Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Geochemistry of Lower Jurassic Sandstones of Shemshak Formation, Kerman Basin, Central Iran: Provenance, Source Weathering and Tectonic Setting


Affiliations
1 Department of Studies in Earth Science, University of Mysore, Manasagangotri, Mysore - 570 006, India
2 Department of Earth Science and Resource Management, Yuvaraja's College, University of Mysore, Mysore - 570 005, India
     

   Subscribe/Renew Journal


Lower Jurassic sandstones of Shemshak Formation of Kerman basin, central Iran were analyzed for major and select trace elements to infer their provenance, palaeoweathering of source rocks and tectonic setting. Average modal framework components (Qt: F: L = 67.25: 2.41: 30.48) and chemical composition of the sandstones classify them as litharenites. The sandstones are quartz-rich (∼67% quartz; 75.34 wt.% SiO2) and derived from a recycled orogen composed of quartzose sedimentary rocks. Average CIA, PIA and CIW values (69%, 76% and 80%, respectively) indicate moderate to intense chemical weathering of the source material. The inferred index of weathering/alteration is the sum total of intensities of weathering witnessed by the lithocomponents during atleast two cycles of sedimentation involving (1) chemical weathering of the source rocks («ultimate» granodiorite source and «proximal» quartzose sedimentary source), (2) chemical weathering during fluvial transport of the detritus, (3) chemical weathering of the detritus in depocenters, and (4) chemical weathering during diagenesis. Sandstones exhibit moderate maturity and were deposited under humid climatic conditions. Plots of the chemical analyses data on tectonic setting discrimination diagrams indicate active continental margin setting, which is in agreement with the tectonic evolutionary history of the Central Iran during Jurassic period.

Keywords

Sandstones, Lower Jurassic, Provenance, Palaeoweathering, Tectonic Setting, Shemshak Formation, Kerman Basin, Central Iran.
Subscription Login to verify subscription
User
Notifications
Font Size

  • AHMEDALI, S.T. (1989) X-Ray Fluorescence Analysis in the Geological Sciences. Advances in methodology. Geol. Assoc. Canada, Short course 7, 308p.
  • ALVAREZ, N.O. and ROSER, B.P. (2007) Geochemistry of black shales from the lower Cretaceous Paja Formation, Eastern Cordillera, Columbia: Source weathering, provenance and tectonic setting. Jour. South Amer. Earth Sci., v.23(4), pp.271-289.
  • ALAVI, M. (1996) Tectanostratigraphic synthesis and structural style of the Alborz Mountain system in northern Iran. Geol. Soc. Am. Bull., v.103, pp.983-992.
  • ARGAST, S. and DONNELLY, T.W. (1986) The chemical discrimination of clastic sedimentary components. Jour. Sed. Res., v.57, pp.813-823.
  • ARMSTRONG-ALTRIN, J.S., LEE, Y.I., VERMA, S.P. and RAMASAMY, S. (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic Setting. Jour. Sed. Res., v.74(2), pp.285-296.
  • ARMSTRONG -ALTRIN, J.S. and VERMA, S.P. (2005) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sed. Geol., v.166, pp.115-129.
  • ASIEDU D.K., DAMPARE S.B., ASAMOAH-SAKYI P., BANOUENG-YAKUBO B., OSAE, S., NYARKO, B.J.B. and MANU, J. (2004) Geochemistry of Paleoproterozoic metasedimentary rocks from the Birim diamondiferous field, southern Ghana: Implications for provenance and crustal evolution at the Archaean-Proterozoic boundary. Geochem. Jour., v.38, pp.215-228.
  • BERBERIAN, M and KING, G.C.P. (1981) Towards a paleogeography and tectonic evolution of Iran. Can. Earth. Sci., v.18, pp.1764-1766.
  • BHAT, M.I. and GHOSH, S.K. (2001) Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: implications for their provenance and weathering. Precambrian Res., v.108, pp.1-16.
  • BHATIA, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Jour. Geol., v.91(4), pp.611-626.
  • BHATIA, M.R. and CROOK, K.A.W. (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92, pp.181-193.
  • BLATT, H., MIDDLETON, G. and MURRAY, R. (1980) Origin of Sedimentary Rocks. 2nd ed. Prentice-Hall, New York. 782p.
  • BRUNET, M.F., KOROTAEV, M.V., ERSHOV, A.V. and NIKISHIN, A.M (2003) The South Caspian Basin: a review of its evolution from subsidence modelling. Sed. Geol., v.156, pp.119– 148.
  • CINGOLANI, C.A., MANASSERO, M. and ABRE, P. (2003) Composition, provenance and tectonic setting of Ordovician siliciclastic rocks in the San Rafael Block: Southern extension of the Precordillera crustal fragment, Argentina. Jour. South Amer. Earth Sci. Rev., v.16, pp.91-106.
  • CONDIE, K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., v.104, pp.1-37.
  • COX, R., LOWER, D.R. and CULLERS, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, v.59, pp.2919-2940.
  • CROOK, K.A.W. (1974) Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites and graywackes. In: R.H. Dott and R.H. Shaver (Eds.), Modern and ancient geosynclinal sedimentation. Soc. Econ. Paleontol. Mineral., Spec. Publ., v.19, pp.304-310.
  • CULLERS, R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos., v.51, pp.181-203.
  • DABRAD, M.P. (1990) Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sed. Geol., v.69(2), pp.45-58.
  • DEY, S., RAI, A.K. and CHAKI, A. (2009) Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry. Jour. South Asian Earth Sci., v.34(6), pp.703-715.
  • DICKINSON, W.R. and SUCZEK, C.A. (1979) Plate tectonics and sandstone composition. Amer. Assoc. Petrol. Geol. Bull., v.63, pp.2164-2182.
  • DICKINSON, W.R., BEARD, L.S., BRAKENRIDGE, G.R., EERJAVEC, J.L., FERGUSON, R.C., INMAN, K.F, KNEPP, R.A., LINDBERG, F.A. and RYBERG, P.T. (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting, Geol. Soc. Amer. Bull., v.94, pp.222-235.
  • DICKINSON, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G.G. (Ed.) Provenance of sandstones. D. Reidel, Dordrecht, pp.333-361.
  • FEDO, C.M., NESBITT, H.W. and YOUNG, G.M. (1995) Unraveling the effects of K-metasomatism in sedimentary rocks and paleosols with implications for palaeoweathering conditions and provenance. Geology, v.23, pp. 921-924.
  • FLOYD, P.A. and LEVERIDGE, B.E. (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Jour. Geol. Soc. London., v.144(4), pp. 531-542.
  • FLOYD, P.A., FRANKE, W., SHAIL, R. and DORR, W. (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precam. Res., v.45, pp.203-214.
  • FLOYD, P.A., FRANKE, W., SHAIL, R. and DORR, W. (1990) Provenance and depositional Environment of Rhenohercynian synorogenic greywacke from the Giessen nappe, Germany, Geologische Rundschau , v.69, pp. 611-626.
  • FLOYD, P. A., SHAIL, R., LEVERIDGE, B.E. and FRANKE, W. (1991) Geochemistry and provenance of Rhenohercynian synorogenic sandstones: implications for tectonic environment discrimination. In: A.C. Morton; S.P. Todd and P. D. W. Haughton (Eds.), Developments in sedimentary provenance. Geol. Soc. London., Spec. Publ., 57, pp.173-188.
  • FOLK, R.L. (1980) Petrology of sedimentary rocks. Hephills, Austin, 170p.
  • FRALICK, P.W. and KRONBERG, B.I. (1996) Geochemical discrimination of clastic sedimentary rock sources. Sed. Geol., v.113, pp.111-124.
  • FYFFE, L.R. and PICKERILLL, R. K. (1993) Geochemistry of Upper Cambrian-Lower Ordovician black shale along a northeastern Appalachian transect. Geol. Soc. Amer. Bull., v.105, pp. 896-910.
  • GIRTY, G.H. and BARBER, R.W. (1993) REE, Th, and Sc evidence for the depositional setting and source rock characteristics of the Quartz Hill chert, Sierra Nevada, California. In: M. J. Johnsson and A. Basu (Eds.), Processes controlling the Composition of Clastic Sediments. Geol. Soc. Am. Spec. Paper, v.284, pp.109-111.
  • GU, X.X., LIU, J.M., ZHENG, M.H., TANG, I.H. and QI, L. (2002) Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical evidence. Jour. Sed. Res., v.72(3), pp.392-407.
  • HARNOIS, L. (1988) The CIW index: A new chemical index of weathering. Sed. Geol., v.55, pp.319–322.
  • HAYASHI, K.I., FUJISAWA, H., HOLLAND, H.D. and OHOMOTO, H. (1997) Geochemistry of ~1.9 Ga sedimentary rocks from northern Labrador, Canada. Geochim. Cosmochim. Acta, v.61(19), pp.4115-4137.
  • HERRON, M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Jour. Sed. Pet., v.58, pp.820-829.
  • HOLLAND, H. D. (1984) The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, 287p.
  • JACOBSON, A.D., BLUM, J.D., CHAMBERLAIN C.P., CRAW, D. and KOONS, P.O. (2003) Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim. Cosmochim. Acta, v.37, pp.29-46.
  • JAFARZADEH, M. and HOSSEINI–BARZI, M. (2008) Petrography and geochemistry of Ahwaz sandstone member of Asmari Formation, Zagros, Iran: implications on provenance and tectonic setting. Revista Mexicana de Ciencias Geological, v.25(2), pp.247-260.
  • JENNER, G.A., LONGERRICH, H.P., JACKSON, S.E. and FRYER, B.J. (1990) ICP-MS: a powerful tool for high precision trace-element analysis in earth science: evidence from analysis of selected USGS reference samples. Chem. Geol., v.83, pp.133–148.
  • JIN, Z., LI, F., CAO, J, WANG, S. and YU, J. (2006) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implication for provenance, sedimentary sorting and catchment weathering. Geomorphology, v. 88, pp.147-163.
  • KALSBEEK, F. and FREI, R. (2010) Geochemistry of Precambrian sedimentary rocks used to solve stratigraphical problems: An example from the Neoproterozoic Volta basin, Ghana. Precambrian Res., v.176, pp.66-75.
  • KROONENBERG, S.B. (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments: Proc. 29th Internat. Geol. Congress, Part A, pp. 69-81.
  • LINDSEY, D A. (1999) An evaluation of alternative chemical classifications of sandstones. USGS Open File report. 99-34, 23p.
  • MAYNARD, J.B., VALLONI, R. and YU, H.S. (1982) Composition of modern deep-sea sands from arc-related basins. Geol. Soc. London, Spec. Publ., v.10, pp.551-561.
  • MCCANN, T. (1991) Petrological and geochemical determination of provenance in the southern Welsh Basin. Developments in Sedimentary Provenance Studies In: A.C. Morton, S.P. Todd and P.D.W. Haughton (Eds.), Geol. Soc. London., Spec. Publ., v.57, pp. 215-230.
  • MCLENNAN, S.M. (1993) Weathering and global denudation. Jour. Geol., v.101, pp.295-303.
  • MCLENNAN, S.M., NANCE, W.B. and TAYLOR, S.R. (1980) Rare earth element-thorium correlation in sedimentary rocks and the composition of the continental crust. Geochim. Cosmochim. Acta, v.44, pp.1833-1839.
  • MCLENNAN, S.M., TAYLOR, S.R. and ERIKSSON, K.A. (1983) Geochemistry of Archaean shales from the Pilbara supergroup, Western Australia. Geochim. Cosmochim. Acta, v.47, pp.1211-1222.
  • MCLENNAN, S.M., TAYLOR, S.R., MCCULLOCH, M.T. and MAYNARD, J.B. (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta, v.54, pp.2015-2050.
  • MCLENNAN, S.M. and TAYLOR, S.R. (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Jour. Geol., v. 99, pp. 1-21.
  • MCLENNAN, S.M., HEMMING, S., MCDANIEL, D.K. and Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance and tectonics, In: J.M. Johnsson and A. Basu, (Eds.), Processes controlling the composition of clastic sediments., Geol. Soc. Amer., Spec. paper., v.284, pp.21-40.
  • MURPHY, J.B. (2000) Tectonic influence on sedimentation along the southern flank of the Late Paleozoic Magdalen Basin in the Canadian Appalachians: Geochemical and isotopic constraints on the Horton Group in the St. Marys basin, Nova Scotia. Geol. Soc. Amer. Bull., v.112, pp.996-1011.
  • NATH, B.N., KUNZENDORF, H. and PLUGER, W. L. (2000) Influence of provenance, weathering and sedimentary processes on the elemental ratios of the fine-grained fraction of the bed load sediments from the Vembanad Lake and the adjoining continental shelf, southwest coast of India. Jour. Sed. Res., v.70; pp.1081-1094.
  • NESBITT, H. W. and YOUNG, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299, pp.715-717.
  • NESBITT, H.W. and YOUNG, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, v.48, pp.1523-1534.
  • NESBITT, H.W. and YOUNG, G.M. (1989) Formation and diagenesis of weathering profiles. Jour. Geol., v.97, pp.129–147.
  • NESBITT, H.W. and YOUNG, G.M. (2004) Ancient climatic and tectonic settings inferred from paleosols developed on igneous rocks. In: P.G. Eriksson, W. Alternan, D.R. Nelson, W.U. Mueller and O. Catuneanu (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amesterdam, pp. 482-493.
  • NESBITT, H. W. FEDO, C.M. and YOUNG, G.M. (1997) Quartz and feldspar stability, steady and non-steady state weathering, and petrogenesis of siliciclastic sands and muds. Jour Geol, v.105, pp. 173-191.
  • OSAE, S., ASIEDU, D.K., BANOENG–YAKUBO, B., KOEBERL, C. and DAMPARE, S.B. (2000) Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: Evidence from geochemistry and detrital modes. Jour. African Earth Sci., v.44, pp.85-96.
  • PAIKARAY, S., BANERJEE, S. and MUKHERJI, S. (2008) Geochemistry of Shales from Palaeoproterozoic to Neoproterozoic Vindhyan Supergroup: implications on provenance, tectonics and paleoweathering. Jour. Asian Earth Sci., v.32, pp. 34-48.
  • PETTIJOHN, F.J. (1975) Sedimentary rocks. Harper and Row, New york, 3rd ed., 628p.
  • PETTIJOHN, F.J., POTTER, P.E. and SIEVER, R. (1987) Sand and sandstone. Springer-Verlag. New York, 618p.
  • POLDERVAART, A. (1955) Chemistry of the earth’s crust. Geol. Soc. Amer. Special paper No 62, pp.119-144.
  • ROSER, B.P. and KORSCH, R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol., v.94, pp. 635-650.
  • ROSER, B.P. and KORSCH, R.J. (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol., v.67, pp. 119-139.
  • ROSER, B.P., COOPER, R.A. NATHAN, S. and TULLOCH, A.J. (1996) Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terrains of the West Coast and Nelson, New Zealand. Newzealand. Jour. Geol. Geophys., v.39, pp. 1-16.
  • SAIDI, A., BRUNET, M.F. and RICOU L.E. (1996) Continental accretion of the Iran Block to Eurasia as seen from Late Paleozoic to Early Cretaceous subsidence curves. Geodin Acta, v.10, pp.189-208.
  • SCHIEBER, J. (1992) A combined petrographical-geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana. Geol. Mag., v.129, pp.223-237.
  • SENGOR, A.M.C (1990) A new model for the Paleozoic–Mesozoic tectonic evolution of Iran and implications for Oman. In: A.H.F. Robertson, M.P. Sarle and A.C. Ries (Eds.), The geology and tectonics of the Oman region. Geol. Soc. London Spec. Publ, v.37, pp.119–181.
  • SPALLETTI, L.A., QUERALT, I., MATHEOS, S.D., COLOMBO, F. and MAGGI, J. (2008) Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting. Jour.South Amer. Earth Sci., v.25, pp.440-463.
  • STAMPFLI, G., M (1978) Etude geologique generale de l Elburz oriental au S de Gonbad-e-Qabus, Iran N-E. Fac. Sci. Univ. Geneve., Thesis No. 1868, 329p.
  • STAMPFLI, G., MARCOUX, J. and BAUD, A. (1991) Tethyan margins in space and time. Palaeogeogr. Palaeoclimat. Palaeoecol., v.87, pp.373-409.
  • STUMM, W. and MORGAN, J.J. (1981) Aquatic chemistry: A prologue emphasizing chemical equilibria in natural waters. John Wiley and Sons, New York, 780p.
  • SUGITANI, K., HORIUCHI, Y., ADACHI, M. and SUGISAKI, R. (1996) Anomalously low Al2O3/TiO2 values for Archean cherts from the Pilbara Block, Western Australia-possible evidence for extensive chemical weathering on the early earth. Precambrian Res., v.80, pp.49-76.
  • SUTTNER, L.J. and DUTTA, P.K. (1986) Alluvial sandstone composition and palaeoclimate-1: Framework mineralogy. Jour. Sed. Pet., v.56 (3), pp.329-345.
  • TAYLOR, S.R. and MCLENNAN, S.M. (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312p.
  • VAN DE KAM, P.C. and LEAKE, B.E (1985) Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Trans. Roy. Soc. Edinb. Earth Sci., v.76, pp.411-449.
  • WRONKIEWICZ, D.J. and CONDIE. KC. (1987) Geochemistry of Archaean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochim. Cosmochim. Acta, v.51, pp.2401-2416.
  • YAMAMOTO, K., SUGISAKI, R. and ARAI. F. (1986) Chemical aspects of alteration of acidic tuffs and their application to siliceous deposits. Chem. Geol., v.55, pp.61-76.
  • ZIMMERMANN, U. and BAHLBURG, H. (2003) Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology, v.50, pp.1069-1104.

Abstract Views: 170

PDF Views: 0




  • Geochemistry of Lower Jurassic Sandstones of Shemshak Formation, Kerman Basin, Central Iran: Provenance, Source Weathering and Tectonic Setting

Abstract Views: 170  |  PDF Views: 0

Authors

S. M. Moosavirad
Department of Studies in Earth Science, University of Mysore, Manasagangotri, Mysore - 570 006, India
M. R. Janardhana
Department of Earth Science and Resource Management, Yuvaraja's College, University of Mysore, Mysore - 570 005, India
M. S. Sethumadhav
Department of Studies in Earth Science, University of Mysore, Manasagangotri, Mysore - 570 006, India
K. N. Prakash Narasimha
Department of Studies in Earth Science, University of Mysore, Manasagangotri, Mysore - 570 006, India

Abstract


Lower Jurassic sandstones of Shemshak Formation of Kerman basin, central Iran were analyzed for major and select trace elements to infer their provenance, palaeoweathering of source rocks and tectonic setting. Average modal framework components (Qt: F: L = 67.25: 2.41: 30.48) and chemical composition of the sandstones classify them as litharenites. The sandstones are quartz-rich (∼67% quartz; 75.34 wt.% SiO2) and derived from a recycled orogen composed of quartzose sedimentary rocks. Average CIA, PIA and CIW values (69%, 76% and 80%, respectively) indicate moderate to intense chemical weathering of the source material. The inferred index of weathering/alteration is the sum total of intensities of weathering witnessed by the lithocomponents during atleast two cycles of sedimentation involving (1) chemical weathering of the source rocks («ultimate» granodiorite source and «proximal» quartzose sedimentary source), (2) chemical weathering during fluvial transport of the detritus, (3) chemical weathering of the detritus in depocenters, and (4) chemical weathering during diagenesis. Sandstones exhibit moderate maturity and were deposited under humid climatic conditions. Plots of the chemical analyses data on tectonic setting discrimination diagrams indicate active continental margin setting, which is in agreement with the tectonic evolutionary history of the Central Iran during Jurassic period.

Keywords


Sandstones, Lower Jurassic, Provenance, Palaeoweathering, Tectonic Setting, Shemshak Formation, Kerman Basin, Central Iran.

References