Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Geochemistry of Clastic Sediments from Sargur Supracrustals and Bababudan Group, Karnataka: Implications on Archaean Proterozoic Boundary


Affiliations
1 MSPL Limited, Baldota Enclave, Abheraj Baldota Road, Hospet – 583 203, India
2 Geological Survey of India, Southern Region, Bandlaguda, Hyderabad - 500068, India
     

   Subscribe/Renew Journal


The sediments from three stratigraphic levels in the Bababudan schist belt of Dharwar craton exhibit great diversity in major, trace and rare earth element (REE) geochemistry and thus interpreted to represent significant compositional variation in the source rocks. Detailed geological and geochemical studies have been carried out on clastic rocks constituting the Archaean Sargur supracrustals and the Bababudan belt of Dharwar craton (DC), southern India for understanding the geochemical characteristics and to define the Archaean-Proterozoic Boundary (APB/QPC) in southern India. There is significant contrast in the geochemical signatures for the sediments from these stratigraphic levles. The Sargur enclave population is characterised by slight LREE enrichment with (La/Sm)N ranging from 1.45 to 3.58, almost flat HREE with (Gd/Yb)N ranging from 0.65 to 1.29 with Eu/Eu* ranging from 0.49 to 0.91 suggesting mafic-ultramafic source rocks in the provenance. On the other hand, the Post QPC (PQPC) rocks are characterised by LREE enrichment with (La/Sm)N ranging from 2.66 to 7.07, nearly flat HREE with (Gd/Yb)N ranging from 0.58 to 0.95 and significant depletion of Eu with Eu/Eu* ranging from 0.34 to 0.85, indicating felsic province in the source area. The conglomerates and quartzites representing the QPC are showing mixed nature of these, reflecting the transitional character in depositional environment. Increase in abundance of REE, K2O/Na2O, Th/Sc, La/Sc, Th/U, Hf/Ta and Zr/Y ratios are characteristic of the QPC. The PQPC sediments are enriched in Th, U and HFSE like Hf, Nb, Zr and Y, and depleted in Co and Eu than their older counterparts. These geochemical signatures signify the dominance of mafic-ultramafic rocks in the source area for Sargur rocks and the existence of granite-granodiorite for PQPC clastics. Thus, the unconformity related oligomictic quartz pebble conglomerates (QPC) and quartzites at the base of Bababudan Group resembling the QPC of Witswaterand, South Africa signifies that a stable continental crust had already developed in southern India prior to ∼3.0Ga.

Keywords

Geochemistry, Archaean-Proterozoic Boundary, QPC, Bababudan Belt, Clastic Sediments, Dharwar Craton.
Subscription Login to verify subscription
User
Notifications
Font Size

Abstract Views: 200

PDF Views: 0




  • Geochemistry of Clastic Sediments from Sargur Supracrustals and Bababudan Group, Karnataka: Implications on Archaean Proterozoic Boundary

Abstract Views: 200  |  PDF Views: 0

Authors

S. K. Bhushan
MSPL Limited, Baldota Enclave, Abheraj Baldota Road, Hospet – 583 203, India
Priyadarshi Sahoo
Geological Survey of India, Southern Region, Bandlaguda, Hyderabad - 500068, India

Abstract


The sediments from three stratigraphic levels in the Bababudan schist belt of Dharwar craton exhibit great diversity in major, trace and rare earth element (REE) geochemistry and thus interpreted to represent significant compositional variation in the source rocks. Detailed geological and geochemical studies have been carried out on clastic rocks constituting the Archaean Sargur supracrustals and the Bababudan belt of Dharwar craton (DC), southern India for understanding the geochemical characteristics and to define the Archaean-Proterozoic Boundary (APB/QPC) in southern India. There is significant contrast in the geochemical signatures for the sediments from these stratigraphic levles. The Sargur enclave population is characterised by slight LREE enrichment with (La/Sm)N ranging from 1.45 to 3.58, almost flat HREE with (Gd/Yb)N ranging from 0.65 to 1.29 with Eu/Eu* ranging from 0.49 to 0.91 suggesting mafic-ultramafic source rocks in the provenance. On the other hand, the Post QPC (PQPC) rocks are characterised by LREE enrichment with (La/Sm)N ranging from 2.66 to 7.07, nearly flat HREE with (Gd/Yb)N ranging from 0.58 to 0.95 and significant depletion of Eu with Eu/Eu* ranging from 0.34 to 0.85, indicating felsic province in the source area. The conglomerates and quartzites representing the QPC are showing mixed nature of these, reflecting the transitional character in depositional environment. Increase in abundance of REE, K2O/Na2O, Th/Sc, La/Sc, Th/U, Hf/Ta and Zr/Y ratios are characteristic of the QPC. The PQPC sediments are enriched in Th, U and HFSE like Hf, Nb, Zr and Y, and depleted in Co and Eu than their older counterparts. These geochemical signatures signify the dominance of mafic-ultramafic rocks in the source area for Sargur rocks and the existence of granite-granodiorite for PQPC clastics. Thus, the unconformity related oligomictic quartz pebble conglomerates (QPC) and quartzites at the base of Bababudan Group resembling the QPC of Witswaterand, South Africa signifies that a stable continental crust had already developed in southern India prior to ∼3.0Ga.

Keywords


Geochemistry, Archaean-Proterozoic Boundary, QPC, Bababudan Belt, Clastic Sediments, Dharwar Craton.