Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Shanker, Gauree
- On the Hypersurface of a Finsler Space with the Special (α, β)-Metric α + β + βn+1/αn
Abstract Views :325 |
PDF Views:0
Authors
Gauree Shanker
1,
Ravindra
1
Affiliations
1 Department of Mathematics and Statistics, Banasthali University, Banasthali 304 022, IN
1 Department of Mathematics and Statistics, Banasthali University, Banasthali 304 022, IN
Source
The Journal of the Indian Mathematical Society, Vol 80, No 3-4 (2013), Pagination: 329-339Abstract
The purpose of the present paper is to investigate the various kinds of hypersurfaces of Finsler space with special (α, β)-Metric α + β + βn+1/αn.Keywords
Special Finsler Hypersurface, (α, β)-Metric, Hyperplane of 1st Kind, Hyperplane of 2nd Kind, Hyperplane of 3rd Kind.- Four-Dimensional Conformally Flat Berwald and Landsberg Spaces
Abstract Views :383 |
PDF Views:0
Authors
Affiliations
1 Centre for Mathematics and Statistics, Central University of Punjab, Bathinda-151001, IN
1 Centre for Mathematics and Statistics, Central University of Punjab, Bathinda-151001, IN
Source
The Journal of the Indian Mathematical Society, Vol 85, No 1-2 (2018), Pagination: 241-255Abstract
The problem of conformal transformation and conformal flatness of Finsler spaces has been studied in [6], [16], [17], [20], [21]. Recently, Prasad et. al [19] have studied three dimensional conformally flat Landsberg and Berwald spaces and have obtained some important results. The purpose of the present paper is to extend the idea of conformal change to four dimensional Finsler spaces and find the suitable conditions under which a four dimensional conformally at Landsberg space becomes a Berwald space.Keywords
Miron Frame, Conformal Transformation, Conformally Flat Spaces, Berwald Spaces, Landsberg Spaces.References
- S. Akbulut and M. Kalafat, A class of locally conformally at 4-manifolds, New York J. Math. 18 (2012), 733-763.
- P. L. Antonelli, Hand book of Finsler geometry, Kluwer Academic Publishers, Dordrecht, The Netherlands 2003.
- M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1711), (1978), 425-461.
- Sun-Yung A. Change, Jie Qing and Paul C. Yang, Compactication of a class of conformally at 4-manifolds, Invest. Math. 142, (2000), 65-93.
- M. Gromov, H. B. Lawson and W. Thruston, Hyperbolic 4-manifolds and conformally at 3-manifolds, Publications Mathematiques del. I. H. E. S, tome 68 (1988), 27-45.
- M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto University, 16 (1976), 85-99.
- M. Iori and R. Piergallini, 4-manifolds as covers of 4-sphere branched over nonsingular surfaces, Geom. Topol. 6 (2002), 393-401.
- M. Kalafat, Locally conformally at and self-dual structures on simple 4-manifolds, Proceedings of 19th Gokova Geo-Topo. conference, (2012), 111-122.
- M. Kapovich, Conformally at metrics on 4-manifolds, J. Dierential geometry, 66 (2004), 289-301.
- N. H. Kuiper, On conformally at spaces in large , Ann. of Math. 50(2), (1949), 916-924.
- N. H. Kuiper, On compact conformally Euclidean spaces of dimension >2, Ann. of Math. 52(2), (1950), 478-490.
- R. S. Kulkarni, Conformally at manifolds, Proc. Nat. Acad. Sci. USA 69(9), (1972), 2675-2676.
- M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S., 24 (1972), 29-37.
- M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, 520, Japan 1986.
- M. Matsumoto, The theory of Finsler spaces with m th-ischolar_main metric II, Pub. Math. Debrecen, 49 (1996), 135-155.
- M. Matsumoto and R. Miron, On an invariant theory of Finsler spaces, Period. Math., Hunger., 8 (1977), 73-82.
- A. Moor, Uberdie Torsions-Und Krummung invarianten der dreidimensonalen Finslerschen Raume, Math Nachr., 16 (1957), 85-99.
- T. N. Pandey and D. K. Divedi, A theory of four-dimensional Finsler spaces in terms of scalars, J. Nat. Acad. Math., 11 (1997), 176-190.
- B. N. Prasad, T. N. Pandey and M. K. Singh, Three dimensional conformally at Landsberg and Berwald spaces, J. Int. Acad. Phy. Sc., 13(3), (2009), 299-309.
- B. N. Prasad and Gauree Shanker, Conformal change of four-dimensional Finsler space, Bull. Cal. Math. Soc., 102(5), (2010), 423-432.
- R. Yoshikawa and K. Okubo, Two dimensional conformally at Finsler spaces, Tensor, N. S., 60 (1998), 99-108.
- Weighted Quasi-Metrics Associated with Finsler Metrics
Abstract Views :321 |
PDF Views:1
Authors
Affiliations
1 Department of Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab-151 401, IN
1 Department of Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab-151 401, IN
Source
The Journal of the Indian Mathematical Society, Vol 90, No 1-2 (2023), Pagination: 37-52Abstract
The current paper deals with some new classes of Finsler metrics with reversible geodesics. We construct weighted quasi-metrics associated with these metrics. Further, we investigate some important geometric properties of weighted quasi-metric space. Finally, we discuss the embedding of quasi-metric spaces with generalized weight.Keywords
Reversible Geodesics, Weighted Quasi-Metrics, Absolute Homogeneous Metrics, Metric Structure, Perimeter, Embedding.References
- D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, GTM, Vol. 200, Springer-Verlag, 2000.
- S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts Math., 6, World Sci. Publ., Singapore, 2005.
- M. Crampin, Randers spaces with reversible geodesics, Publ. Math. Debrecen, 67 (3-4) (2005), 401–409.
- G. Hamel, U¨ber die Geometrieen, in denen die Geraden die Ku¨rzesten sind, Math. Ann., 57 (1903), 231–264.
- H. P. A. K¨unzi and V. Vajner, Weighted quasi–metrics in: Papers on General topology and Appl., Annals New York Acad. Sci., 728 (1994), 64–77.
- I. M. Masca, S. V. Sabau and H. Shimada, Reversible geodesics for (α, β)-metrics, Int. J. Math., 21(8) (2010), 1071–1094.
- I. M. Masca, S. V. Sabau and H. Shimada, Necessary and sufficient conditions for two-dimensional (α, β)-metrics with reversible geodesics, preprint, arXiv:1203.1377V1[math.DG].
- S. G. Matthews, Partial metric topology in: Papers on General topology and Applications, Ninth summer Conf. Slippery. Rock, PA, Annals New York Acad. Sci., 767 (1993), 188–193.
- S. V. Sabau, K. Shibuya and H. Shimada, Metric structures associated to Finsler metrics, Publ. Math. Debrecen, 84(1-2) (2014), 89–103.
- S. V. Sabau and H. Shimada, Finsler manifolds with reversible geodesics, Rev. Roumaine Math. Pures Appl., 57(1) (2012), 91–103.
- G. Shanker and S. A. Baby, Reversible geodesics of Finsler spaces with a special (α, β)-metric, Bull. Cal. Math. Soc., 109(3) (2017), 183–188.
- Z. Shen and G. C. Yildrin, On a class of projectively flat metrics with constant flag curvature, Canad. Math. Bull., 60(2) (2008), 443–456.
- Z. Shen, On projectively flat (α, β)-metrics, Canad. Math. Bull., 52(1) (2009), 132–144.
- P. Vitolo, A representation theorem for quasi-metric spaces, Topology Appl., 65 (1995), 101–104.