas in Galactic Dark Halos’. Ap J. 1991;380, 320.
  • Nyambuya GG. Four poission-laplace theory of gravitation. J Mod Phys. 2015;6(9):1195.
  • Sparke LS, Gallagher III JS. Galaxies in the universe: an introduction. Cambridge University Press; 2007.
  • Seigar MS, James PA. The structure of spiral galaxies-II. Near-infrared properties of spiral arms. Mon Not R Astron Soc. 1998;299(3):685-98.
  • McGaugh SS. The baryonic Tully-Fisher relation of gas-rich galaxies as a test of ΛCDM and MOND. Astrophys J. 2012;143(2):40.
  • Kravtsov AV, Klypin AA, Bullock JS, et al. The cores of dark matter-dominated galaxies: Theory versus observations. Astrophys J. 1998;502(1):48.
  • Carignan C, Purton C. The “total” mass of DDO 154. Astrophys. J.1998;506(1):125.
  • Carignan C, Freeman KC. DDO 154-A’dark’galaxy? Astrophys J. 1988; 332:33-36.
  • De Blok WJ, McGaugh SS. The dark and visible matter content of low surface brightness disc galaxies. Mon Not R Astron Soc.1997;290(3):533-52.
  • Pharasyn A, Simien F, Heraudeau P. On the Fundamental Plane of spiral galaxies. In Dark and Visible Matter in Galaxies and Cosmological Implications 1997; 117:180.
  • Shen S, Mo HJ, Shu C. The fundamental plane of spiral galaxies: theoretical expectations. Mon Not R Astron Soc. 2002;331(1):259-72.
  • Han J, Deng Z, Zou Z, et al. The fundamental plane of spiral galaxies: Search from observational data. Publ Astron Soc Jpn.2001;53(5):853-60.
  • Lopez-Corredoira M. Kinematics and dynamics of the Galactic disc. 2019;1-11.
  • Binney J, Burnett B, Kordopatis G, et al. Galactic kinematics and dynamics from Radial Velocity Experiment stars. Mon Not R Astron Soc. 2014;439(2):1231-1244.
  • Nipoti C, Londrillo P, Ciotti L. Galaxy merging in modified Newtonian dynamics. Mon Not R Astron Soc: Lett. 2007;381(1):104-8.

Abstract Views: 162

PDF Views: 1




  • On Non-Spherical Models for Spiral Galaxy Gravitation Potential Yielding Rotation Curve

Abstract Views: 162  |  PDF Views: 1

Authors

Swagatam Sen
HSBC, Edinburgh, United Kingdom

Abstract


A two component model of gravitation potential for spiral galaxies has been proposed which couples a spherically symmetric component with a second component that observes planar radial symmetry on the galactic plane and vanishes outside an annular disk beyond the edge of galaxy’s effective radius. It is shown that such a model for potential satisfying Poisson Equation would produce rotation velocity curve towards the edge of the galaxy which is flat over distance from the galactic centre. This relationship, which is experimentally observed in many spiral galaxies, is shown as a consequence of classical understanding of gravity and specific symmetry of the gravitational potential without any extrinsic requirement of dark matter. It is also demonstrated that this potential directly yields a relationship between inner mass of the galaxy and terminal rotation velocity, which has been empirically observed and known as Baryonic Tully-Fisher relations. Furthermore a direct test has been proposed for experimental verification of the proposed theory.

Keywords


Galaxies : Kinematics and Dynamics, Galaxies : Spira, Cosmology : Dark Matter, Cosmology: Theory.

References