POLLEN MORPHOLOGY OF AQUATIC FLORA OF THE INDIAN BOTANIC GARDEN, HOWRAH, WEST BENGAL

M. S. Mondal
Botanical Survey of India, Howrah

Abstract

The paper presents pollen morphological study of the aquatic flora growing in the different pools and lakes of the Indian Botanic Garden, Shibpur, Howrah, West Bengal. In the present study 64 species, comprising 4 Pteridophytes, 23 Dicotyledons and 37 Monocotyledons have been described with special notes and/or remarks, if any. This study will be helpful for correct taxonomic identification of the aquatic plants as well as correlation of the lake sediments.

INTRODUCTION

The Indian Botanic Garden, Howrah was established in 1787 covering an area of 112 hectares on the West bank of the river Hooghly. Its unique landscape design initiated by Sir George King 1872 is considered to be one of the best in the botanic gardens of the world with the undulated land surface, artificial lakes and moats. Two century later now, this garden is a hidden treasure to the taxonomists and morphologists for studying hydrophytic vegetation on account of presence of several lakes and pools. Many plants of wide ecological groups from different parts of India and from other continente are being introduced from time to time in this garden for their taxonomical, and biosystematical interests. Some of these are being well suited in this climate and Howered.
Indian subcontinent is very rich with her fresh water aquatic flora for its tropical climatic condition and favourable edaphic factors which enable a very good place for studying the biology of the aquatic plants. At present this aspect is becoming a fascinating field of botanical research for better

[^0]understanding of the adaptibility of the hydrophytes. In early days Arber (1920) made the most outstanding contribution to synthesise data on aquatic plants. Later on Biswas and Calder $(1936,1954)$ have described 171 species from 91 genera. Subramanyam (1962) described 117 taxa representing 32 families. In the last decade Deb (1976) made a very informative survey on the aquatic vascular plants of India and he recorded total 144 species from Pteridophytes, Monocotyledons and Dicotyledons with notes on distribution, endemism, indigenous and exotic elements. Mitra et al. (1971) published a list of aquatic and semiaquatic plants growing in the Indian Botanic Garden. They listed 94 species in total.
True hydrophytic habit is very much sensitive to temperature and water supply than the mesophytic one. Phenotypic plasticity is very common in aquatics when subjected to stress and create a taxonomic problem for the correct identification of the taxon (Backer 1951). The range of tolerance towards the habitat, sensitivity, physical and chemical properties of water and other factors are obviously reflecting on their pollen production, pollination, fertility and other reproductive factors. Sculthorpe (1967) made

Out line map of the Indian

[^1]a valuable contribution to the biology of the aquatic plants. Pollen morphological information on Indian aquatics are very meagre and mainly contributed by Raj and Saxena (1966) and Raj and Suryakanta (1973). They described only a few aquatic species common in Hyderabad. There are some stray pollen morphological descriptions of aquatic plant species published elsewhere in palynotaxonomical or phytomorphological studies by different authors like Erdtman (1952), Ram (1956), Maheshwari et al. (1956), Nair et al. (1963),' Nair (1965), Sharma (1967), Mitra et al. (1982) and others.
The concept of aquatic plants may be sub. jected to various interpretations. Plants normally grow and develop the seedlings in water and have at least a part of their life cycle in water are treated as aquatic plants in the present study.

MATERIALS AND METHODS

Polliniferous materials of the aquatics were collected in different flowering seasons from the pools and lakes of the Indian Botanic Garden and sometimes from the culture pots of the Experimental Garden. Distribution of plants in different lakes have been abbreviated after the name of the plants. Fresh, mature, closed flower buds were selecred. Pollen slides were prepared by Acetolysis method (Erdtman, 1960). Observations and measurements were based on the average of 25 readings of the pollen grains of each species. For palynological description the families have been arranged in accordance with the Bentham and Hooker ($1862-1883$) as modified in Kew Herbarium and Herbarium of the British Museum. Pollen morphological terminology of Erdtman (1952) and Faegri and Iversen (1964) has been followed.

Pollen grains, being three dimensional in some monocotyledons, the measurements are recorded as follows (Thanikaimoni, 1970),
$\mathrm{L}=$ the longest equatorial axis [measured equatorial and polar (distal and proximal) view of the pollen grains].
$\mathrm{l}=$ the short equatorial axis (measured in polar and lateral views).
$\mathrm{P}=$ the polar axis (measured in equatorial and lateral views).
Aperture-measure in distal polar view. The shape and measurements of the pollen grains are shown in Text Fig. I. Various pollen grains of the monocots are termed as convexo-convex, concavo-convex and planoconvex in the lateral views and spheroidal, ellipsoidal etc. in distal view following Erdtman (1952).
A map of the Indian Botanic Garden showing the details of the position of the lakes (see Map) is given which will be helpful for the future research on the correlation of the lake sediment deposits.
It should be mentioned here that besides the common water lilies and two giant water lilies (Victoria), the Indian Botanic Gardén has to its credit a germplasm collection of 210 pot grown lilies belonging to 4 species and nearly 30 varieties including a number of hybrids. These have been excluded in the present study.
The names of the lakes abbreviated are as follows :-
DL-Diwan lake; I.G.-Introduction garden ; JL-Janardan lake; KL-King lake; KUL-Kunstlar lake ; L-Lake ; LL-Lerum lake; LP-Lotus pool; PL-Prain lake; PC-Pot culture ; SCL-Scortechini lake; SL-Shadir lake; Und. L-Unnamed lake (number given against Und. L.-denotes lake in that division of the Indian Botanic Garden).

OBSERVATIONS

Pollen grains of aquatic plants are normal monad type. Pteridophytic spores are mainly represented by the trilete tetrahedral or

Text Fig. 1: Diagrammatic representation of the shape and measurements taken of the pollen grains [Based on Erdiman (1960) and Thanikaimani (1970)].
rounded triangular types. Monocotyledonous aquatics represent a broad spectrum of pollen morphoforms ranging from inaperturate, monoaperturate (monoporate or monosulcate) to pantoaperturate types. Biaperturate condition, though rare, is also recorded in some monocots. Dicotyledonous pollen grains are either triporate or tricolporate type except in the primitive family Nymphaeaceae. Aeschynomene aspera L. is very interesting having 3 -colporate-diorate type of aperture condition, also reported earlier by Sharma (1968). Specific palynological description in details have been described below :

PTERIDOPHYTES

PARKERIACEAE

Ceratopterls thalictroides (Cl.) Brongn. Pl, JL. Spores rounded-triangular, trilete, 2-4 costae arise from near the end of the trilete
mark and pass on to distal surface, diameter $69 \mu \mathrm{~m}$, (range : $63-79 \mu \mathrm{~m}$). Exine $\pm 8 \mu \mathrm{~m}$ thick, striate, homogenous. (Fig. 1, 2).

MARSILEACEAE

Marsilea quadrifolia (L.) Willd. Und. L 2, 3, $8,13,16,18$.
Spores trilete, tetrahedral, globose on maturity, diameter ranging from $43-76 \mu \mathrm{~m}$, perisporate. Megaspores within gelatinous sheath and with a beak. Erine $\pm 7 \mu \mathrm{~m}$ thick, homogenous. Spores borne within hard stony sporocarp.

SALVINIAGEAE

Azolla pinnata R. Br. Und. L 13, 16, 11,21 , KL, PL, JLL
Microspores in groups of 8-12, called massulae, surrounded by spongy tissue with peripheral anchor shaped projections called glochidea. Individual spores trilete, round-ed-triangular, with straight aperture-laesura.

Figs, 1-6: 1. Ceratopteris thalictroides-Distal view showing striate exine ornamentation. 2. Proximal view showing trilete aperture and striate exine ornamentation. 3. Azolla pinnata - Microspore in optical section. 4. Sane showing exine ornamentation. 5. Pistia stratiotes - showing faint aperture and faintly striated exine ornamentation. 6. Ottelia alismoides - showing spinulose exine ornamentation and LO pattern.

Diameter ranging from $18-28 \mu \mathrm{~m}$. Exine borne in different sporocarps. Microspores $\pm 3 \mu \mathrm{~m}$ thick, pitted. (Fig. 3, 4).
Salviate auriculata Aubl. Und. L 8, 10,12 ,

16, 18, 21, KL, PL.
Microsporangia and
rounded-triangular, trilete, diameter ranging from $25-39 \mu \mathrm{~m}$. Exine $\pm 6 \mu \mathrm{~m}$ thick, homogenous, psilate. Megaspores are very large, diam. $5^{8-62 \mu}$ m.

DICOTYLEDONS

NYMPHAEACEAE

Earyale ferox Salisb. Und. L 20, 24, IG-PC. Pollen grains 1 -colpate, rarely 3 -colpate, biconvex in lateral view, size $42 \times 38 \times 35 \mu \mathrm{~m}$ (range : $\quad 39-44 \times 37-39 \times 30-36 \mu \mathrm{~m}$). Colpus extending upto poles, end rounded. Exine $1.5 \mu \mathrm{~m}$ thick, punctate reticulate. Sexine thinner than nexine.
Nelumbo nucifera Gaertn. KL, DL, LP.
Pollen grains 3 -colpate, spheroidal, diameter $5^{2} \mu \mathrm{~m}$ (range : $48-55 \mu \mathrm{~m}$). Colpus slit like, faint, and rounded. Exine $7 \mu \mathrm{~m}$ thick, punctate reticulate, lumina $0.5^{-1} \mu \mathrm{~m}$, irregular in shape. Sexine thinner than nexine.
Nymphaea nouchall Burm. f. Und. L 8, 19, 24, JL, DL.
Pollen grains i-colpate, rarely inaperturate, spheroidal, diameter $37 \mu \mathrm{~m}$ (range : 34^{-} $39 \mu \mathrm{~m}$). Colpus operculate, operculum provided with spinules. Exine very thin, $0.5 \mu \mathrm{~m}$ thick, spinulose. Sexine and nexine equally thick.
N. stellata Willd. IG-PC.

Pollen grains 1 -colpate, rarely 2 -colpate, spheroidal, equatorial diameter $3 \mathrm{I} \mu \mathrm{m}$ (range : $25 \cdot 5-35 \mu \mathrm{~m}$). Colpus operculate. Exine thin, $\pm 0.5 \mu \mathrm{~m}$ thick, spinulose, some sparsely distributed warts also present. Nexine layer not distinguishable. (Fig. 13).
Victoria amazonica (Poepp.) Sow. Und. L 8, 16, SL.
Pollen grains 3 -colpate, rarely 4 -colpate, united in tetrahedral tetrads, $35 \times 72.5 \times 64$ $\mu \mathrm{m}$ (range : $31-36.5 \times 67.5-75 \times 60.5-66 \mu \mathrm{~m}$). Some free 3 -colpate spheroidal pollen also observed. Diameter ${ }^{6} 1 \mu \mathrm{~m}$. Exine $\pm 1.5 \mu \mathrm{~m}$ thick, spinulose or with small warts. Sexine and nexine equally thick.
V, cruzeana Orbigny, IG-PC, SL, Und. 16.
Pollen grains 3 -colpate, rarely 4 -colpate, free, spheroidal, diameter $42 \mu \mathrm{~m}$ (range : $36.5-$ $47 \mu \mathrm{~m}$). Exine thin, $0.75^{-1} \mu \mathrm{~m}$ thick, spinulose. Sexine and nexine equally thick.

FABACEAE

Aeschynomene aspera Linn. Und. L3.
Pollen grains 3 -colporate, colpus extended from pole to pole, endoaperture two (diorate) per colpus, circular, prolate, $25 \times 20 \mu \mathrm{~m}$ (range : $22-29 \times 18-2 \mathrm{i} \mu \mathrm{m}$), contour elliptic oval (Mitra et al. l.c.). Exine $1.5 \mu \mathrm{~m}$ thick, reticulate, homobrochate. Sexine thicker than nexine.
A. indica Linn. Und. L3.

Pollen grains 3 -colporate, prolate-prolate spheroidal, $19 \times 17 \mu \mathrm{~m}$ (range : $17-21 \times 14-19$ $\mu \mathrm{m}$), contour elliptic oval, colpus extending upto poles, endoaperture single, circular, diameter $\pm 6 \mu \mathrm{~m}$. Exine $1 \mu \mathrm{~m}$ thick, reticulate, homobrochate. Sexine thicker than nexine.

MIMOSACEAE

Neptunia oleracea Lour. Und. Li8, 12, KL.
Pollen grains 3 -colporate, subprolate, $55.5 \times$ $45 \mu \mathrm{~m}$ (range : $48-6 \mathrm{I} \times 33-53 \mu \mathrm{~m}$). Colpus long, tapering, endoaperture lalongate, $8 \times$. $65 \mu \mathrm{~m}$, sometimes circular, diameter $\pm 6 \mu \mathrm{~m}$, granulated. Exine $4-4.5 \mu \mathrm{~m}$ thick, exine thinner towards aperture, striato-reticulate at mesocolpium, reticulate at poles. Sexine and nexine equally thick. (Fig. $7 \mathrm{a}-\mathrm{c}$).

ONAGRACEAE

Ludwigia adscendens (Linn.) Hara Und. Li6, KL.
Pollen grains 3 -colporate, spheroidal, diameter $68 \mu \mathrm{~m}$ (range : $59.5-77 \mu \mathrm{~m}$). Colpus long, slit like, ends pointed, endoaperture circular, $\pm 14 \mu \mathrm{~m}$, margin irregular. Exine $3 \mu \mathrm{~m}$ thick, granulose. Sexine and nexine equally thick. Amb circular in polar view. Some dimorphic pollen grains with 4 -colporate apertures and abnormal aperture positions were also observed.
L. perennis Linn. Und. Li2, 24, PL.

Pollen morphology similar to L. adscendens (Linn.) Hara except pollen grain size comparatively smaller in this species, diameter $66.5 \mu \mathrm{~m}$ (range : $56.74 \mu \mathrm{~m}$). Exine $2.5 \mu \mathrm{~m}$ thick. Dimorphic abnormal pollens

rigs. 1-I3: 1a. Neptunta oleracea Meridional view showing aperture and exine ornamentation. 7b. Exine stratification in optical section (diagrammatic). 7c, Polar view showing aperture and exine ornamentation. 8 a . Typha elephanta-aperture and exine ornamentation. 8b. \& 8c. Exine stratification and OL pattern (diagrammatic). 9a. Tenagocharis latifolia - distribution of aperture and exine ornamentation. 9b. Exine stratification (diagrammatic). 10. Cyperus compressus - aperture with margo and exine. 11a. Pas. palum scrobiculatum - aperture and exine. 11b. Aperture in details (diagrammatic). $12 a$. Ipomoea aquatica - aperture distribution and exine ornamentation. 12b. Exine stratification (diagrammatic). 18. Nymphaea stellata - Aperture (slightly oblique) and exine orna. mentation.
as observed in L. adscendens (Linn.) Hara are absent in this species.

TRAPACEAE

Trapa natans Linn. var. bispinosa (Roxb.)
Makino Und. Li6, IG-PC.
Pollen grains 3 -colpate, oblate spheroidal, $76 \times 83 \mu \mathrm{~m}$ (range : $7 \mathrm{I}-77 \times 79-84 \mu \mathrm{~m}$). Exine $3.5 \mu \mathrm{~m}$ thick. Sexine thinner than nexine. Pollen grains provided with meridional crest.

GENTIANACEAE

Nymphoides cristatum (Roxb.) O. Kuntze Und. L $3,10,18, \mathrm{KUL}, \mathrm{SCL}, \mathrm{JL}$.
Pollen grains 3 -colpate, spheroidal, diameter $3^{1} \mu \mathrm{~m}$ (range : $28-36 \mu \mathrm{~m}$), parasyncolpate, each colpus bifurcated in the polar region and fused with neighbouring two colpi. Exine $2 \mu \mathrm{~m}$ thick, coarsely rugulate. Sexine thicker than nexine.

CONVOLVULAGEAE

Ipomoea aquatica Forsk. Und. L 12, 13, 24.
Pollen grains pantoporate, spheroidal, diameter $75.5 \mu \mathrm{~m}$ (range : $70-77 \mu \mathrm{~m}$), some giant pollen grains also observed, $\pm 105 \mu \mathrm{~m}$ in diameter. Pore circular, $7 \mu \mathrm{~m}$, inter poral distance $3.5 \mu \mathrm{~m}$. Exine $\pm 9 \mu \mathrm{~m}$ thick including spines, spines thin, pointed, ± 3.5 $\mu \mathrm{m}$ long, spines sometimes bifurcated, basal cushion present. Sexine thicker than nexine. (Fig. 12a-b).

LENTIBULARIAGEAE

Utricularia stellaris Linn. f. var. inflexa Cl . Und. L28, IG-PC.
Pollen grains polycolporate, spheroidal, diameter $36 \mu \mathrm{~m}$ (range : $30-40.5 \mu \mathrm{~m}$). Colpus long, slit like, extending upto poles, ± 18 in numbers, endoapertures synorate, form an equatorial girdle. Exine very thin, $0.5 \mu \mathrm{~m}$ to $0.8 \mu \mathrm{~m}$ thick, psilate. Sexine and nexine equally thick. Amb circular in polar view.

U. flexuosa Vahl, Und. Lig, 20, IG-PC.

Pollen grains polycolporate, spheroidal, diameter $35.5 \mu \mathrm{~m}$ (range : $\quad 28.5-39 \mu \mathrm{~m}$).

Colpus long, slit like, ± 18 in numbers, synorate, as in U. stellaris Linn. f. var. inflexa Cl . Exine $0.75^{-1} \mu \mathrm{~m}$ thick, sexine and nexine equally thick.

ACANTHACEAE

Acanthus ilicifolius Linn. Und. L2.
Pollen grains 3 -colpate, prolate, 52.5×3^{1} $\mu \mathrm{m}$ (range : $49.5-55 \times 27.5-32 \mu \mathrm{~m}$). Colpus long, extending upto poles, tapering, colpus membrane granulated. Exine $\pm 4 \mu \mathrm{~m}$ thick, reticulate, homobrochate, retipilate at poles, sexine thinner than nexine.
Hygrophila difformis (Linn.) Bl. Und. L8, 18.
Pollen grains 3 -colporate, prolate-spheroidal, $70.5 \times 65 \mu \mathrm{~m}$ (range : $64-73 \times 62.5-66.5 \mu \mathrm{~m}$). Colpus long, slit like, tenuimarginate, endoaperture lalongate, equatorial margin indistinct. Exine $1.5^{-2} \mu \mathrm{~m}$ thick, reticulate, ornamentation finer towards aperture.

POLYGONAGEAE

Polygonum barbatum Linn. Und. $\mathrm{L}_{3}, 1_{3}, 20$, 21.

Pollen grains pantoporate, spheroidal, diameter $49 \mu \mathrm{~m}$ (range : $46.5-5 \mathrm{I} \mu \mathrm{m}$). Pore circular, $\pm 7 \mu \mathrm{~m}$, intruded. Exine $6 \mu \mathrm{~m}$ thick, reticulate, heterobrochate. Sexine thicker than nexine.
P. glabrum Willd. Und. L3, 8, i6, 8.

Pollen grains pantoporate, spheroidal, diameter $43 \mu \mathrm{~m}$ (range : $39-46 \mu \mathrm{~m}$). Pore small, circular $\pm 5 \mu \mathrm{~m}$. Exine $5.5 \mu \mathrm{~m}$ thick, reticulate, homobrochate. Sexine thicker than nexine.
P. orientale Linn. Und. L2, $5,10,13,16$, LL.
Pollen grains pantoporate, spheroidal, diameter $39.5 \mu \mathrm{~m}$ (range : $34 \cdot 5-43 \mu \mathrm{~m}$). Pore small, circular, $\pm 5 \mu \mathrm{~m}$. Exine $5-5.3 \mu \mathrm{~m}$ thick, reticulate, homobrochate. Sexine thicker than nexine.
Rumex maritimus Linn. Und. L8, KL.
Pollen grains 3 -colporate, oblate spheroidal, $26.5 \times 31 \mu \mathrm{~m}$ (range : $\quad 24.5-28 \times 28.33 \mu \mathrm{~m}$). Colpus long, extending upto poles, slit like,
endoaperture lalongate, $1.5 \times 4.5 \mu \mathrm{~m}$, sometimes circular. Exine $1.8-2 \mu \mathrm{~m}$ thick, granulose. Sexine thinner than nexine. Pollen grains circular in polar view.

GERATOPHYLLACEAE

Ceratophyllum demersum Linn. Und. Li3, 21, 19, 21 , KL, PL, JL.
Pollen grains inaperturate, spheroidal, diameter $3^{8} \mu \mathrm{~m}$. (range : $35 \cdot 5-46 \mu \mathrm{~m}$). Exine very thin, less than $1 \mu \mathrm{~m}$, psilate/obscure. Sexine and nexine equally thick.

MONOCOTYLEDONS

HYDROCHARITAGEAE

Blyxa auberti Rich. Und. L_{3}, 21, SCL.
Pollen grains in tetrads, very rarely free. When tetrads, pollen grains are arranged in a bilateral manner. Aperture faint. Exine spinulose, spines $\pm 0.5 \mu \mathrm{~m}$ high. Sexine thicker than nexine.
Hydnilla verticillata (Linn.) Royle JL, KL, PL, KUL.
Pollen grains inaperturate, spheroidal, diameter ${ }^{104} \mu \mathrm{~m}$ (range : $99-107 \mu \mathrm{~m}$). Exine I. 5-1. $8 \mu \mathrm{~m}$ thick, granulose. Sexine and nexine equally thick.
Ottelia alismoides (Linn.) Pers. LL, KL, JL.
Pollen grains inaperturate, sometimes with very faint sulcus, spheroidal, diameter $62 \mu \mathrm{~m}$ (range : $55-68 \mu \mathrm{~m}$), sometimes prolate $59 \times$ $56 \mu \mathrm{~m}$. Sulcus when present faint, tenuimarginate, ends rounded. Exine spinulose, 2.5 $\mu \mathrm{m}$ thick, including spines, spinules $\pm 1.5 \mu \mathrm{~m}$ high, tips pointed. Sexine thicker than nexine. (Fig. 6).
Vallisneria spiralis Linn. Und. L2, $10,13,18$, 19, 20.
Pollen grains inaperturate, sometimes with very faint sulcus, spheroidal, diameter 45.5 $\mu \mathrm{m}$ (range : $41.50 .5 \mu \mathrm{~m}$), rarely prolate, 49.5 $\times 3^{8} \mu \mathrm{~m}$ (range : $43.5^{2} \times 34 \cdot 5-44.5 \mu \mathrm{~m}$). Sulcus when present margo sulcate. Exine $1-1.5$ $\mu \mathrm{m}$ thick, areolate, areola $1-2 \mu \mathrm{~m}$ wide. Sexine thicker than nexine,

PONTEDERIACEAE

Eichhornia crassipes (Mart.) Solms. Und. L4, 5, LL.
Pollen grains t-sulcate, rarely 2 -sulcate, ellipsoidal, plano-convex, $51 \times 24 \times 18.4 \mu \mathrm{~m}$ (range : $43-61 \times 18.5-32 \times 16-19 \mu \mathrm{~m}$), rarely spheroidal, diameter $41 \mu \mathrm{~m}$ (range : $36.5-46$ $\mu \mathrm{m})$. Sulcus tenuimarginate, margin wavy. Exine very thin, less than $0.5 \mu \mathrm{~m}$ thick, granulose. Sexine and nexine equally thick. Monochoria hastata (Linn.) Solms. Und, Li6, 18, 19, 24.
Pollen grains 1 -sulcate, rarely 2 -sulcate, ellipsoidal, plano-convex, $46.5 \times 27 \times 19 \mu \mathrm{~m}$ (range : $\quad 40.5-52 \times 19-40 \times 14-26 \mu \mathrm{~m}$). Sulcus tenuimarginate, margin wavy. Exine $1.5 \mu \mathrm{~m}$ thick, granulose. Sexine thicker than nexine.

TYPHACEAE

Typha angustata Bory et Chaub. Und. L3, 4 .
Pollen grains 1 -porate, spheroidal, diameter $32 \mu \mathrm{~m}$ (range : $23-35.5 \mu \mathrm{~m}$). Pore circular, $4.5 \mu \mathrm{~m}$, operculate, margin faintly defined, uneven. Exine $2.5 \mu \mathrm{~m}$ thick, retipilate, thicker around pore, $\pm 3 \mu \mathrm{~m}$ thick, sexine thicker than nexine.

T. elephautina Roxb. Und. L24.

Pollen grains ${ }_{1}$-porate, spheroidal, diameter $30 \mu \mathrm{~m}$ (range : ${ }^{25-32} \mu \mathrm{~m}$). Pore circular, diameter $4 \mu \mathrm{~m}$, sometimes lalongate, $5.5 \times$ $4.5 \mu \mathrm{~m}$, margin clearly defined. Exine 2.5 $\mu \mathrm{m}$ thick, reticulate, retipilate towards the apertural area. Sexine and nexine equally thick. (Fig. 8a-c).

araceat

Acorus calamus Linn. Und. L8.

Pollen grains i-sulcate, ellipsoidal, plañconvex, $20.5 \times 11.5 \times 9.5 \mu \mathrm{~m}$ (range : $17-29 \times$ $9-14.5 \times 9-12 \mu \mathrm{~m})$. Sulcus tenuimarginate. Exine very thin, $\pm 0.5 \mu \mathrm{~m}$ thick, spinulose, spinules less than $0.5 \mu \mathrm{~m}$ high. Sexine thicker thau nexine.
Colocasia esculantum (Linn.) Schott. Únd. L2, 8, 16, LL, DL.
Pollen grains inaperturate, spheroidal, dia-
meter $20 \mu \mathrm{~m}$ (range : $16.5-21.5 \mu \mathrm{~m}$). Exine spinulose, $1.5 \mu \mathrm{~m}$ thick including spinules, spinules $0.5 \mu \mathrm{~m}$ high. Sexine thicker than nexine.

Cryptocoryne ciliata Fisch. Und. Lig, JL.
Pollen grains inaperturate, ellipsoidal, $72 \times$ $24 \mu \mathrm{~m}$ (range : $59.78 .5 \times 19.5-29 \mu \mathrm{~m}$). Exine $2.5-3 \mu \mathrm{~m}$ thick, psilate. Sexine and nexine indistinguishable.
Lata aculeata Lour. Und. L24.
Pollen grains 1 -sulcate, spheroidal, diameter $24 \mu \mathrm{~m}$ (range : $21-3 \mathrm{I} \mu \mathrm{m}$). Sulcus tapering, membrane granulose. Exine 1.2$1.5 \mu \mathrm{~m}$ thick, reticulate. Sexine and nexine equally thick.
Piotio stratiotes Linn. Und. L2, 5, 8, $16,18$.
Pollen grains inaperturate, very rarely $1-$ sulcate, spheroidal, diameter $44 \mu \mathrm{~m}$ (range : $40-47.5 \mu \mathrm{~m}$), some comparatively small grains also present (range : $21-31 \mu \mathrm{~m}$). Exine 1.5 $\mu \mathrm{m}$ thick, very faintly striate. Sexine thinner than nexine. (Fig. 5).

LEMNACEAE

Lemana minor Linn. Und. L8, 10, 12, 18, 24, SL, JL.
Pollen grains 1 -sulcate, spheroidal, diameter $14 \mu \mathrm{~m}^{\prime}$ (range : ${ }_{11-16.5 \mu \mathrm{~m} \text {). Sulcus long, }}$ tapering, tenuimarginate. Exine very thin, $\pm 0.75 \mu \mathrm{~m}$ thick, spinulose, spinules minute, $\pm 0.25 \mu \mathrm{~m}$ high. Sexine thicker than nexine.
L. perpusilla Torr. Und. Lio, 12, 14, JL. Pollen morphology similar to L. minor Linn. except thicker exine ($1.5 \mu \mathrm{~m}$) and spinules $\pm 0.5 \mu \mathrm{~m}$ high.
Wolma arrhiza (Linn.) Hork. ex Wimm. Und. L2I.
Pollen grains inaperturate, sometimes faintly -sulcate, spheroidal, diameter $22 \mu \mathrm{~m}$ (range : $19.5-23.5 \mu \mathrm{~m}$). Exine spinulose, ${ }^{1} \mu \mathrm{~m}$ thick including spinules, spinules \pm $0.5 \mu \mathrm{~m}$ high.

ALISMACEAE

Alisma plantago Linn. Und. L8.

Pollen grains pantoporate, spheroidal, diameter $29 \mu \mathrm{~m}$ (range : $25 \cdot 5-32 \mu \mathrm{~m}$). Pore circular, $4 \mu \mathrm{~m}$. Exine $\mathrm{I} .5 \mu \mathrm{~m}$ thick, thinner towards pore margins and coarsely granulose.

Sagittaria sagittifolia Linn. Und, Lir.

Pollen grains pantoporate, spheroidal, diameter $23 \mu \mathrm{~m}$ (range : $19.5-26.5 \mu \mathrm{~m}$). Pore circular, $4-5.5 \mu \mathrm{~m}$ with irregular margins, operculate, operculum provided with spinules. Exine spinulose, ${ }^{1.5^{-2}} \mu \mathrm{~m}$ thick including spinules. Spinules mixed type, $0.5^{-1} \mu \mathrm{~m}$ high. Sexine thicker than nexine.

LIMNOCHARITACEAE

Tenagocharis latifolia (D. Don) Buch.Ham. Und. Li3.
Pollen grains pantoporate, spheroidal, diameter $25.5 \mu \mathrm{~m}$ (range : $23-30 \mu \mathrm{~m}$), sometimes ellipsoidal, $30.5 \times 21 \mu \mathrm{~m}$ (range : $28-33.5 \times 18-$ $23.5 \mu \mathrm{~m}$). Pore circular, tenuimarginate, operculate, operculum provided with spinules. Exine spinulose, $1.5 \mu \mathrm{~m}$ thick including spinules, spinules $0.75 \mu \mathrm{~m}$ high. In some ellipsoidal pollen grains exine is coarsely granulose. Sexine thicker than nexine. (Fig. $9 \mathrm{a}-\mathrm{b}$).

APONOGETONACEAE

Aponogetion crispuin Thunb. Und. L8, io, 16, KL, KUL.
Pollen grains i-sulcate, rarely trichotomosulcate, ellipsoidal, convexo-convex, $21.5 \times$ $11 \times 10.5 \mu \mathrm{~m}$ (range : $\quad 19.8-26 \times 9-14.5 \times 9-12$ $\mu \mathrm{m})$. Sulcus tapering, with margo. Exine r $\mu \mathrm{m}$ thick, reticulate, homobrochate, lumina circular. Sexine and nexine equally thick.
A. natans (Linn.) Engl. et Krause, KL, KUL.
Pollen grains i-sulcate, ellipsoidal, convexoconvex, $19.75 \times 1 \mathrm{I} .5 \times 9 \mu \mathrm{~m}$ (range : $18-22.5 \times$ $9-13.5 \times 8-11 \mu \mathrm{~m}$), occasionally spheroidal, diameter $16.5 \mu \mathrm{~m}$ (range : $13.5-18.5 \mu \mathrm{~m}$), some joint abnormal pollen also occur. Exine $1 \mu \mathrm{~m}$ thick, reticulate, heterobrochate, lumina
heterogenous. Sexine and nexine equally thick.

POTAMOGETONAGEAE

Potamogeton cricpus Linn. KL, PL.
Pollen grains 1 -sulcate, spheroidal, diameter $30 \mu \mathrm{~m}$ (range : $26.5-35.5 \mu \mathrm{~m}$) or ellipsoidal, $31.5 \times 19.5 \mu \mathrm{~m}$ (range : $27-37.5 \times 12.5{ }^{-}$ $23.5 \mu \mathrm{~m})$. Sulcus tenuimarginate, margin irregular, exine $0.75 \mu \mathrm{~m}$ thick, reticulate. Sexine and nexine indistinguishable.
P. nodonus Poir Und. L8, 10.

Pollen grains I -sulcate, spheroidal, diameter $23 \mu \mathrm{~m}$ (range : $18-29.5 \mu \mathrm{~m}$), sometimes ellipsoidal and inaperturate abnormal pollen grains also observed. Sulcus tapering, margin irregular, tenuimarginate. Exine very thin, $0.5 \mu \mathrm{~m}$ thick, reticulate. Sexine and nexine indistinguishable.

CYPERACEAE

(Pollen grains of Cyperaceae in general is called Pseudomonad for its typical development).
Cyperas cephalotes Vahl LL.
Pollen grains i-porate, spheroidal, diameter $25 \mu \mathrm{~m}$ (range : $\quad 23-26 \mu \mathrm{~m}$). Pore circular, diameter $4-6 \mu \mathrm{~m}$. Exine $1 \mu \mathrm{~m}$ thick, granulose. Sexine and nexine equally thick.

C. compressus Linn. LL, SCL.

Pollen grains I -sulcate, ellipsoidal, convexo-
 ${ }^{1} 5.5-31 \times 17-24.5 \mu \mathrm{~m}$), sometimes spheroidal, diameter $30.5 \mu \mathrm{~m}$ (range : $26.32 .5 \mu \mathrm{~m}$). Sulcu_{s} tapering, with margo. Exine $1.5 \mu \mathrm{~m}$ thick, granulose/obscure. Sexine thicker than nexine. (Fig. 10).

Fimbrinylis complanata Linn. Und. L 24.

Pollen grains ${ }_{1}$-sulcate, ellipsoidal, $28.5 \times$ $18 \mu \mathrm{~m}$ (range : $21.3 \mathrm{I} \times 14.5-19.5 \mu \mathrm{~m}$). Sulcus tapering, margin irregular. Exine $\pm{ }^{1} \mu \mathrm{~m}$ thick, microreticulate. Lumina $0.5^{-0.75 ~} \mu \mathrm{~m}$. Sexine and nexine equally thick.

F. dichotoma (Linn.) Vahl Und. L24.

Pollen morphology similar to F. complanata Linn. except size, longest \times shortest
axes $=30 \times 19.5 \mu \mathrm{~m}$ (range : $24.5-32 \times 16.5-21$ $\mu \mathrm{m})$.
Mariscus sieberianus Nees Und. Li6, PL.
Pollen grains panto-aperturate, spheroidal, diameter $22.5 \mu \mathrm{~m}$ (range : $19.5-25 \mu \mathrm{~m}$). Apertures indistinct. Exine ${ }^{1} \mu \mathrm{~m}$ thick, obscure/granulose. Sexine and nexine equally thick.

Scirpus articulatus Linn. Kl, Pl.
Pollen grains 1 -sulcate, ellipsoidal, $36.5 \times$ $23 \mu \mathrm{~m}$ (range : $29.5-39.5 \mu \mathrm{~m} \times 18.5-26.5 \mu \mathrm{~m}$). Sulcus faint, tenuimarginate. Exine $1.5 \mu \mathrm{~m}$ thick, microreticulate. Sexine and nexine equally thick.

POACEAE (GRAMINEAE)

Brachiaria mutica (Forsk.) Stapf. Und. L2, 3, 13, 21, LL, KL.
Pollen grains r -porate, spheroidal, diameter $43.5 \mu \mathrm{~m}$ (range : $36.5-48 \mu \mathrm{~m}$). Pore circular, with annulus $7-10 \mu \mathrm{~m}$. Exine very thin, $0.5-0.75 \mu \mathrm{~m}$ thick, psilate. Sexine and nexine indistinguishable.
B. reptans (Linn.) Gard. et. C. E. Hubb. Und. $\mathrm{L}_{2}, 10,13,18,24, \mathrm{KL}$, JL.
Pollen characters similar to B. Mutica (Forsk.) Stapf. except pollen size $39.5 \mu \mathrm{~m}$ diameter (range : $35-45.5 \mu \mathrm{~m}$) and pore diameter $4-7.5 \mu \mathrm{~m}$ with annulus.
Echinochloa colomum (Linn.) Link Und. Li3, 16, 18, 24, DL, KUL.
Pollen grains i-porate, spheroidal, diameter $45 \mu \mathrm{~m}$ (range : $40.5-5 \mathrm{I} \mu \mathrm{m}$). Pore circular, provided with annulus, operculate (operculum observed in fresh and unacetolysed pollen only), diameter $4 \mu \mathrm{~m}$, $10-11 \mu \mathrm{~m}$ including annulus. Exine thin $0.5-0.75 \mu \mathrm{~m}$ thick, obscure. Sexine and nexine equally thick.
Panicum repens Linn. Und. Li2, 24.
Pollen grains i-porate, spheroidal, diameter $29.5 \mu \mathrm{~m}$ (range : $20-36.5 \mu \mathrm{~m}$). Pore circular, diameter $4 \mu \mathrm{~m}$, including annulus $7.5 \mu \mathrm{~m}$. Exine thin, $\pm 0.5 \mu \mathrm{~m}$ thick, psilate. Sexine and nexine equally thick.

Paspalidium flavidum (Retz.) A. Camus Und. L12, 24.
Pollen grains 1-porate, spheroidal, diameter $43.5 \mu \mathrm{~m}$ (range : $38.5-47-5 \mu \mathrm{~m}$). Pore circular, diameter $3.5 \mu \mathrm{~m}$ including annulus. Exine $\pm 0.5 \mu \mathrm{~m}$ thick, obscure. Sexine and nexine indistinguishable.
P. geminatum (Forsk.) Stapf. Und. L3, ro, r6. Pollen morphology similar to P. flavidum (Retz.) A. camus except size, diameter $41 \mu \mathrm{~m}$ (range : $3^{2} \cdot 5 \cdot 45 \cdot 5 \mu \mathrm{~m}$).
Paspalum scrobiculatum Linn. KL. PL.
Pollen grain ${ }_{1}$-porate, spheroidal, diameter $3^{1} \mu \mathrm{~m}$ (range : $25 \cdot 5-34.5 \mu \mathrm{~m}$), some larger pollen grains also obscrved having $\pm 42 \mu \mathrm{~m}$ diameter. Pore circular, diameter $4.2 \mu \mathrm{~m}$, $9.5-10 \mu \mathrm{~m}$ including annulus. Exine very thin, $0.5 \mu \mathrm{~m}$ thick, pattern obscure or finely granulose. Sexine and nexine equally thick. (Fig. II a-b).
Setaria glauca (Linn.) Beauv. Und. Li2, 16 , 18, 21, KL, PL.
Pollen grain r-porate, spheroidal, diameter $39.5 \mu \mathrm{~m}$ (range : $35-46 \mu \mathrm{~m}$). Pore circular, diameter $3 \mu \mathrm{~m}, 8 \mu \mathrm{~m}$ including annulus. Exine thin, $0.5^{-0.75 ~} \mu \mathrm{~m}$ thick, psilate. Sexine and nexine indistinguishable.

From the foregoing observations it is quite clear that pollen morphological variability, dimorphism and sometimes pollen abnormalities with infertile abortive pollens are common in aquatic angiosperms. It is evident that environmental stress sometimes cause lowering of pollen production per anther. In Eichhornia crassipes (Mart.) Solms., gradual drought lowers down the pollen production upto 40% of the normal aquatic condition. It has also been observed that presence of adequate humus in the lakes' sediments induce 30% more pollen production in Eichhornia crassipes (Mart.) Solms., and Sagittaria sagit-
tifolia Linn. and gradual drought lowers down the fruit set ratio of Eichhornia crassipes (Mart.) Solms. Ipomoea aquatica Forsk. on the other hand shows $20 \%-30 \%$ higher pollen production rate per anther as well as higher flower primordia production in lakes with less humus deposits and direct sunlight fed water. Victoria amazonica (Poepp). Sowerby and V. cruzeana Orbigny-the giant glory lilly flower well in sunny lakes with abundant humus deposits. It shows about 63% fertile pollen production. Fruit set rate is seen to be higher when grown in culture pot and this is probably due to the interference of the aquatic insects and lake tortoise which might cause damage to the carpel heads and the ovules. It has also been observed that Victoria amazonica (Poepp.) Sowerby, grown in the lakes having abundant humus content and little bit acid soilthe flowers turn deep crimson within short time span than the plant grown in lakes having comparatively less humus content and less soil acidity. However, pollen production ratio and pollen fertility of this plant do not interfere for these edaphic and pH factors. It is evident from the above observation that the members of the family Cyperaceae and Poaceae (Gramineae) are very difficult to distinguish palynologically upto species level.

AGKNOWLEDGEMENTS

Author is thankful to Dr. R. K. Chakraverty, Joint Director, Indian Botanic Garden for his personal interest, encouragement and facilities provided in this work. Thanks are also due to the Joint Director and Keeper, Central National Herbarium for the facilities of consultation of type specimens and microfiches and to Mr. Saibal Basu, Indian Botanic Garden for his help in collection of the samples.

Table 1: Salient pollen/Spore morphological foutimes of malerials studied

Name of the family and species	Distribution in lakes of IRG	Shape	S	I		Z.	E		EXINE		Aperture	Remarks
			Diameter \% mean μ_{m}	$\begin{gathered} \mathrm{L} . \\ \text { mean } \end{gathered}$	$\begin{gathered} 1 \\ \text { mean } \\ \mu_{\mathrm{m}} \end{gathered}$	mean	Polar axis length (P.) mean μ_{m}	Equaaxis length (E) mean	Thickness $\boldsymbol{\mu m}$	Orna		
1	2	3	4		5		6		7	8	9	10
PTERIDOPHYTA												
PARKERIACEAE Ceratopteris thalictroides (Cl.) Brongn.	PL, JL		$\frac{63-79}{69}$						± 8	Stri.	Trilete	Costae arise from near the end of the trilete mark. Exine homogeneous.
MARSILTACEAE Marsilea quadrifida (L.) Willd.	$\begin{aligned} & \text { Und. L2, } \\ & 3,8,13, \\ & 16,18 \end{aligned}$	Sph.	$\frac{43-76}{59.5}$	-	-				7	-	Trilete	Spores borne within hard stoney sporocarp.
SALVINIACEAE Azolla pítuatur R. Br.	Und. L13, 16, 11, 21, KL, PL \& JL		19-28	-	$=$				3	$\mathrm{p}_{\text {si }}$	Trilete	Spores in groups 8-12-celled massulae provided with glochide.
Salvinia auriculata Aubl.		Rounded triangular	$\begin{gathered} 25-39 \\ \& \\ 58-62 \end{gathered}$	-	-				6	Psi.	Trilete	Exine very thick, homogenous.
dicuticeiouns												
NYMPHAEACEAE Euryale ferox Salisb.	$\begin{aligned} & \text { Und. L20, } \\ & \text { 24, IG-PC. } \end{aligned}$	Ellip.	-	$\frac{39-44}{42}$	$\frac{37-39}{38}$	$\frac{30-36}{35}$	-	-	1.4	Punc.ret.	1-colpate	Earely 3-colpate pollen grains also available.
Nelumbo nucifera Gaertn.	$\begin{aligned} & \text { KL, DL, } \\ & \mathbf{L F} . \end{aligned}$	Sph.	$\frac{48-55}{52}$	-	-	-	-	-	7	Ret.	'3-coipate 0	Côpus slitlike, faint, end rounded.
Nymphoca nouchali Burm. f.	Und. L8, L9, $24, \mathrm{IL}, \& \mathrm{DL}$, Sph.	$\frac{34-39}{37}$	-	-	-	\cdots			Spinul.	1-colpate	Rarely inap. pollens also available.

Taile 1: Coned.

1	2	3	4		5		6		7	8	9	10
jompinaea sieilaia Willd.	IG. FG.	Spi.	$\frac{25.5-35}{31}$	\sim	-	-	-	-	± 0.5	Spinul.	1-colpate	Colpus operculate, some sparsely disttributed warts also present.
Victoria amazonica Sowerby	$\begin{aligned} & \text { Und, L8, } \\ & \text { 16, SL. } \end{aligned}$	Sph.	$\frac{59-63}{61}$	-	-	-	-	-	1.5	Spinul.	3-colpate	Pollen grains usually in tetrads. Ex. sometimes with small warts.
V. cruzeana Orbigny	$\begin{aligned} & \text { IG, SL, } \\ & \text { Und, } \mathbf{I} \text {, } \end{aligned}$	Sph.	$\frac{36.5-47}{42}$	-	-		-		0.75-1	Spinul.	3 -colpate	Rarely 4-colpate.
fabaceat Aieschmomene aspera Linn.	Und. Lis	$\underset{\text { Prosph }}{ }{ }^{\text {Pros }}$	-	-	-	$\frac{22-29}{\underline{25}}$	$\frac{18-21}{28}$		1.5	Ket.	3 -coipor.	Colpus diorate.
A. indice Linn.	Und. L3	$\begin{aligned} & \text { Pro-Sph.! } \\ & \text { Pro. } \end{aligned}$	-	-	-	$\frac{17-21}{19}$	$\frac{14-19}{17}$		1	Ret.	3 -colpor.	Colpus with single endoap.
MIMOSACEAE Neptunia oleracea Lour.	Und, L18, 12, KL.	Subpro.	-	-	-	$\frac{48-61}{55.5}$	$\frac{33-53}{45}$		4-4.5	Str.-ret.	3-colpor.	Endoap. granulated, Ex. Str. ret. at meso colpium and ret. at poles.
QNAGRACEAE L waderigia adscendens (Linn.) Hara	Und. L16, KL.	Sph.	$\frac{59.5-77}{68}$	-	-	-	-	-	3	Gr.	3-colpor.	Dimorphic ppllens like 4-colporate with abnormal ap. position also available.
L. perennis Linn.	$\begin{aligned} & \text { Und. L12, } \\ & \text { 24, PL. } \end{aligned}$	Sph.	$\frac{56.74}{66.5}$	-	-	-	-	-	2.5	Gr.	3-colpr.	Dimorphic abnormal pollens absent.
TRAPACEAE Trapa natans Linn. var. bispinesa (Roxb.) Makino	Und. L16, IG-PG.	Ob-Sph.	-	-	-	$\frac{71-77}{76}$	$\frac{79284}{83}$		3.5	Obs.	3-colpate	Pollen grains provided with meridional crests.
GENTIANACEAE Nomphoides cristatum (Roxb.) O. Kuntze	Und. L3, 10, 18, KUL, SCL, JL.	Sph.	$\frac{28-36}{31}$	-	-	-	-	-	2	Rug.	3 -colpate	Parasyncolpate. In our Indian flora this genus goes under the name Limmanthemum Gmel. (1778) but this must make way for Nymphoides Hill. (1750) on account of priocity.

1	2	3	4		5		6		7	8	9	10
CONVOLVULACEAE upompea aguatica Forsk.	$\begin{aligned} & \text { Und. Lí2, } \\ & 13,24 \end{aligned}$	Sph.	70-77	-	-	-	-	侕	± 9	Echinate	Pantoporate	Some giant pollen of $105 \mu \mathrm{~m}$ dirm. observed. Some bifurcate spines with basal cushion also evident.
LENTIBULARIACEAE Utriauderia flexuose Vahl	E Und. L. 19, 20, IG-Pc.	Sph.	$\frac{28.5-39}{35.5}$	-	-	-	-	- 0	0.75-1	Psi.	Poly colporate.	Endoap. fuse equatorially to form an equatorial girdle. Pollen grains cir. in pol. view.
U. stellaris linn. f. var. inflexe C.	Und. L28, IG-Pc.	Sph.	$\frac{30-40.5}{36}$	-	-	-	-	- 0	0.5-0.8	Psi.	Poly colporate.	-dc-
ACANTHACEAE Acanthus iticiofins Linn.	Und. L 2	Prolate	-	-	-	-	$\frac{49.5-55}{52.5}$	$55 \frac{27.5-32}{31}$	4	Ret.	3-colpate	Exine retipilate at poles. Sex thinner than nex.
Hygrephila difformis (Linn.) Bl.	$\begin{aligned} & \text { Und. L8, } \\ & 18 \end{aligned}$	Pro-Sph.	-	-	-	-	$\frac{64-73}{70.5}$	$\frac{62.5-56.5}{65}$	1.5-2	Ret.	3-colpo. rate	Colpus slit like, tenuimarginate, En- $_{\text {- }}$ doap. -lalongate. Exine ornamentation finer towards aperture.
POLYGONACEAE Polygomen barheture Linn.	$\begin{aligned} & \text { Und. L3, } \\ & \text { 13,20, } 21 . \end{aligned}$	Sph.	$\frac{46.5-51}{49}$	-	-	-	-	-	6	Ret.	Pantopo rate cir. $7 \mu \mathrm{~m}$.	Reticulation heterobrochate.
P. stornm Willd.	Und. L3, 8, 16, 18.	Sph.	$\frac{39-46}{43}$	-	-	-	-	-	5.5	Ret.	Pantopo rate cir. $5 \mu \mathrm{~m}$	Ret. homobrochate.
P. alandele Linn.		Sph.	$\frac{34.5-43}{39.5}$	-	-	-	-	-	± 5	Ret.	Panto porate cir. $5 \mu \mathrm{~m}$.	Reticulation homobruchate, pores sunben.
Rume ex meritimus Linn.	$\mathbf{U n d .}_{\mathbf{K} \mathbf{I}}$	Ob. Sph.	-	-	-	-	$\frac{24.5-28}{26.5}-$	$\frac{28-33}{31}$	1.8-2	Gr.	3-colporate.	Endemp., lalongate, ravely circular.

Table 1: Contd.

1	2	3	4		5		6		7		8	9	10
CERATOPHYLLACEAE													
Ceratophylluon demersum Linn.	Und. L13, 21, 19, 21, KL, PL, JL.	Sph.	$\frac{35.5-46}{38}$	-	-	-	-	-		± 1	Psi./obs.	Insp.	

MONOCOTYLEDONS

Biyxa auberti Rich.	Und. 1 3, 21, \& SCL.	in tetrad	-	-	-	-	-	-	-	Spinul.	Indistinct.	Pollen very rarely free, tetrad bilateraly arranged.
Hydrilla verticillata (Linn.) Royle	$\underset{\mathbf{P L}, \mathbf{K} \mathbf{K} \mathbf{L}}{ }$	Sph.	$\frac{99-187}{184}$	-	-	-	-	-	1.5-1.8	Gr.	Insp.	Sex. $=$ Nex.
Ottelia alismoides (Linn.) Pers.	LL, KL, JL.	Sph.	$\frac{55-68}{62}$	-	-	-	-	-	2.5	Spinul.	Inap.	Sometimes very faint colpus present.
Vallisneria spiralis Linn.	$\begin{aligned} & \text { Und. L2, } \\ & 10,13,18, \\ & 19,20 . \end{aligned}$	Sph.	$\frac{41-48.5}{45.5}$	-	-	-	-	-	1-1.5	Areo.	Insp.	Sometimes very faint colpus seen.
PONTEDERIACEAE												
Eichhornia crassipes (Mart.) Solms.	$\begin{aligned} & \text { Und. L4, } \\ & \mathbf{5 , L L} . \end{aligned}$	Ellip.	-	$\frac{43-61}{51}$	$\frac{18.5-32}{24}$	$\frac{16-19}{18.4}$	-	-	0.5	Gr.	1-sulcate	Pollen grains rarely sph., sulcus tenuimarginate, wavy.
Monochoria hastata (Linn.) Solms.	Und. L16, $18,19,24$.	Ellip.	-	$\frac{40.5-52}{46.5}$	$\frac{2}{2} \frac{19-40}{27}$	$\frac{14-26}{19}$	-	-	1.5	Gr.	1-sulcate	Rarely 2 -Sulcate pollens available. Sexine thicker than Nexine.
TYPHACEAE Typha angustata Bory à Chaut.	Und. L3, 4	Sph.	$\frac{23-35.5}{32}$	-	-	-	-	-	2.5	Ketipiate	1-porate. cir, $4.5 \mu \mathrm{~m}$, operculate	Ex. thicker around the pore, $\pm 3 \mu \mathrm{~m}$, pore margin faintly defined. Sexine thicker thañ Nerine.
T. elephanta Roxb.	Und. L24.	Sph.	$\frac{25-32}{30}$	-	-	-	-	-	2.5	Ret.	1-porate	Ex. ornamentation retipilate towards the apertural area. Sex. $=$ Nex.
ARACEAE Acorus calamus Linn.	Und. L. 8	Ellip.	-	$\frac{17-29}{20.5}$	$\frac{9}{5} \cdot \frac{9-15.4}{11.5}$	$\frac{9-12}{9.5}$	-	-	0.5	Obs.	1-sulcate	Aperture tenuimarginate.

Table 1 : Contd.

-1	2	3	4		5		6		7	9	9	10
Colocasia esculantum (Linn.) Schott.	$\begin{aligned} & \text { Und. L2, } \\ & \text { 8, } 16, \mathrm{LL}, \\ & \text { DL. } \end{aligned}$	Sph.	$\frac{16.5-21.5}{20}$	5	-	-	-	-	± 0.5	Spinul.	Inap.	-
Copptocoryne ciliata Fisch	$\begin{aligned} & \text { Und. L19, } \\ & \text { JL } \end{aligned}$	Ellip.	-	$\frac{59-78.5}{72}$	$\frac{19.5-29}{24}$	-	-	-	2.5-3	Psi.	Inap.	Sex. and Nex. indistinguishable.
Lasia aculeata Lour.	Und. L24	Sph.	$\frac{21-31}{24}$	-	-	-	-	-	1.2-1.5	Ret.	1-sulcate	Sulcus tapering, memtranc granulose.
Pistia stratiotes Linn.	$\begin{aligned} & \text { Und. L2, } \\ & 5,8,16,18 . \end{aligned}$	Sph.	$\frac{40-47.5}{44}$	-	-	-	-	-	1.5	faintly stri.	Inap.	Rarely 1 -sulcate pollen also seen, some com paratively smaller pollen

LEMNACEAE Lemna minor Linn.	Und. L8, SL, JL.	Sph..	$\frac{11-16.5}{14}$	-	-	-	-	-	0.75	Spinul.	1-sulcate	Spinules minute, $0.25 \mu \mathrm{~m}$ high.
L. perpusilla Torn.	$\begin{aligned} & \text { Und. L10, } \\ & \text { 12, 14, JL } \end{aligned}$	Sph.	$\frac{10-16}{14.4}$	-	-	-	-	-	1.5	Spinul.	1 -sulcate	Spinules comparatively longer than L. minor L. $\pm 0.5 \mu \mathrm{~m}$ high.
Wolffia arrhiza (Linn.) Hork. ex Wimm.	Und. L21,	Sph.	$\frac{19.5-23.5}{22}$	-	-	-	-	-	1	Spinul.	Inap.	Sometimes faintly 1-colpate pollen grains seen.

ALISMATACEAE

Alisma plantago Linn.	Und. L8	Sph.	$\frac{25.5-32}{29}$	-	-	-	-	-	1.5	gr.	Pantopor. cir. $4 \mu \mathrm{~m}$.	Exine thinner pore margin.	r towards
Sagittaria sagittifolia Linn.	Und. L12	Sph.	$\frac{19.5-26.5}{23}$	-	-	-	-	-	1.5-2	Spinul.	Pantopor. cir. 4-5.5 μ_{m}	Pore margin operculate, provided with sex, thicker th	irregular, operculum spinules, an nex.

LIMNOCHARITACEAE
Tenagocharis latifolia Und. L1
(D. Don) Buchen.

Sph $\frac{23-30}{255}-\quad-\quad-\quad-1.5 \quad$ Spinul.

The 1: Contr.

1	2	3	4		5		6		7	8	9	10	
APONOGETONACEAE													
Apmonter crispem	$\begin{aligned} & \text { Und. L8, } \\ & \text { 10, } 16, \text { KL, } \\ & \text { KLL. } \end{aligned}$	Eulip.	-	$\frac{19.5-26}{21.5}$	$\frac{9-14.5}{11}$	$\frac{9-12}{10.5}$	-	-	1	Ret.	1-sulcate	Maryo aperturate, homobrochate.	
A. miens (Linn.) Engl. KL, KIL.		Ellip.	-	18-22.5	9-13.5	8-11	-	-	1	Ret.	1-sulcate	Heterobrochate.	
		19.75		11.5	9								
POTAMOGETONACEAE													
Potemogeton crispus Linn.	KL \& PL		Sph.	$\frac{26.5-35.5}{30}$	-	-	-	-	-	0.75	Ret.	1-sulcate	Some ellipsoidal pollen also seen, sulcus tenuimarginate, margin irregular, Sex. and Nex. indistinguishable.
P. modasus Poir.	Und. L8, 10.	Sph.	$\frac{18-29.5}{23}$	-	-	-	-	-	0.5	Ret.	1-sulcate	Some ellinsoidal and inaperturate" pollen grains also seen. Sulcus tapering, margin irregular, tenuimarginate, Sex. and Nex. indistinguishable.	
CYPERACEAE													
Cyperus cephalotes Vahl	LL.	Sph.	$\frac{23-26}{25}$	-	-	-	-	-	1	gr.	$\begin{aligned} & \text { 1-porate, } \\ & \text { cir. } 4-6 \\ & \mu_{m} \end{aligned}$	Pollen grains of Cyperaceac in general is called pacudomonad for its typical development.	
C. compressus Linn.	LL, SCL	Ellip./ Sph.	$\frac{26-32.5}{30.5}$	-	-	-	-	-	1.5	gr./obs.	1-sulcate	-	
Fimorisiyis compianata Linn.	Und. L24.	Eilip.	-	$\frac{21-31}{28.5}$	$\frac{14.5-1 \hat{9} .5}{18}$		-	-	1	Microret.	i-suicate	Exine ornamentation very faint.	
$\begin{aligned} & \text { F. dichotoma (Linn.) } \\ & \text { Vahl } \end{aligned}$	Und. L24	Ellip.	-	$\frac{24.5-32}{30}$	$\frac{16.5-21}{19.5}$		-	-	1	Microret.	1-sulcate	"	
Mariscus sieberanus Nees	$\text { s } \underset{\text { PL }}{\text { Und. L16, }}$	Sph.	$\frac{19.5-25}{22.5}$	-	-	-	-	-	1	gr./obs.	Pantoaperturate	Apertures indistinct.	
Soispus arliculatus Linn.	KL \& PL	Ellip.	-	29.5-39	9.518 .5		-	-	1.5	Microret.	1-sulcate	Sulcus faint tenuimarginate.	
POACEAE (GRAMIN	NEAE)			36.5	5	23							
Brethinvin muntine (Forsk.) Stapf.	$\begin{aligned} & \text { Und. } 1.2, \\ & 3,13,21, \\ & \text { LL, KL. } \end{aligned}$	Sph.	$\frac{36.5-18}{43.5}$	-	-	-	-	-	0.5-0.75	Psi.		Pores with annulus.	

Table 1: Contd.

1	2	3	4		5		6		7	8	9	10
Brachiaria reptans (Linn.) Gard. $i t$ C. E. Hubl.	$\begin{aligned} & \text { Und. L2, } \\ & \text { 10, 13, 16, } \\ & 24 \mathrm{KL}, \mathrm{JL} \end{aligned}$	Sph.	$\frac{35-45.5}{39.5}$	-	-	-	-	-	0.5-0.75	Psi.	1-porate, $4-7.5 \mu \mathrm{~m}$	Pores with annulus, other cha. same as \boldsymbol{P}. muticica.
Echinochloa colonum (Linn.) Link.	Und. L13, 16, 18, 24, DL, KUL	Sph.	$\frac{40.5-51}{45}$	-	-	-	-	-	0.5-0.75	obs.	1-porate, cir. $4 \mu \mathrm{~m}$	Annulate, pore diam. 10$11 \mu \mathrm{~m}$ including annulus, operculate.
Panicum repens Linn.	Und. L12,	Sph.	$\frac{20-36.5}{29.5}$	-	-	-	-	-	0.5	Psi.	1-porate, cir. $4 \mu \mathrm{~m}$	Pore annulate, diam. 7.5 $\mu \mathrm{m}$ including annuius.
Paspalidium flavidum (Retz.) A. camus	$\underset{24}{\text { Und. L12, }}$	Sph.	$\frac{38.5-47.5}{43.5}$	-	-	-	-	-	0.5	obs.	1-porate cir. 3.5 μ_{m}.	Pore ànnulate.
P. geminatum (Forsk.) Stapf.	$\begin{aligned} & \text { Und. L3, } \\ & \text { 10, } 16 . \end{aligned}$	Sph.	$\frac{32.5-45.5}{41}$	-	-	-	-	-	0.75	obs.	1-porate, cir. $3.5 \mu \mathrm{~m}$	Pore annulate.
©Paspalum scrobiculatum Linn.	KL \& PL	Sph.	$\frac{25.5-34.5}{31}$		-	-	-	-	0.5	f. gr.jobs.	i-porate cir, $4.2 \mu \mathrm{~m}$	Pore annuiate, $9.5-10 \mu \mathrm{~m}$ including annulus.
Setaria glauca (Linn.) Beauv.	Und. L12, 16, 18, 21, $16,18,21$, KL \& PL	Sph.	$\frac{35-46}{39.5}$	-	-	-	-	-	0.5-0.75	Psi.	Pantoporate, cir. $3 \mu \mathrm{~m}$	Pore annulate, $8 \quad \mu \mathrm{~m}$ including annulus, Sex. Nex indistinguishable.

Abbreciations used:
Areo-Areolate ; Cir-Circular ; Colpr-Colporatc ; DL-Diwan Lake ; diam.-diameter ; Ellip-Elliptic ; Endo-ap.-Endoaperture; Ex.-Exine ; f. gr.-finely granulose ; gr.-granulose, I. B. G. Indian Botanic Garden; I. G.-Introdu ction Garden ; Inap.-inaperturate ; J.L.-Janardan Lake; K. L.-King Lake ; KUL.-Kunstlar Lake ; L. -Lake ; L. L. Lerum Lake; L. P. Lotus pool ; Micro-ret. -Microreticulate ; Nex.-Nexine ; obs. Obscure ; Ob-sph.—oblate spheroidal ; Orna.-Ornamentation ;Pantopor.-Panto porate; P. L.-Prain Lake; P.G.-Pot culture ; Pro- Prolate ; pol: -polar ; pro-sph.-Prolate spheroidal ; Psi-Psilate ; Punc. ret. Punctate reticulate ; Ret.-Reticulate ; Rug.-Rugulose ; Sex.-Sexine ; SGL.-Scortechini Lake ; Sph.-Spheroidal ; S. L. -Shadir Lake ; Ret.-Reticulate; Rug.-Ruguloje; Str.-Striate ; Str.-ret.-Striatoreticulate ; Sub-pro.-Subprolate ; Und. L.-Unnamed lake Spinul.-Spinuloze ; Str.-Striate ; Str.-ret-Striatoreticulate ; Sub-pro.
(Number given against Und. L.-denotes lake in that division of the I.B.G.).

REFERENGES

Arber, A. Water plants: A study of Aquatic Angiosperms. Cambridge Univ. Press. 1920.
Backer, C. A. Pontederiaceae, In Van Steenis' Flora Malesiana, Ser. 1.4: 255-261. 1951.
Bentham, G. and J. D. Hooker, Genera Plantarum. London. 1862-1883.
Biswas, K. and C. C. Calder. Handbook of common water and marsh plants of India and Burma. ed. 1 \& 2. With Bull. no. 24. New Delhi. Govt. of India Press. 1936. 1954.

Deb, D. B. A study on the aquatic vascular plants of India. Bull. Bot. Soc. Bengal 29 : 155-170. 1976.
Erdtman, G. Pollen Morphology and Plant Taxonomy. Angiosperms. Almquist \& Wiksell, Stockholm. 1952.
—— Notes on the finer structure of some pollen grains. Bot. Notiser, 113(3) : 285-288. 1960.
Fargri, K. and J. Iversen, Text book of Pollen analysis. Scandinavian University Books. Munksgard (Znd revised ed.). 1964.
Maheshwari, S. C. and P. Khanna. The embryology of Arisaema wallichiana Hook. f. and the systematic position of Araceae. Phytomorphology $6: 379-388.1956$.
Mitra, K. and M. S. Mondal. Pollen morphology of exstipellate and stipellate Hedysareae (Leguminosae). Proc. Ind. Natn. Sci. Acad. B-48(6) : 755-769. 1982.
Mitra, S. N., R. B. Ghosh and J. N. Naskar. A census to the aquatic and semiaquatic vegetation of the Indian Botanic Garden, Howrah. Bull. Bot. Soc. Bengn! 25: 111-115. 1971.

Nair, P. K. K. Pollen grains of Westorn Himalayan Plants. Asia Monographs, India 1(5) : VIII +1 -102. 1963.
--_and K. Rehman. Rollen grains of Indian PlantsVI. Bull. Nat. Bot. Gard. Lucknow 83 : 1-16. 1963.

Raj, B. and M. R. Saxena. Pollen morphology of aquatic angiosperms. Pollen et spores 8(1) : 49-55. 1966 .
-.. and Suryakanta. Pollen morphology of zquatic angiosperms-II. Palynological Bull. 6(2) : 80-89. 1973.

Ram, M. Floral morphology and embryology of Trapa bispinosa Roxb. with a discussion on the systematic position of the genus. Phytomorphology 6:912-323. 1956.

Sculthorpe, C. D. Biology of aquatic vascular plants. London. 1967.

Sharma, B. D. Occurrence of 3-zonocolpate, diorate pollen in Aeschynomene aspora L. (Leguminosae) ard the significance of pollen morphology in tive toxonomy of the genus Aeschynomene Linn. Bull. Bot. Surv. India $10: 369-373$. 1968 .

Sharma, Mithilesh. Pollen morphology of Indian morocotyledons. Journ. Palynology, special vol. Lucknow. 19\%7.

Subramanyam, K. Aquatic Angiosperms. New Delbi. 1962.

Thanikaimoni, G. Les Palmiers: Palynologie et systematique. Inst. Fr. Pondichery, Trac. Sect. Sci. Tich. 11 ; 1-286. 1970.

[^0]: Date of receipt : 7.8.87.

[^1]: Botanic Garden showing the details of the position of the lakes and division number

