Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Overview of Overpressure in Bengal Basin, India


Affiliations
1 MBA Basin, ONGC, Kolkata - 700 088, India
     

   Subscribe/Renew Journal


Abnormally high formation pressures are encountered worldwide, ranging in geological age from Cenozoic to Paleozoic, within a depth range of few hundred meters to as deep as six thousand meters while carrying out exploratory drilling by E and P companies. Several causes can increase formation fluid pressure i.e. rapid loading of sediments results compaction disequilibrium, thermal expansion of fluids, compression and/or upliftment of strata by tectonic forces, generation of oil and gas from organic matter and its volume expansion due to high thermal stress within the restricted pore volume in subsurface condition. Few global examples on overpressure occurrences have been compiled in the paper with special reference to Bengal Basin. Emphasis has been given on methodology and interpretation on abnormal pressure detection in Bengal Basin with a compiled data package on generated curves (Geologs), charts, tables in a systematic way to understand the depth/stratigraphic horizons proved/interpreted as proved or likely to be within transition and overpressure regime. The integrated analysis indicates that the wells drilled in the east of Eocene hinge zone in the onshore and offshore parts of Bengal Basin have penetrated overpressure formation within Miocene in the depth range of 2800 m to 5340 m and the mud weight used to control this overpressure zone was more than 2.0 sp gr mud. The generated Geologs can be used as reference to understand the regime of transition and overpressure, as a valuable document for exploration drilling planning and monitoring. The generated model curve (modified using available data after Hottman and Johnson,1956 curve) using sonic departure (i.e. Δtob(sh) - Δtn(sh)) from drilled wells may be used as an additional tool to find out the expected formation pressure gradient and equivalent mud weight in all future wells. The correlation of wells based on the trend of dcs and σ logs will be useful for predicting transition and overpressure top provided all the parameters required for calculating dcs and σ log recorded smoothly during drilling phase. The study has brought out the detail procedure to generate the pressure profile in the future wells. The generation of pressure profile of a well prior to drilling has got immense importance in oil industry. The drilling of the well should be done by maintaining the optimum mud weight generated from the pressure profile. In case, during drilling, formation pressure is more than the mud pressure, resulted gas kicks or worse, blowouts of the well. Excessively high mud pressure can fracture the formation and cause lost circulation. The oil and gas companies, worldwide, attributed 15% losses due to various problems associated with drilling complications, mostly related to improper pressure prediction of a well. The losses include loss of material as well as drilling process continuity, called non-productive time (NPT). The generation of accurate pressure profile reduces drilling problems, cuts exploration and development costs and allows billions of dollars now spent on losses to be better spent-building and replacing reserves.

Keywords

Overpressure, Geologs, Dc Exponent, σ Log, Electrologs, Bengal Basin.
Subscription Login to verify subscription
User
Notifications
Font Size

Abstract Views: 207

PDF Views: 0




  • Overview of Overpressure in Bengal Basin, India

Abstract Views: 207  |  PDF Views: 0

Authors

D. K. Roy
MBA Basin, ONGC, Kolkata - 700 088, India
G. K. Ray
MBA Basin, ONGC, Kolkata - 700 088, India
A. K. Biswas
MBA Basin, ONGC, Kolkata - 700 088, India

Abstract


Abnormally high formation pressures are encountered worldwide, ranging in geological age from Cenozoic to Paleozoic, within a depth range of few hundred meters to as deep as six thousand meters while carrying out exploratory drilling by E and P companies. Several causes can increase formation fluid pressure i.e. rapid loading of sediments results compaction disequilibrium, thermal expansion of fluids, compression and/or upliftment of strata by tectonic forces, generation of oil and gas from organic matter and its volume expansion due to high thermal stress within the restricted pore volume in subsurface condition. Few global examples on overpressure occurrences have been compiled in the paper with special reference to Bengal Basin. Emphasis has been given on methodology and interpretation on abnormal pressure detection in Bengal Basin with a compiled data package on generated curves (Geologs), charts, tables in a systematic way to understand the depth/stratigraphic horizons proved/interpreted as proved or likely to be within transition and overpressure regime. The integrated analysis indicates that the wells drilled in the east of Eocene hinge zone in the onshore and offshore parts of Bengal Basin have penetrated overpressure formation within Miocene in the depth range of 2800 m to 5340 m and the mud weight used to control this overpressure zone was more than 2.0 sp gr mud. The generated Geologs can be used as reference to understand the regime of transition and overpressure, as a valuable document for exploration drilling planning and monitoring. The generated model curve (modified using available data after Hottman and Johnson,1956 curve) using sonic departure (i.e. Δtob(sh) - Δtn(sh)) from drilled wells may be used as an additional tool to find out the expected formation pressure gradient and equivalent mud weight in all future wells. The correlation of wells based on the trend of dcs and σ logs will be useful for predicting transition and overpressure top provided all the parameters required for calculating dcs and σ log recorded smoothly during drilling phase. The study has brought out the detail procedure to generate the pressure profile in the future wells. The generation of pressure profile of a well prior to drilling has got immense importance in oil industry. The drilling of the well should be done by maintaining the optimum mud weight generated from the pressure profile. In case, during drilling, formation pressure is more than the mud pressure, resulted gas kicks or worse, blowouts of the well. Excessively high mud pressure can fracture the formation and cause lost circulation. The oil and gas companies, worldwide, attributed 15% losses due to various problems associated with drilling complications, mostly related to improper pressure prediction of a well. The losses include loss of material as well as drilling process continuity, called non-productive time (NPT). The generation of accurate pressure profile reduces drilling problems, cuts exploration and development costs and allows billions of dollars now spent on losses to be better spent-building and replacing reserves.

Keywords


Overpressure, Geologs, Dc Exponent, σ Log, Electrologs, Bengal Basin.