Refine your search
Collections
Co-Authors
Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Adama, Coulibaly
- Numerical Approximation of the Quenching Time for One-Dimensional p-Laplacian with Singular Boundary Flux
Abstract Views :293 |
PDF Views:0
Authors
Affiliations
1 Universit´e Alassane Ouattara de Bouak´e, UFR-SED, 01 BP V 18 Bouak´e 01, CI
2 Universit Flix Houphou¨et Boigny d’Abidjan, UFR-MI, 22 BP 582 Abidjan 22, CI
3 Universit´e F´elix Houphou¨et Boigny d’Abidjan, UFR-MI, 22 BP 582 Abidjan 22, CI
4 Institut National Polytechnique Houphou¨et-Boigny de Yamoussoukro, BP 2444 Yamoussoukro, CI
1 Universit´e Alassane Ouattara de Bouak´e, UFR-SED, 01 BP V 18 Bouak´e 01, CI
2 Universit Flix Houphou¨et Boigny d’Abidjan, UFR-MI, 22 BP 582 Abidjan 22, CI
3 Universit´e F´elix Houphou¨et Boigny d’Abidjan, UFR-MI, 22 BP 582 Abidjan 22, CI
4 Institut National Polytechnique Houphou¨et-Boigny de Yamoussoukro, BP 2444 Yamoussoukro, CI
Source
The Journal of the Indian Mathematical Society, Vol 90, No 1-2 (2023), Pagination: 85-104Abstract
This paper concerns the study of the numerical approximation for a discrete non-newtonian filtration system with nonlinear boundary conditions. We find some conditions under which the solution of a discrete form of above problem quenches in a finite time and estimate its discrete quenching time. We also establish the convergence of the discrete quenching time to the theoretical one when the mesh size tends to zero.Keywords
p-Laplacian, Discretization, Singular Boundary Flux, Discrete Quenching Time, Convergence.References
- L. M. Abia, J. C. L´o pez-Marcos and J. Mart´ınez, On the blow-up time convergence of semmidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 26 (4) (1998), 399–414.
- L. M. Abia, J. C. L´opez-Marcos and J. Mart´ınez, On the blow-up for semmidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 20 (1–2) (1996), 145–156.
- A. Anatoly, B. Murat and M. Mani, Crank-Nicolson type compact difference schemes for a loaded time-fractional hallaire equation, Fract. Calc. Appl. Anal., 24 (4) (2021), 1231–1256.
- E. Feireisl, H. Petzeltov´a and F. Simondon: Adminissible solutions for a class of non-linear parabolic problems with non-negative data, Proc. Roy. Soc. Edinburgh Sect., A 131 (2001), 857–883.
- M. Fila and H. A. Levine: Quenching on the boundary, Nonlinear Anal. TMA, 21 (1993), 795–802.
- H. Kawarada, On solutions of initial boundary problem ut = uxx + (1 − u)−1 , Plubl. Res. Inst. Math. Sci., 10 (1975), 729–736.
- F. Kong and Z. Luo, Solitary wave and periodic wave solutions for the non-Newtonian filtration equations with non-linear sources and a time varying delay, Acta Math. Sci., 37 (2017), 1803–1816.
- D. Nabongo and T. K. Boni, Quenching for semidiscretizations of heat equation with a singular boundary condition, Asymptot. Anal., 59 (1) (2008), 27–38.
- D. Nabongo and T. K. Boni, An adaptive schene to treat the phenomenon of quenching for a heat equation with non-linear boundar conditions, Numerical Analysis and Appl., 2 (2009), 87–98.
- K. N’Guessan and N. Diabat´e, Numerical quenching solutions of a parabolic equation Mogeling Electrostatic Mens, Gen. Math. Notes, 29 (1) (2015), 40–60.
- K. N’Guessan and N. Diabat´e, Blow up for discretization of some semilinear parabolic equation with a convection term, Global J. Pure Appl. Math., 12 (2016), 3367–3394.
- K. Nitin and M. Mani, Wavelet collocation method for fractional optimal control problems with fractional Bolza cost, Numer. Methods Partial Differential Equations, 37 (2) (2021), 1693–1724.
- K. Nitin and M. Mani, Method for solving non-linear fractional optimal control problems by using Hermite scaling function with error estimates, Optimal Control, Appl. Methods, 42 (2021), 417–444.
- Z. Wang, J. Yin and C. Wang, Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary conditions, Appl. Math. Letter, 20 (2007), 142–147.
- Y. Yang, J. Yin and C. Jin, A quenching phenomenon for one-dimensional p-Laplace with singular boundary flux, Appl. Math. Lett., 23 (2010), 955–959.
- A Numerical Study for a Flexible Euler-Bernoulli Beam with a Force Control in Velocity and a Moment Control in Rotating Velocity
Abstract Views :295 |
PDF Views:0
Authors
Affiliations
1 Institut National Polytechnique Houphout-Boigny de Yamoussoukro, CI
2 Universit Nangui Abrogoua d’Abobo-Adjam, CI
3 Universit Flix Houphout Boigny de Cocody, CI
1 Institut National Polytechnique Houphout-Boigny de Yamoussoukro, CI
2 Universit Nangui Abrogoua d’Abobo-Adjam, CI
3 Universit Flix Houphout Boigny de Cocody, CI
Source
The Journal of the Indian Mathematical Society, Vol 90, No 1-2 (2023), Pagination: 125-148Abstract
In this paper, we numerically study a flexible Euler-Bernoulli beam with a force control in velocity and a moment control in rotating velocity. First, we show the existence and uniqueness of the weak solution using Faedo-Galerkin’s method with the intermediate spaces. Then, we use the finite elements method with the cubic Hermite polynomials for the approximation of (1.1)–(1.5) in space such that the semi-discrete scheme obtained is stable and convergent. In addition, an a-priori error estimate is obtained. Finally, we perform numerical simulations in order to validate this method.Keywords
Beam Equation, Existence and Uniqueness, Higher Regularity, Finite Element Method, Galerkin Method, Priori Estimates.References
- Paul J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21 (1969), 412–416.
- Shahabaddin Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glasnik Matematicki, 42 (62)(2007), 301 - 308.
- A. P. Goh Abro, J. M. Gossrin Bomisso, A. Kidjgbo Tour, and Adama Coulibaly, A Numerical Method by Finite Element Method (FEM) of an Euler-Bernoulli beam to Variable Coefficients, Advances in Mathematics: Scientific Journal, 9 (2020), 8485 - 8510.
- H. T. Banks and I. G. Rosen, Computational methods for the identification of spatially varying stiffness and damping in beams, Theory and advanced technology, 3 (1987), 1 - 32.
- M. Basson and N. F. J. Van Rensburg, Galerkin finite element approximation of general linear second order hyperbolic equations, Numer. Func. Anal. Opt. 34(9) (2013), 976 - 1000.
- M. Basson, B. Stapelberg and N. F. J. Van Rensburg, Error Estimates for Semi-Discrete and Fully Discrete Galerkin Finite Element Approximations of the General Linear Second-Order Hyperbolic Equation, Numerical Functional Analysis and Optimization, 38(4) (2017), 466 - 485.
- Bomisso G. Jean Marc, Tour´e K. Augustin and Yoro Gozo, Dissipative Numerical Method for a Flexible Euler-Bernoulli Beam with a Force Control in Rotation and Velocity Rotation, Journal of Mathematics Research, 9 (2017), 30 - 48.
- H. Brezis, Fonctional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
- L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998.
- J. L. Lions and E. Magenes, Probl`emes aux limites non homog`enes et Applications, Dunod, 1 1968.
- Z. H. Luo, B. Z. Guo and O. Morgul, Stability and stabilization of infinite dimensional systems with applications, Communications and control Engineering series, Springer-Verlag London Ltd, London, 1999.
- Mensah E. Patrice, On the numerical approximation of the spectrum of a flexible Euler-Bernoulli beam with a force control in velocity and a moment control in rotating velocity, Far East Journal of Mathematical Sciences (FJMS), 126(1)(2020), 13 - 31.
- M. Miletic and A. Arnold, A piezoelectric Euler-Bernoulli beam with dynamic boundary control: Stability and dissipative FEM, Acta Applicandae Mathematicae, (2014), 1 - 37.
- B. Rao, Uniform stabilization of a hybrid system of elasticity, Siam J. Control and Optimization 33(2) (1995),440 - 454.
- A. Shkalikov, Boundary problem for ordinary differential operators with parameter in boundary conditions, Journal of Soviet Mathematics, 33 (1986), 1311 - 1342.
- R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, Springer-Verlag, New York, 68 1988.
- Tzin Wang, A Hermite cubic immersed finite element space for beam design problems, Thesis, Blacksburg Virginia, 2005.