Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Geothermal Modeling for the Base of Gas Hydrate Stability Zone and Saturation of Gas Hydrate in the Krishna-Godavari Basin, Eastern Indian Margin


Affiliations
1 CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad - 500 007, India
2 Natural Resources Canada, Pacific Geoscience Center, Geological Survey of Canada, 9860 W. Saanich Rd. Sidney, B.C. V8L 4B2, Canada
     

   Subscribe/Renew Journal


The passive eastern Indian margin is rich in gas hydrates, as inferred from the wide-spread occurrences of bottom-simulating reflectors (BSRs) and recovery of gas hydrate samples from various sites in the Krishna Godavari (KG) and Mahanadi (MN) basins drilled by the Expedition 01 of the Indian National Gas Hydrate Program (NGHP). The BSRs are often interpreted to mark the thermally controlled base of gas hydrate stability zone (BGHSZ). Most of the BSRs exhibit moderate to typically higher amplitudes than those from other seismic reflectors. We estimate the average geothermal gradient of ∼400C/km and heat flow varying from 23 to 62 mW/m2in the study area utilizing the BSR's observed on seismic sections. Further we provide the BGHSZ where the BSR is not continuous or disturbed by local tectonics or hidden by sedimentation patterns parallel to the seafloor with a view to understand the nature of BSR.

Since, gas hydrate bearing sediment has higher electrical resistivities than that of the host sediment, we estimate two levels of gas hydrates saturations up to 25% in the depth interval between 70 to 82, and less than 20% in the depth interval between 90 to 104 meter below the seafloor using the resistivity log data at site 15 of NGHP-01.


Keywords

Gas Hydrates, Bottom Simulating Reflectors, Geothermal Gradient, Resistivity Log, Saturation, KG Basin, Eastern Indian Margin.
Subscription Login to verify subscription
User
Notifications
Font Size

  • ANDREASSEN, K. (1995) Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea. Jour. Geophys. Res., v.100(B7), pp.12659-12673.
  • ARCHIE, G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Amer. Instt. Min. Metall. Engg., v.146, pp.54-62.
  • BASTIA, R. (2006) An overview of Indian sedimentary basins with special focus on emerging east coast deepwater frontiers. The Leading Edge, v.25(7), pp.818-829.
  • BIKSHAM, G. and SUBRAHMANYAM, V. (1988) Sediment transport of the Godavari River Basin and its controlling factors. Jour. Hydrology, v.101, pp.275-90.
  • BOURIAK, S., VANNESTE, M. and SAOUTKINE, A. (2000) Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Voring Plateau, offshore Norway, Marine Geology v.163, pp.125–148.
  • BROWN, K.M., BANGS, N.L., FROELICH, P.N. and KVENVOLDEN, K.A. (1996) The nature, distribution and origin of gas hydrate in the Chile Triple region. Earth Planet Sci. Lett., v.139, pp.471-483.
  • CLAYPOOL, G.E. and KVENVOLDEN, K.A. (1983) Methane and other hydrocarbon gases in marine sediment. Annual Rev. Earth Planet. Sci., v.11, pp.299-327.
  • COOPER, A.K. and HART, P.E. (2003) High-resolution seismicreflection investigation of the northern Gulf of Mexico gas hydrate stability zone. Marine Petrol. Geol., v.19, pp.1275-1293.
  • COLLETT, T.S. (2001) A review of well-log analysis techniques used to assess gas-hydrate-bearing reservoirs. In: C.K. Paull and W.P. Dillon (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection, Geophysical Monographs, v.124, pp.189-210.
  • COLLETT, T.S. (2002) Energy Resource Potential of Natural Gas Hydrates. Amer. Assoc. Petrol. Geol. Bull., v.86(11), pp.1971-1992.
  • COLLETT, T.S., RIEDEL, M., COCHRAN, J.R., BOSWELL, R., PRESLEY, J., KUMAR, P., SATHE, A.V., SETHI, A., LALL, M., SIBAL, V. and NGHP EXPEDITION 01 SCIENTISTS (2008) National Gas Hydrate Program Expedition 01 initial reports, Directorate General of Hydrocarbons, New Delhi.
  • CURRAY, J.R., EMMEL, F.J., MOORE, D.G. and RAITT, R.W. (1982) Structure, tectonics and geological history of the Northeastern Indian Ocean. In: A.E. Nairn and F.G. Stehli (Eds.), The ocean basins and margins, v.6, Plenum, New York, pp.399-450.
  • CURRAY, J.R. (1991) Possible greenschist metamorphism at the base of a 22-km sedimentary section, Bay of Bengal. Geol., v.19, pp.1097-1100.
  • DAVIS, E.E., HYNDMAN, R.D. and VILLINGER, H. (1990) Rates of fluid expulsion across the northern Cascadia accretionary prism: constraints from new heat flow and multichannel seismic reflection data. Jour. Geophys. Res., v.95, pp.8869-8889.
  • DICKENS, G.R. and QUINBY-HUNT, M.S. (1994) Methane hydrate stability in seawater. Geophys. Res. Lett., v.21(19), pp.2115-2118.
  • FEDEROV, L.V., RAVICH, M.G. and HOFMANN, J. (1982) Geologic comparison of southeastern peninsular India and Sri Lanka with a part of Antarctica. In: C. Craddock (Ed.), Antarctic Geology and Geophysics. University of Wisconsin Press, Madison, Wisconsin, USA, pp.157-171,
  • FICHLER, C., HENRIKSEN, S., RUESLAATTEN, H. and HOVLAND, M. (2005) North Sea Quaternary morphology from seismic and magnetic data: indications for gas hydrates during glaciations. Petroleum Geoscience, v.11, pp.331-337.
  • FOFONOFF, N.P. (1985) Physical properties of seawater: a new salinity scale and equation of state for seawater. Jour. Geophys. Res., v.90(C2), pp.3332-3342.
  • GANGULY, N., SPENCE, G.D., CHAPMAN, N.R. and HYNDMAN, R.D. (2000) Heat flow variations from bottom simulating reflectors on the Cascadia margin. Marine Geol., v.164, pp.53-68.
  • GHOSH, R., SAIN, K. and OJHA, M. (2010A) Effective medium modeling of gas hydrate-filled fractures using sonic log in the Krishna-Godavari basin, eastern Indian offshore. Jour. Geophys. Res., v.115, B06101, pp.1-15.
  • GHOSH, R., SAIN, K. and OJHA, M. (2010B) Estimating the amount of gas hydrate using effective medium theory: a case study in the Blake Ridge. Marine Geophys. Res., Spec. Issue no.31, pp.29-37.
  • GUERIN, G., GOLDBERG, D. and MELSTERL, A. (1999) Characterization of in situ elastic properties of gas hydratebearing sediments on the Blake Ridge. Jour. Geophys. Res., v.104, pp.17781-17796.
  • GUPTA, S.K. (2006) Basin architecture and petroleum system of Krishna Godavari Basin, east coast of India, The Leading Edge, v.25(7), pp.830-837.
  • HELGERUD, M.B., DVORKIN, J. and NUR, A. (1999) Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett., v.26, pp.2021-2024.
  • HE, T., SPENCE, G.D., RIEDEL, M., HYNDMAN, R.D. and CHAPMAN, N.R. (2007) Fluid flow and origin of a carbonate mound offshore Vancouver Island: Seismic and heat flow constraints. Marine Geol., v.239, pp.83-98.
  • HOLBROOK, W.S., HOSKINS, H., WOOD, W.T., STEPHEN, R.A., LIZARRALDE, D. and LEG 164 SCIENCE PARTY (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, v.273, pp.1840-1843.
  • HOROZAL, S., LEE, G.H., YI, B.Y., YOO, D.G., PARK, K.P., LEE, H.Y., KIM, W., KIM, H.J. and LEE, K. (2009) Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector. Marine Geol., v.258, pp.126-138.
  • HOVLAND, M., GARDNER, J.V. and JUDD, A.G. (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, v.2, pp.127-136.
  • HYNDMAN, R.D. and SPENCE, G.D. (1992) A seismic study of methane hydrate marine bottom simulating reflectors. Jour. Geophys. Res., v.97(B5), pp.6683-6698.
  • HYNDMAN, R.D., YUAN, T. and MORAN, K. (1999) The concentration of deep sea gas hydrates from downhole electrical resistivity logs and laboratory data. Earth Planet. Sci. Lett., v.172(1-2), pp.167-177.
  • HYNDMAN, R.D., SPENCE, G.D., CHAPMAN, N.R., RIEDEL, M. and EDWARDS, R.N. (2001) Geophysical Studies of Marine Gas Hydrate in Northern Cascadia. In: C.K. Paull and W.P. Dillon (Eds.), Natural gas hydrates: occurrence, distribution, detection. Amer. Geophys. Union Monographs, v.124, pp.273-295.
  • KAUL, N., ROSENBERGER, A. and VILLINGER, H. (2000) Comparison of measured and BSR derived heat flow values, Makran accretionary prism, Pakistan. Marine Geol., v.164, pp.37--51.
  • KLEINBERG, R.L., FLAUM, C. and COLLETT, T.S. (2005) Magnetic resonance log of JAPEX/JNOC/ GSC et al. Mallik 5L-38 gas hydrate production research well: gas hydrate saturation, growth habit, relative permeability. In: S.R. Dallimore, and T.S. Collett (Eds.), Scientific Results from the Mallik 2000 Gas Hydrate Production Research Well Program. Geolog. Surv. Canada Bull., v.585, pp.10, Mackenzie Delta, Northwest Territories, Canada.
  • KUNDU, N., PAL, N., SINHA, N. and BUDHIRAJA, I.L. (2008) Paleo hydrate and its role in deep water Plio-Pleistocene gas reservoirs in Krishna-Godavari basin, India, Proceedings of 6th ICGH, Vancouver, British Columbia, Canada, July 6-10. https://circle.ubc.ca/bitstream/2429/1065/1/5567.pdf
  • KVENVOLDEN, K.A. (1998) A primer on geological occurrence of gas hydrate. In: J.P. Henriet and J. Mienert (Eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geol. Soc. London Spec. Publ., v.137, pp.9-30.
  • KVENVOLDEN, K.A. (1999) Potential effects of gas hydrate on human welfare. Proc. National Acad. Sci., USA, v.96, pp.3420-3426.
  • LEE, M.W. and COLLETT, T.S. (2008) Integrated analysis of well logs and seismic data at the Keathley Canyon, Gulf of Mexico, for estimation of gas hydrate concentrations. Marine and Petroleum Geol., v.25, pp.924-931.
  • LEE, M.W. and WAITE, W.F. (2008) Estimating pore-space gas hydrates saturations from well-log acoustic data, Geochemistry Geophysics Geosystems, v.9(7), Q07008, doi:10.1029/2008GC002081.
  • MATHEWS, M. (1986) Logging characteristics of methane hydrate, The Log Analyst, v.27(3), pp.26-63.
  • MAZUMDAR, A., PAROPKARI, A.L., BOROLE, D.V., RAO, B.R., KHADGE, N.H., KARISIDDAIAH, M., KOCHERALA, M. and HILDA, M.J. (2007) Pore-water sulfate concentration profiles of sediment cores from Krishna-Godavari and Goa basins, India. Geochmical Jour., v.41, pp.259-269.
  • MINSHULL, T.A., SINGH, S.C. and WESTBROOK, G.K. (1994) Seismic velocity structure at a gas hydrate reflector, offshore western Columbia, from full waveform inversion, Jour. Geophys. Res., v.99, pp.4715-4734.
  • PAULL, C.K. and DILLON, W.P. (Eds.) (2001) Natural Gas Hydrate: Occurrence, Distribution and Detection. Amer. Geophys. Union Monograph Series, v.124, pp.53-66.
  • PEARSON, C.F., HALLECK, P.M., MCGUIRE, P.L., HERMES, R. and MATHEWS, M. (1983) Natural gas hydrate: a review of in situ properties. Jour. Physical Chemistry, v.87, pp.4180-4185.
  • POWELL, C.M., ROOTS, S.R. and VEEVERS, J.J. (1988) Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics, v.155, pp.261-183.
  • PRABHAKAR, K.N. and ZUTSHI, P.L. (1993) Evolution of southern part of Indian East Coast Basin. Jour. Geol. Soc. India, v.41, pp.215-230.
  • PRASAD, K.L. and RANGARAJU, M.K. (1987) Modern and recent canyon-fan systems in Masulipatnam Bay, Krishna–Godavari Basin, ONGC Bull., v.24(2), pp.59-71.
  • RAMANA, M.V., RAMPRASAD, T. and DESA, M. (2001) Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctica. Earth Planet. Sci. Lett., v.191, pp.241-255.
  • RAMANA, M.V., RAMPRASAD, T., DESA, M., SATHE, A.V. and SETHI, A.K. (2006) Gas hydrate-related proxies inferred from multidisciplinary investigations in the Indian offshore areas. Curr. Sci., v.91(2), pp.183-189.
  • RAMANA, M.V., RAMPRASAD, T., PAROPKARI, A.L., BOROLE, D.V., RAO, B.R., KARISIDDAIAH, S.M., DESA, M., KOCHERLA, M., JOAO, H.M., LOKABHARATI, P., GONSALVES, M.J., PATTAN, J.N., KHADGE, N.H., BABU, C.P., SATHE, A.V., KUMAR, P. and SETHI, A.K. (2009) Multidisciplinary investigations exploring indicators of gas hydrate occurrence in the Krishna–Godavari Basin offshore, east coast of India. Geo-Marine Lett., v.29, pp.25-38.
  • RAO, D.P., BHATTACHARYA, G.C., RAMANA, M.V., SUBRAMANYAM, V., RAMPRASAD, T., KRISHNA, K.S., CHAUBEY, A.K., MURTY, G.P.S., SRINIVAS, K. and DESA, M. (1994) Analysis of multichannel seismic reflection and magnetic data along 13° N latitude across the Bay of Bengal. Marine Geophys. Res., v.16, pp.225-236.
  • RAO, G.N. (2001) Sedimentation, stratigraphy, and petroleum potential of Krishna-Godavari basin, East coast of India. Amer. Assoc. Petrol. Geologists, v.85(9), pp.1623-1643.
  • RIEDEL, M., NOVOSEL, I., SPENCE, G.D., HYNDMAN, R.D., CHAPMAN, N.R. and LEWIS, T. (2006) Geophysical and geochemical signatures associated with gas hydrate–related venting in the northern Cascadia margin. Geol. Soc. Amer. Bull., v.118(1), pp.23-38.
  • RIEDEL, M., COLLETT, T.S. and SHANKAR, U. (2010) Documenting channel features associated with gas hydrates in the KrishnaGodavari Basin, offshore India. Marine Geology, doi: 10.1016/j.margeo.2010.10.008.
  • RUPPEL, C., DICKENS, G.R., CASTELLINI, D.G., GILHOOLY, W. and LIZARRALDE, D. (2005) Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys. Res. Lett., v.32, pp.L04605.
  • SAGER, W.W., LEE, C.S., MACDONALD, I.R. and SCHROEDER, W.W. (1999) High-frequency near-bottom acoustic reflection signatures of hydrocarbon seeps on the northern Gulf of Mexico continental slope. Geo-Marine Lett., v.18, pp.267-276.
  • SAIN, K. and GUPTA, H.K. (2008) Gas hydrates: Indian scenario. Jour. Geol. Soc. India, v.72, pp.299-311.
  • SASTRI, V.V., VENKATACHALA, B.S. and NARAYANAN, V. (1981) The evolution of the east coast of India. Palaeogeo. Palaeont. Palaeoeco., v.36, pp.23-54.
  • SHANKAR, U. and SAIN, K. (2009) Heat flow variation from bottom simulating reflector in the Kerala-Konkan basin of the western continental margin of India. Indian Jour.Marine Sci., v.38, pp.110-115.
  • SHANKAR, U., RIEDEL, M. and SATHE, A.V. (2010) Geothermal modeling of the gas hydrate stability zone along the Krishna Godavari Basin. Marine Geophys. Res., v.31, pp.17–28.
  • SHANKAR, U. and RIEDEL, M. (2010) Seismic and heat flow constraints from the Krishna-Godavari Basin gas hydrate system. Marine Geol., v.276, pp.1-13.
  • SHIPLEY, T.H., HOUSTON, M.H., BUFFLER, R.T., SHAUB, F.J., MCMILLEN, K.J., LADD, J.W. and WORZEL, J.L. (1979) Seismic reflection evidence for the widespread occurrence of possible gas-hydrate horizons on continental slopes and rises. Amer. Assoc. Petroleum Geol. Bull., v.63, pp.2204-2213.
  • SLOAN, E.D. (1990) Clathrate Hydrates of Natural gases, Marcel Dekker, New York.
  • SLOAN, E.D. (1998) Clathrate hydrates of natural gases, second edition Marcel Dekker Inc., New York, pp.628.
  • SPANGENBERG, E. (2001) Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. Jour. Geophys. Res., v.106(B4), pp.6535–6548.
  • TOWNEND, J. (1997) Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand. Marine Geol., v.141, pp.209-220.
  • VOHAT, P., SAIN, K. and THAKUR, N.K. (2003) Heat flow and geothermal gradient from BSR: a case study. Curr. Sci., v.85, pp.1263-1266.
  • YAMANO, M., UYEDA, S., AOKI, Y. and SHIPLEY, T.H. (1982) Estimates of heat flow derived from gas hydrates. Geology, v.10, pp.339-343.
  • YUAN, T., HYNDMAN, R.D., SPENCE, G.D. and DESMONS, B. (1996) Seismic velocity increase and deep-sea gas hydrate concentrations above a bottom-simulating reflector on the northern Cascadia continental slope. Jour. Geophys. Res., v.101, pp.13655-13671.

Abstract Views: 163

PDF Views: 0




  • Geothermal Modeling for the Base of Gas Hydrate Stability Zone and Saturation of Gas Hydrate in the Krishna-Godavari Basin, Eastern Indian Margin

Abstract Views: 163  |  PDF Views: 0

Authors

Uma Shankar
CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad - 500 007, India
Kalachand Sain
CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad - 500 007, India
Michael Riedel
Natural Resources Canada, Pacific Geoscience Center, Geological Survey of Canada, 9860 W. Saanich Rd. Sidney, B.C. V8L 4B2, Canada

Abstract


The passive eastern Indian margin is rich in gas hydrates, as inferred from the wide-spread occurrences of bottom-simulating reflectors (BSRs) and recovery of gas hydrate samples from various sites in the Krishna Godavari (KG) and Mahanadi (MN) basins drilled by the Expedition 01 of the Indian National Gas Hydrate Program (NGHP). The BSRs are often interpreted to mark the thermally controlled base of gas hydrate stability zone (BGHSZ). Most of the BSRs exhibit moderate to typically higher amplitudes than those from other seismic reflectors. We estimate the average geothermal gradient of ∼400C/km and heat flow varying from 23 to 62 mW/m2in the study area utilizing the BSR's observed on seismic sections. Further we provide the BGHSZ where the BSR is not continuous or disturbed by local tectonics or hidden by sedimentation patterns parallel to the seafloor with a view to understand the nature of BSR.

Since, gas hydrate bearing sediment has higher electrical resistivities than that of the host sediment, we estimate two levels of gas hydrates saturations up to 25% in the depth interval between 70 to 82, and less than 20% in the depth interval between 90 to 104 meter below the seafloor using the resistivity log data at site 15 of NGHP-01.


Keywords


Gas Hydrates, Bottom Simulating Reflectors, Geothermal Gradient, Resistivity Log, Saturation, KG Basin, Eastern Indian Margin.

References