Open Access Open Access  Restricted Access Subscription Access

Protective Potential of Vitamin C and E against Organophosphate Toxicity: Current Status and Perspective


Affiliations
1 Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal - 713340, India
2 Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal - 713104, India
3 Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal - 713104, India
4 Post Graduate, Department of Zoology, Darjeeling Govt. College, Darjeeling, West Bengal - 734104, India
5 Department of Zoology, Gushkara Mahavidyalaya, Gushkara, West Bengal - 713128, India
6 Krishna Chandra College, Hetampur, Birbhum, West Bengal - 731124, India
 

Pesticides are an integral part of our daily life, used in agricultural fields, store rooms, residences and educational institutions to kill or repel pests. Several chemical subtypes of these compounds are available, of which organophosphate (OP) is major one. These are broad spectrum pesticides used to kill insect pests. OPs are useful but indeed they are most frequent reasons of pesticide poisoning across the globe. OP inhibits acetylcholinesterase activities that results in continuous hyper-excitable state of nicotinic and muscarinic receptors at neuromuscular junctions. Intentional or unintentional exposure to OPs causes abdominal pain, diarrhea, vomiting, muscular weakness, dementia, Central Nervous System (CNS) dysfunction and even death. Besides acetylcholinesterase inhibition, OPs are also known to trigger ROS generation within the cellular machinery which results in Oxidative Stress (OS). Free Radicals (FRs) are neutralized by antioxidant-defense system of the body. Vitamin C and vitamin E are the major exogenous antioxidants that scavenge a large amount of free radicals by donating their own electrons to FRs. This phenomenon reduces ROS and hence, OS is prevented. Therefore, vitamin C and E can be considered for daily dietary intake which might be providing prophylactic advantage against OP induced OS and pathophysiology in human beings.

Keywords

Ascorbic Acid, Organophosphates, Oxidative Stress, ROS, Tocopherol
User
Notifications
Font Size


  • Aktar MW, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol.
  • ; 2(1):1-12. https://doi.org/10.2478/v10102-009-0001-7 PMid:21217838 PMCid:PMC2984095
  • Bjørling-Poulsen M, Andersen HR, Grandjean P. Potential developmental neurotoxicity of pesticides used in Europe. Environ Health. 2008; 7:50. https://doi.org/10.1186/1476-069X-7-50 PMid:18945337 PMCid:PMC2577708
  • Podder S, Akbari S, Roy S. Cryolite Induced Morphological Changes in The Compound Eye of Drosophila melanogaster.
  • Fluoride. 2012; 45(1): 58-64.
  • Calvert GM, Karnik J, Mehler L, Beckman J, Morrissey B, Sievert J, Barrett R, Lackovic M, Mabee L, Schwartz A, Mitchell Y, Moraga-McHaley S. Acute pesticide poisoning among agricultural workers in the United States, 1998-2005. Am J Ind Med. 2008; 51(12):883-98. https://doi.org/10.1002/ajim.20623 PMid:18666136
  • Yang CC, Deng JF. Intermediate syndrome following organophosphate insecticide poisoning. J Chin Med Assoc. 2007; 70(11):467-72. https://doi.org/10.1016/S1726-4901(08)70043-1
  • Gbaruko BC, Ogwo EI, Igwe JC, Yu, H. Organophosphate induced chronic neurotoxicity: Health, environmental and risk exposure issues in developing nations of the world. Afr. J.
  • Biotechnol. 2009; 8:5137-41.
  • Idriss S, Levitt J. Malathion for head lice and scabies: treatment and safety considerations. J Drugs Dermatol; 2009; 8: 715-20.
  • Chang MMF, Ginjom IR., Ng SM. Single-shot ‘turn-off ’optical probe for rapid detection of paraoxon-ethyl pesticide on vegetable utilising fluorescence carbon dots. Sens. Actuators B Chem.
  • ; 242:1050-6. https://doi.org/10.1016/j.snb.2016.09.147
  • Andresen JA, Grundmann A. Bester K. Organophosphorus flame retardants and plasticisers in surface waters. Sci. Total Environ.
  • ; 332:155-66. https://doi.org/10.1016/j.scitotenv.2004.04.021 PMid:15336899
  • Bala R, Dhingra S, Kumar M, Bansal K, Mittal S, Sharma RK, Wangoo N. Detection of organophosphorus pesticide-Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem. Eng. J. 2017; 311:111-6. https://doi.
  • org/10.1016/j.cej.2016.11.070
  • Shahidi F, Zhong Y. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol. 2010; 112: 930-40. https://doi.org/10.1002/ejlt.201000044
  • Costa LG. Toxic Effects of Pesticides. In: Klaassen CD. editors.
  • Casarett and Doull’s Toxicology: The Basic Science of Poisons, 8th ed. McGraw Hill; 2013. Available from: https://accesspharmacy.mhmedical.com/content.aspx?bookid=958&sectio nid=53483747
  • Aardema H, Meertens JH, Ligtenberg JJ, Peters-Polman OM, Tulleken JE, Zijlstra JG. Organophosphorus pesticide poisoning: cases and developments. Neth J Med. 2008; 66(4):149-53.
  • Leibson T, Lifshitz M. Organophosphate and carbamate poisoning: review of the current literature and summary of clinical and laboratory experience in southern Israel. Isr Med Assoc J. 2008; 10(11):767-70.
  • Casida JE, Quistad GB. Organophosphate toxicity: Safety aspects of non-acetylcholinesterase secondary targets. Chem Res Toxicol. 2004; 17:983-98. https://doi.org/10.1021/tx0499259 PMid:15310231
  • Vale JA. Toxicokinetic and toxicodynamic aspects of organophosphorus (OP) insecticide poisoning. Toxicol
  • Lett. 1998; 102-103:649-52. https://doi.org/10.1016/S03784274(98)00277-X
  • Peter JV, Cherian AM. Organic insecticides. Anaesth Intensive Care. 2000; 28(1):11-21. https://doi.org/10.1177/0310057X0002800102 PMid:10701030
  • Jaga K, Dharmani C. Sources of exposure to and public health implications of organophosphate pesticides. Rev Panam Salud Publica. 2003; 14(3):171-85. https://doi.org/10.1590/S102049892003000800004 PMid:14653904
  • Kishi M, Ladou J. International pesticide use. Introduction.
  • Int J Occup Environ Health. 2001; 7(4):259-265. https://doi.
  • org/10.1179/107735201800339254 PMid:11783855
  • Kwong TC. Organophosphate pesticides: biochemistry and clinical toxicology. Ther Drug Monit. 2002; 24(1):144-9. https://doi.
  • org/10.1097/00007691-200202000-00022 PMid:11805735
  • Miranda J, McConnell R, Wesseling C, Cuadra R, Delgado E, Torres E, Keifer M, Lundberg I. Muscular strength and vibration thresholds during two years after acute poisoning with organophosphate insecticides. Occup Environ Med. 2004; 61(1):e4.
  • Yang CC, Deng JF. Intermediate syndrome following organophosphate insecticide poisoning. J Chin Med Assoc. 2007; 70(11):467-72. https://doi.org/10.1016/S1726-4901(08)70043-1
  • Yu JR, Hou YC, Fu JF, Wang IK, Chan MJ, Chen CY, Weng CH, Huang WH, Yang HY, Hsu CW, Yen TH. Outcomes of elderly
  • patients with organophosphate intoxication. Sci Rep. 2021; 11(1):11615. https://doi.org/10.1038/s41598-021-91230-2 PMid:34079035 PMCid:PMC8172550
  • Abou-Donia MB. Organophosphorus ester-induced chronic neurotoxicity. Arch Environ Health. 2003; 58(8):484-97. https:// doi.org/10.3200/AEOH.58.8.484-497 PMid:15259428
  • Grillo Pizarro Á, Achú Peralta E, Muñoz-Quezada MT, Lucero Mondaca B. Exposición a plaguicidas organofosforados y polineuropatía periférica en trabajadores de la región del Maule, Chile [Exposure to organophosphate pesticides and peripheral polyneuropathy in workers from Maule Region, Chile]. Rev Esp Salud Publica. 2018; 92:e201803006.
  • Peiris-John RJ, Ruberu DK, Wickremasinghe AR, van-der-Hoek W. Low-level exposure to organophosphate pesticides leads to restrictive lung dysfunction. Respir Med. 2005; 99(10):1319-24.
  • https://doi.org/10.1016/j.rmed.2005.02.001 PMid:16102957 27. Midtling JE, Barnett PG, Coye MJ, Velasco AR, Romero P, Clements CL, O’Malley MA, Tobin MW, Rose TG, Monosson IH.
  • Midtling JE, Barnett PG, Coye MJ, Velasco AR, Romero P, Clements CL, O’Malley MA, Tobin MW, Rose TG, Monosson IH. Clinical management of field worker organophosphate poisoning. West J Med. 1985; 142(4):514-8.
  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002 22; 277(47):4478490. https://doi.org/10.1074/jbc.M207217200 PMid:12237311
  • Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 2002; 80(5):780-7. https://doi.org/10.1046/j.00223042.2002.00744.x PMid:11948241
  • Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL.
  • Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes. 2012; 61(8):2074-83. https://doi.
  • org/10.2337/db11-1437 PMid:22586586 PMCid:PMC3402323
  • Rajak P, Dutta M, Khatun S, Mandi M, Roy S. Exploring hazards of acute exposure of Acephate in Drosophila melanogaster and search for l-ascorbic acid mediated defense in it.
  • J Hazard Mater. 2017; 321:690-702. https://doi.org/10.1016/j.
  • jhazmat.2016.09.067 PMid:27701059
  • Aly N, EL-Gendy K. Mahmoud F, El-Sebae, AK. Protective effect of vitamin C against chlorpyrifos oxidative stress in male mice.
  • Pestic Biochem Phys, 2010; 97:7-12. https://doi.org/10.1016/j.
  • pestbp.2009.11.007
  • Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012; 7(5):376-85. https://doi.
  • org/10.3969/j.issn.1673-5374.2012.05.009.
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 2010; 49(11):1603-16. https://doi.org/10.1016/j.freeradbiomed.2010.09.006 PMid:20840865 PMCid:PMC2990475
  • Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG. The
  • catalytic pathway of cytochrome p450cam at atomic resolution.
  • Science. 2000; 287(5458):1615-22. https://doi.org/10.1126/science.287.5458.1615 PMid:10698731
  • Ogut S, Gultekin F, Kisioglu AN, Kucukoner E. Oxidative stress in the blood of farm workers following intensive pesticide exposure. Toxicol Ind Health. 2011; 27(9):820-5. https://doi.
  • org/10.1177/0748233711399311 PMid:21450927
  • Rastogi SK, Satyanarayan PV, Ravishankar D, Tripathi S. A study on oxidative stress and antioxidant status of agricultural workers exposed to organophosphorus insecticides during spraying. Indian J Occup Environ Med. 2009; 13(3):1314. https://doi.org/10.4103/0019-5278.58916 PMid:20442831 PMCid:PMC2862445
  • Vidyasagar J, Karunakar N, Reddy MS, Rajnarayana K, Surender T, Krishna DR. Oxidative stress and antioxidant status in acute organophosphorous insecticide poisoning. Indian J Pharmacol.
  • ; 36:76-79.
  • Abdel-Daim MM, Taha R, Ghazy EW, El-Sayed YS. Synergistic ameliorative effects of sesame oil and alpha-lipoic acid against subacute diazinon toxicity in rats: hematological, biochemical, and antioxidant studies. Can J Physiol Pharmacol. 2016; 94(1):818. https://doi.org/10.1139/cjpp-2015-0131 PMid:26550680
  • El-Demerdash FM. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem Toxicol. 2011; 49(6):134652. https://doi.org/10.1016/j.fct.2011.03.018 PMid:21419823
  • Łukaszewicz-Hussain A. Organophosphate insecticide
  • chlorfenvinphos affects superoxide dismutase, catalase and malondialdehyde in rat liver. Pol J Environ Stud. 2001; 10:279-82.
  • Sargazi Z, Nikravesh MR, Jalali M, Sadeghnia HR, Anbarkeh FR.Apoptotic Effect of Organophosphorus Insecticide Diazinon on Rat Ovary and Protective Effect of Vitamin E. IJT. 2016; 10:3744. https://doi.org/10.32598/IJT.10.2.328.1
  • Sivaperumal P, Sankar TV. Toxic effects of methyl parathion on antioxidant enzymes and acetylcholinesterase activity in freshwater fish, Labeo rohita. Fish Tech. 2011; 48:59-66.
  • Yu F, Wang Z, Ju B, Wang Y, Wang J, Bai D. Apoptotic effect of organophosphorus insecticide chlorpyrifos on mouse retina in vivo via oxidative stress and protection of combination of vitamins C and E. Exp Toxicol Pathol. 2008; 59(6):415-23. https:// doi.org/10.1016/j.etp.2007.11.007 PMid:18222074
  • Singh AK, Drewes LR. Neurotoxic effects of low-level chronic acephate exposure in rats. Environ Res. 1987; 43(2):342-9.
  • https://doi.org/10.1016/S0013-9351(87)80034-8
  • Tós-Luty S, Obuchowska-Przebirowska D, Latuszyńska J, Tokarska-Rodak M, Haratym-Maj A. Dermal and oral toxicity of malathion in rats. Ann Agric Environ Med. 2003; 10(1):101-6.
  • Akbel E, Arslan-Acaroz D, Demirel HH, Kucukkurt I, Ince S.
  • The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol. Toxicol Res (Camb). 2018; 7(3):503-512. https://doi.org/10.1039/ C8TX00030A PMid:30090600 PMCid:PMC6062150
  • Selmi S, Rtibi K, Grami D, Sebai H, Marzouki L. Malathion, an organophosphate insecticide, provokes metabolic, histopathologic and molecular disorders in liver and kidney in prepubertal male mice. Toxicol Rep. 2018; 5:189-95. https://doi.org/10.1016/j.
  • toxrep.2017.12.021 PMid:29854588 PMCid:PMC5977160
  • Bunya N, Sawamoto K, Benoit H, Bird SB. The Effect of Parathion on Red Blood Cell Acetylcholinesterase in the Wistar Rat. J Toxicol.
  • ; 2016:4576952. https://doi.org/10.1155/2016/4576952 PMid:27418928 PMCid:PMC4935959
  • Dirican EK, Kalender Y. Dichlorvos-induced testicular toxicity in male rats and the protective role of vitamins C and E. Exp Toxicol Pathol. 2012; 64(7-8):821-30. https://doi.org/10.1016/j.
  • etp.2011.03.002 PMid:21458248
  • Dwivedi N, Bhutia YD, Kumar V, et al. Effects of combined exposure to dichlorvos and monocrotophos on blood and brain biochemical variables in rats. Human and Experimental Toxicology.
  • ; 29(2):121-9. https://doi.org/10.1177/0960327109357212 PMid:20026515
  • Verma G, Sethi RS. Study of ethion and lipopolysaccharide interaction on lung in a mouse model. Lab Anim Res. 2020; 36:22.
  • https://doi.org/10.1186/s42826-020-00055-z PMid:32742976 PMCid:PMC7390112
  • Coulombe PA, Lortie S, Côte MG, Chevalier G. Pulmonary toxicity of the insecticide fenitrothion in the rat following a single field exposure. J Appl Toxicol. 1986; 6(5):317-23. https://doi.
  • org/10.1002/jat.2550060504 PMid:3772007
  • Samarghandian S, Farkhondeh T, Yousefizadeh S. Toxicity Evaluation of the Subacute Diazinon in Aged Male Rats:
  • Hematological Aspects. Cardiovasc Hematol Disord Drug
  • Targets. 2020; 20(3):198-201. https://doi.org/10.2174/18715 29X20666200305103007 PMid:32133967 PMCid:PMC8388065
  • Carr C, Vissers MCM. Synthetic or food-derived vitamin C- Are they equally bioavailable? Nutrients. 2013; 5:4284-304. https://doi.
  • org/10.3390/nu5114284 PMid:24169506 PMCid:PMC3847730
  • Hossain MA, Asada K. Monodehydro- ascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme. J Biol Chem. 1985; 260:12920-6. https://doi.org/10.1016/S00219258(17)38813-0
  • Ambali SF, Ayo JO. Sensorimotor performance deficits induced by chronic chlorpyrifos exposure in Wistar rats: mitigative effect of vitamin C. Toxicol Environ Chem. 2011; 93:1212-6. https:// doi.org/10.1080/02772248.2011.585991
  • Mandi M, Khatun S, Rajak P, Mazumdar A, Roy S. Potential risk of organophosphate exposure in male reproductive system of a nnon-target insect model Drosophila melanogaster. Environ Toxicol Pharmacol. 2020; 74:103308. https://doi.org/10.1016/j.
  • etap.2019.103308 PMid:31816565
  • Abdel-Daim M, Halawa S. Synergistic hepatocardioprotective and antioxidant effects of myrrh and ascorbic acid against diazinon-induced toxicity in rabbits. IJHEPS. 2014; 1:1-7.
  • Rajak P, Sahana S, Roy S. Acephate-induced shortening of developmental duration and early adult emergence in a nontarget insect Drosophila melanogaster. Toxicol Environ Chem. 2013; 95:1369-79. https://doi.org/10.1080/02772248.2014.880608
  • Rajak P, Dutta M, Roy S. Altered differential hemocyte count in 3rd instar larvae of Drosophila melanogaster as a response to chronic exposure of Acephate. Interdiscip Toxicol. 2015; 8:848. https://doi.org/10.1515/intox-2015-0013 PMid:27486365 PMCid:PMC4961902
  • Eroğlu S, Pandir D, Uzun FG, Bas H. Protective role of vitamins C and E in dichlorvos-induced oxidative stress in human erythrocytes in vitro. Biol Res. 2013; 46(1):33-8. https://doi.org/10.4067/ S0716-97602013000100005 PMid:23760412
  • Altuntas I, Delibas N, Sutcu R. The effects of organophosphate insecticide methidathion on lipid peroxidation and anti-oxidant enzymes in rat erythrocytes: role of vitamins E and C. Hum Exp Toxicol. 2002; 21(12):681-5. https://doi.
  • org/10.1191/0960327102ht304oa PMid:12540039
  • Mossa AH, Refaie AA, Ramadan A. Effect of exposure to mixture of four organophosphate insecticides at no observed adverse effect level dose on rat liver: The protective role of vitamin C.
  • Res J Environ Toxicol. 2011; 5:323-35. https://doi.org/10.3923/ rjet.2011.323.335
  • Milošević MD, Paunović MG, Matić MM, Ognjanović BI, Saičić ZS. Role of selenium and vitamin C in mitigating oxidative stress induced by fenitrothion in rat liver. Biomed Pharmacother.
  • ; 106:232-8. https://doi.org/10.1016/j.biopha.2018.06.132 PMid:29966965
  • Taherdehi FG, Nikravesh MR, Jalali M, Fazel A, Valokola MG.
  • Evaluating the protective role of ascorbic acid in malathioninduced testis tissue toxicity of male rats. Int J Prev Med 2019; 10:45. https://doi.org/10.4103/ijpvm.IJPVM_253_17 PMid:31143419 PMCid:PMC6528429
  • Oral B, Guney M, Demirin H, Ozguner M, Giray SG, Take G, Mungan T, Altuntas I. Endometrial damage and apoptosis in rats induced by dichlorvos and ameliorating effect of antioxidant vitamins E and C. Reprod Toxicol. 2006; 22(4):783-90. https:// doi.org/10.1016/j.reprotox.2006.08.003 PMid:16973328
  • Herrera E, Barbas C. Vitamin E: action, metabolism and perspectives. J Phys Biochem. 2001; 57:43-56. https://doi.org/10.1007/ BF03179812
  • Packer L, Weber SU, Rimbach G. Molecular aspects of alphatocotrienol antioxidant action and cell signaling. J Nutr.
  • ; 131:369S-373S. https://doi.org/10.1093/jn/131.2.369S PMid:11160563
  • Witting PK, Upston JM, Stocker R. Role of alpha-tocopheroxyl radical in the initiation of lipid peroxidation in human low-density lipoprotein exposed to horse radish peroxidase.
  • Biochemistry. 1997; 36(6):1251-8. https://doi.org/10.1021/ bi962493j PMid:9063873
  • Stocker R, Bowry VW, Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci U S A.
  • ; 88(5):1646-50. https://doi.org/10.1073/pnas.88.5.1646 PMid:2000375 PMCid:PMC51081
  • Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014; 66:3-12. https://doi.org/10.1016/j.freeradbiomed.2013.03.022 PMid:23557727
  • Ambali SF, Aliyu MB. Short-term sensorimotor and cognitive changes induced by acute chlorpyrifos exposure in Wistar rats: ameliorative effect of vitamin E. Pharmacologia. 2012; 3:31-8.
  • https://doi.org/10.5567/pharmacologia.2012.31.38
  • Ambali S, Akanbi D, Igbokwe N, Shittu M, Kawu M, Ayo J.
  • Evaluation of subchronic chlorpyrifos poisoning on hematological and serum biochemical changes in mice and protective effect of vitamin C. J Toxicol Sci. 2007; 32(2):111-20. https://doi.
  • org/10.2131/jts.32.111 PMid:17538235
  • Kammon AM, Brar RS, Sodhi S, Banga HS, Singh J, Nagra NS.
  • Chlorpyrifos chronic toxicity in broilers and effect of vitamin C.
  • Open Vet J. 2011; 1(1):21-7.
  • John S, Kale M, Rathore N, Bhatnagar D. Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J Nutr Biochem. 2001 Sep; 12(9):500-4. https:// doi.org/10.1016/S0955-2863(01)00160-7
  • Khatun S, Rajak P, Dutta M, Roy S. Sodium fluoride adversely affects ovarian development and reproduction in Drosophila melanogaster. Chemosphere. 2017; 186:51-61. https://doi.
  • org/10.1016/j.chemosphere.2017.07.123 PMid:28763637
  • Khatun S, Mandi M, Rajak P, Roy S. Interplay of ROS and behavioral pattern in fluoride exposed Drosophila melanogaster.
  • Chemosphere. 2018; 209:220-31. https://doi.org/10.1016/j.chemosphere.2018.06.074 PMid:29936113
  • Dutta M, Rajak P, Khatun S, Roy S. Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sublethal exposure. Chemosphere. 2017; 166:255-66. https://doi.
  • org/10.1016/j.chemosphere.2016.09.112 PMid:27700992
  • Rajak P, Ganguly A, Sarkar S, Mandi M, Dutta M, Podder S, Khatun S, Roy S. Immunotoxic role of organophosphates:
  • An unseen risk escalating SARS-CoV-2 pathogenicity. Food Chem Toxicol. 2021; 149:112007. https://doi.org/10.1016/j.
  • fct.2021.112007 PMid:33493637 PMCid:PMC7825955
  • Ghanty S, Mandi M, Ganguly A, Das K, Dutta A, Nanda S, Biswas G, Rajak P. Lung surfactant proteins as potential targets of prallethrin: An in silico approach. Toxicol. Environ Health Sci.
  • ; 14(1):89-100. https://doi.org/10.1007/s13530-021-00119-0 PMCid:PMC8788395
  • Rajak P, Roy S, Pal AK, Paramanik M, Dutta M, Podder S, Sarkar S, Ganguly A, Mandi M, Dutta A, Das K, Ghanty S, Khatun S.
  • In silico study reveals binding potential of rotenone at multiple sites of pulmonary surfactant proteins: A matter of concern.
  • Curr Res Toxicol. 2021; 4:2:411-423. https://doi.org/10.1016/j.
  • crtox.2021.11.003 PMid:34917955 PMCid:PMC8666459
  • Dutta M, Rajak P, Roy S. Determination of chronic median lethal concentration of sodium fluoride in Drosophila melanogaster and exploring effect of sub-lethal concentrations on differential hemocyte count. Proc. Zool Soc. 2019; 72:111-117. https://doi.
  • org/10.1007/s12595-017-0235-x
  • Sarkar S, Rajak P, Roy S. Toxicological evaluation of a new lepidopteran insecticide, flubendiamide, in non-target Drosophila melanogaster Meigen (Diptera: Drosophilidae). IJT. 2018; 12(3): 45-50. https://doi.org/10.32598/IJT.12.3.477.1
  • Rajak P, Khatun S, Dutta M, Mandi M, Roy S. Chronic exposure to acephate triggers ROS-mediated injuries at organismal and sub-organismal levels of Drosophila melanogaster. Toxicol Res (Camb). 2018;7(5):874-887. https://doi.org/10.1039/
  • C8TX00052B PMid:30310664 PMCid:PMC6116822
  • Rajak P, Dutta M, Roy S. Effect of acute exposure of acephate on hemocyte abundance in a non-target victim Drosophila melanogaster. Toxicol Environ Chem. 2014; 96:768-76. https://doi.org/1 0.1080/02772248.2014.980131
  • Rajak P, Roy S. Heat Shock Proteins and Pesticide Stress. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses.
  • Heat Shock Proteins. Springer, Cham. 2018; 13. https://doi.
  • org/10.1007/978-3-319-74715-6_2
  • Sutcu R, Altuntas I, Buyukvanli B, Akturka O, Ozturka O, Koylu H, Delibas N. The effects of diazinon on lipid peroxidation and antioxidant enzymes in rat erythrocytes: role of vitamins E and C. Toxicol Ind Health. 2007; 23(1):13-7. https://doi.
  • org/10.1177/0748233707076758 PMid:17722735
  • Akturk O, Demirin H, Sutcu R, Yilmaz N, Koylu H, Altuntas I. The effects of diazinon on lipid peroxidation and antioxidant enzymes in rat heart and ameliorating role of vitamin E and vitamin C. Cell Biol Toxicol. 2006; 22(6):455-61. https:// doi.org/10.1007/s10565-006-0138-5. https://doi.org/10.1007/ s10565-006-0138-5 PMid:16964585
  • Sulak O, Altuntas I, Karahan N, Yildirim B, Akturk O, Yilmaz HR, Delibas N. Nephrotoxicity in rats induced by organophosphate insecticide methidathion and ameliorating effects of vitamins E and C. Pestic Biochem Phys. 2005; 83(1):21-8. https:// doi.org/10.1016/j.pestbp.2005.03.008
  • Ambali SF. Shittu M, Ayo JO, Esievo KA, Ojo SA. Vitamin C Alleviates Chronic Chlorpyrifos Induced Alterations in Serum Lipids and Oxidative Parameters in Male Wistar Rats. Am J Pharmacol Toxicol. 2011; 6(4):109-118. https://doi.org/10.3844/ ajptsp.2011.109.118
  • Bhatti GK, Bhatti JS, Kiran R, Sandhir R. Alterations in Ca²⁺ homeostasis and oxidative damage induced by ethion in erythrocytes of Wistar rats: ameliorative effect of vitamin E. Environ Toxicol Pharmacol. 2011; 31(3):378-86. https://doi.org/10.1016/j.
  • etap.2011.01.004 PMid:21787708

Abstract Views: 144

PDF Views: 77




  • Protective Potential of Vitamin C and E against Organophosphate Toxicity: Current Status and Perspective

Abstract Views: 144  |  PDF Views: 77

Authors

Prem Rajak
Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal - 713340, India
Sumedha Roy
Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal - 713104, India
Abhratanu Ganguly
Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal - 713340, India
Moutushi Mandi
Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal - 713104, India
Anik Dutta
Post Graduate, Department of Zoology, Darjeeling Govt. College, Darjeeling, West Bengal - 734104, India
Saurabh Sarkar
Department of Zoology, Gushkara Mahavidyalaya, Gushkara, West Bengal - 713128, India
Sayantani Nanda
Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal - 713340, India
Salma Khatun
Krishna Chandra College, Hetampur, Birbhum, West Bengal - 731124, India
Siddhartha Ghanty
Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal - 713340, India
Gopal Biswas
Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal - 713104, India

Abstract


Pesticides are an integral part of our daily life, used in agricultural fields, store rooms, residences and educational institutions to kill or repel pests. Several chemical subtypes of these compounds are available, of which organophosphate (OP) is major one. These are broad spectrum pesticides used to kill insect pests. OPs are useful but indeed they are most frequent reasons of pesticide poisoning across the globe. OP inhibits acetylcholinesterase activities that results in continuous hyper-excitable state of nicotinic and muscarinic receptors at neuromuscular junctions. Intentional or unintentional exposure to OPs causes abdominal pain, diarrhea, vomiting, muscular weakness, dementia, Central Nervous System (CNS) dysfunction and even death. Besides acetylcholinesterase inhibition, OPs are also known to trigger ROS generation within the cellular machinery which results in Oxidative Stress (OS). Free Radicals (FRs) are neutralized by antioxidant-defense system of the body. Vitamin C and vitamin E are the major exogenous antioxidants that scavenge a large amount of free radicals by donating their own electrons to FRs. This phenomenon reduces ROS and hence, OS is prevented. Therefore, vitamin C and E can be considered for daily dietary intake which might be providing prophylactic advantage against OP induced OS and pathophysiology in human beings.

Keywords


Ascorbic Acid, Organophosphates, Oxidative Stress, ROS, Tocopherol

References





DOI: https://doi.org/10.15512/jeoh%2F2022%2Fv22i3%2F216558