Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Singh, Sumit
- Star-Hurewicz Modulo an Ideal Property In Topological Spaces
Abstract Views :183 |
PDF Views:0
Authors
Affiliations
1 Department of Mathematics, University of Delhi, New Delhi-110007, IN
2 Department of Mathematics, Atmaram Sanatan Dharma College, University of Delhi, New Delhi, IN
1 Department of Mathematics, University of Delhi, New Delhi-110007, IN
2 Department of Mathematics, Atmaram Sanatan Dharma College, University of Delhi, New Delhi, IN
Source
The Journal of the Indian Mathematical Society, Vol 88, No 1-2 (2021), Pagination: 33–45Abstract
In this paper, a class of star-Hurewicz modulo an ideal spaces is introduced and studied. For an ideal K of finite subsets of N, a characterization of weakly star-K-Hurewicz extremally disconnected spaces is given using ideal. It is shown that star-Hurewicz modulo an ideal property is hereditary under clopen subspaces. In this manner we obtained relationships of star-Hurewicz modulo an ideal property with other existing Hurewicz properties in literature.Keywords
Hurewicz space, Stone-´Cech compactification, star-Hurewicz modulo an ideal, extremal disconnectedness, star-Hurewicz, Alexandroff duplicateReferences
- A. V. Arhangel’skiˇi and P. J. Collins, On submaximal spaces, Topology Appl., 64(3) (1995), 219–241.
- M. Bhardwaj, Counterexample to Theorems on star versions of Hurewicz property, Appl. Gen. Topol., 21(1) (2020), 53–56.
- M. Bhardwaj, On new star-selection principles in Topology, Topology Appl., 279 (2020) Art No. 107244.
- M. Bhardwaj and A. V. Osipov, Star versions of Hurewicz basis covering property and strong measure zero spaces, Turkish J. Math., 44(3) (2020), 1042–1053.
- M. Bhardwaj, B. K. Tyagi and S. Singh, Relativization of star-C-Hurewicz property in topological spaces, Bull. Iranian Math. Soc., 46 (2020), 1101–1115.
- M. Bonanzinga, F. Cammaroto and Lj.D.R. Koˇcinac, Star-Hurewicz and related properties, Appl. Gen. Topol., 5 (2004), 79–89.
- P. Das, D. Chandra and U. Samanta, On certain variations of I-Hurewicz property, Topology Appl., 241 (2018),363–376.
- J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Int. J. Math. Math. Sci., 19 (1996), 303–310.
- R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.
- W. Hurewicz, ¨U ber eine verallgemeinerung des Borelschen Theorems, Math. Z., 24 (1925), 401–421.
- Lj. D. Koˇcinac, Star-Menger and related spaces, Publ. Math. Debrecen, 55 (1999), 421– 431.
- Lj. D.R. Koˇcinac and M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math., 179 (2003), 131–155 .
- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. and Physical Soc. Egypt, 53 (1982), 47–53.
- M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl., 69 (1996), 31–62.
- B. K. Tyagi, S. Singh and M. Bhardwaj, An ideal version of star-C- Hurewicz covering property, Filomat, 33(19) (2019), 6385–6393.
- On Star-σ-Countably Compact Spaces
Abstract Views :87 |
PDF Views:0
Authors
Affiliations
1 Department of Mathematics, Dyal Singh College, University of Delhi, New Delhi-110003, IN
1 Department of Mathematics, Dyal Singh College, University of Delhi, New Delhi-110003, IN
Source
The Journal of the Indian Mathematical Society, Vol 90, No 1-2 (2023), Pagination: 105-113Abstract
A space X is said to be star-σ-countably compact if for every open cover U of X, there exists a σ-countably compact subset C of X such that St(C, U) = X. In this paper, we investigate the relationship between star-σ-countably compact spaces and other related spaces and also study the topological properties of star-σ-countably compact spaces.Keywords
Compact, Starcompact, σ-Countably Compact, Lindel¨of, Covering, Star-Covering, Topological Space.References
- E. K. van Douwen, G. K. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Topology Appl., 39 (1991), 71–103.
- R. Engelking, General topology, PWN, Warszawa, 1977.
- W. M. Fleischman, A new extension of countable compactness, Fund. math., 67 (1971), 1–7.
- M. V. Matveev, A survey on star-covering properties, Topology Atlas, preprint no. 330, 1998.
- S. Mr´owka, On completely regular spaces, Fund. Math., 41 (1954), 105–106.
- S. Singh, Set starcompact and related spaces, Afr. Mat., 32 (2021), 1389–1397.
- Y. K. Song and Yin Zheng, On star-C-Menger spaces, Quaestiones Mathematicae, 37 (2014), 337–347.
- Y. K. Song, On L-starcompact spaces, Czech. Math. J., 56 (2006), 781–788.
- Y. K. Song, On K-starcompact spaces, Bull. Malays. Math. Sci. Soc., 30 (2007), 59–64.
- Y. K. Song, On C-starcompact spaces, Math. Bohemica, 133 (2008), 259–266.
- Y. K. Song, On σ-starcompact spaces, App. Gen. Topol., 9(2) (2008), 293–299.
- R. C. Walker, The stone-Cech compactification, Berlin, 1974.