Vol. 2, Nos. 3 \& 4: p. 305, 1960

NEW CHROMOSOME REPORT

The paper relates to chromosome numbers of 15 species of Angiosperms belonging to different families (Table 1). The study was carried by making smears of pollen mother cells, or by preparing leaf or root-tip
squashes as in the case of Mentha rotundifolia, Lantana wightiana and L. montevidensis. Acetocarmine and propiono-carmine stains were employed.

TABLE I

No.	Names of the taxa.	Family	Chromosome n	No. $2 \mathrm{n}$	Locality
	Mahonia leschenaultii Tak.	Berberidaceac	14	$\begin{aligned} & 36 \\ & 72 \\ & 36 \end{aligned}$	Ooty. Bangalore. -do- -do- Sibpur garden, Calcutta.
	Memecylon capitellatum L.	Melastomaceae	14		
	Pterocarpus echinatus Pers.	Papilionaceae	11		
	Cassia spectabilis DC.	Caesalpinaceae	14		
	Sindora siamensis Teysm. ex Mia.	-do-	12		
6.	Trema orientalis Blume	Urticaceae	18		Bangalore.
	Ligustrum ovalifolium Hassk.	Oleaceae	23 24		Japan.
9.	Datura bertolonii Parl.	-do-	12		Japa. ${ }_{\text {do- }}$
10.	Justicia simplex D. Don	Acanthaceae	9		Lucknow.
11.	Lantana montevidensis Briq.	Verbenaccae			Coimbatore.
12.	Lantana wightiana Wall.	${ }_{\text {Labiatae }}{ }^{\text {- }}$			$\xrightarrow{\text {-do- }}$ Poona.
14.	Asphodelus tenuifolius Cav.		14		Lucknow.
15.	Calanthe veratrifolia R. Br.	Orchidaceae	20		Coimbatore.

Certain interesting features are noticed in the chromosome numbers of the taxa cited in the table. The chromosome number for the genus Trema is reported here for the first time (fig. 1). The somatic chromosome number for Sindora supa is recorded as 16 (Darlington and Wylie, 1955) but in the present species viz., S. siamensis, the haploid number is 12 (fig. 2). A new basic number ($\mathrm{x}=9$) is established for the genus Justicia (fig. 3), the other basic numbers reported being 14 and 16 (Darlington and Wylie, loc. cit.; Narayanan, 1951).

Fig. 1. Trema orientalis MII $\times 2300$; Fig. 2. Sindora siamensis MI $\times 2100$; Fig. 3. Justicia simplex Diakinensis $\times 1250$.

The previous chromosome counts for Mentha rotundifolia are $2 \mathrm{n}=18,24$, and 54 (Darlington and Wylie, loc.
cit.) and in the present investigation a fourth chromosomal race with $2 n=36$ was met with. On the basis of the chromosome number reported for Memecylon aylmeri ($2 \mathrm{n}=14$, Darlington and Wylie, loc. cit.), M. capitellatum with $\mathrm{n}=14$, should be considered as a polyploid. Datura inermis with $n=24$ is a naturally occurring polyploid; the previous record for all the investigated species has been $2 \mathrm{n}=24$ except the induced tetraploid of D. stramonium (Darlington and Wylie, loc. cit.).
Grateful thanks arée due to Dr. E. K. Janaki Ammal, previous Director, Central Botanical Laboratory and Dr. R. P. Patil for encouragement and guidance. I am also very thankful to Dr. G. S. Puri, Director, Central Botanical Laboratory for looking through this paper.

Central Botanical Laboratory, Botanical Survey of India,
C. M. Arora

Allahabad.

LITERATURE CITED

1. Darlington, C. D. and Wylie, A. P.-Chromosome Atlas of flowering plants, London, 1955.
2. Narayanan, C. R.-Somatic chromosomes in the Acanthaceae J. Madras Univ., 21B, (2): 220-231, 1951.
