Refine your search
Collections
Co-Authors
Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Sayyari, Yamin
- New Bounds for the Jensen-Dragomir Functional with Applications in Analysis
Abstract Views :263 |
PDF Views:0
Authors
Affiliations
1 Department of Mathematics, Sirjan University Of Technology, Sirjan, IR
2 Department of Mathematics, University of Jiroft, Jiroft, IR
1 Department of Mathematics, Sirjan University Of Technology, Sirjan, IR
2 Department of Mathematics, University of Jiroft, Jiroft, IR
Source
The Journal of the Indian Mathematical Society, Vol 90, No 1-2 (2023), Pagination: 175-185Abstract
The normalised Jensen functional is an important functional in theory of inequalities and it has been a subject of study in its own right. In this paper, we establish new bounds for Jensen’s discrete inequality. Also, we improve the basic result of Dragomir through a stronger refinement of Jensens inequality which is then applied to analysis and information theory.
Keywords
Shannon’s Entropy, Jensen’s Inequality, Dragomir’s Inequality, Convex Function.References
- I. Budimir, S. S. Dragomir, J. Pecaric, Further reverse results for Jensen’s discrete inequality and applications in information theory, J. Inequal. Pure Appl. Math. 2 (1) (2001) Art. 5.
- S. S. Dragomir, Bounds for the Normalised Jensen Functional, Bull. Austral. Math. Soc., 74 (2006), 471–478.
- S. S. Dragomir, A converse result for Jensen’s discrete inequality via Grss inequality and applications in information theory, An. Univ. Oradea. Fasc. Mat. 7 (1999-2000), 178–189.
- S. S. Dragomir, C. J. Goh, Some bounds on entropy measures in Information Theory, Appl. Math. Lett. 10 (3) (1997), 23–28.
- JLWV Jensen, Om konvekse Funktioner og Uligheder mellem Middelvrdier, Nyt Tidsskr Math B, 16 (1905), 49–68 (in Danish).
- A. McD. Mercer, A variant of Jensen’s inequality, J. Ineq. Pur. and Appl. Math., 4 (4) (2003), Article 73.
- D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- Y. Sayyari, An improvement of the upper bound on the entropy of information sources, J. Math. Ext., 15 (5) (2021), 1–12.
- Y. Sayyari, New bounds for entropy of information sources, Wave. and Lin. Algeb., 7 (2) (2020), 1–9.
- Y. Sayyari, New entropy bounds via uniformly convex functions, Chaos, Solitons and Fractals, 141 (1) (2020), (DOI: 10.1016/j.chaos.2020.110360).
- Y. Sayyari, New refinements of Shannons entropy upper bounds, J. Inform. Optim. Sci., 42 (8) (2021), 1869–1883.
- Y. Sayyari, A refinement of the Jensen-Simic-Mercer inequality with applications to entropy, J. Korean Soc. Math. Edu. Ser. B-Pure and Appl. Math., 29 (1) (2022), 51–57.
- Y. Sayyari, An extension of Jensen-Mercer inequality with application to entropy, Honam Math. J., 44 (4) (2022), 513–520.
- Y. Sayyari, Remarks on uniformly convexity with applications in A-G-H inequality and entropy, Int. J. Nonlin. Anal. Appl., 13 (2) (2022), 131–139.
- Y. Sayyari, M. R. Molaei and A. Mehrpooya, Complexities of information sourecs, J. Appl. Stat., (2022), 1–17, (DOI 10.1080/02664763.2022.2101631).
- S. Simic, On a global bound for Jensen’s inequality, J. Math. Anal. Appl. 343 (2008), 414–419, (DOI 10.1016/j.jmaa.2008.01.060).
- S. Simic, Jensens inequality and new entropy bounds, Appl. Math. Lett. 22 (8) (2009), 1262–1265.