Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Clay Mineralogical Studies on Bijawars of the Sonrai Basin:Palaeoenvironmental Implications and Inferences on the Uranium Mineralization


Affiliations
1 Department of Geology, University of Delhi, Delhi - 110 007, India
2 Atomic Mineral Directorate for Exploration and Research, Northern Region, Delhi - 110 066, India
     

   Subscribe/Renew Journal


Clays associated with the Precambrian unconformity-related (sensu lato) uranium mineralization that occur along fractures of Rohini carbonate, Bandai sandstone and clay-organic rich black carbonaceous Gorakalan shale of the Sonrai Formation from Bijawar Group is significant. Nature and structural complexity of these clays have been studied to understand depositional mechanism and palaeoenvironmental conditions responsible for the restricted enrichment of uranium in the Sonrai basin. Clays (<2 μm fraction) separated from indurate sedimentary rocks by disaggregation, chemical treatment and centrifugation were examined using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Presence of tv-1M type illite is inferred from the Rohini and Bandai Members of the Sonrai Formation, indicative of high fluid/rock interaction and super-saturation state of the fluids available in proximity with the uranium mineralization. It is observed that the Sonrai Formation is characterized by kaolinite > chlorite > illite > smectite mineral assemblages, whereas, Solda Formation contains kaolinite > illite > chlorite clays. It has been found that the former mineral assemblage resulted from the alteration process is associated with the uranium mineralization and follow progressive reaction series, indicating palaeoenvironmental (cycles of tropical humid to semi-arid/arid) changes prevailed during maturation of the Sonrai basin. The hydrothermal activity possibly associated with Kurrat volcanics is accountable for the clay mineral alterations.

Keywords

Clay Mineral Assemblages, Illite Crystallinity, Uranium Mineralization, XRD Patterns, Bijawar Group, Sonrai Basin.
Subscription Login to verify subscription
User
Notifications
Font Size

  • AHN, J.H., PEACOR, D.R. and COOMBS, D.S. (1988) Formation mechanisms of illite, chlorite and mixed–layer illite chlorite in Triassic volcanogenic sediments from the Southland Syncline, New Zealand. Contrib. Mineral. Petrol., v.99, pp.82-89.
  • ALEXANDER, L. and KLUG, H.P. (1948) Basic aspects of x–ray absorption in quantitative diffraction analysis of powder mixtures. Anal. Chem., v.20, pp.886-889.
  • ALT, J. (1999) Very low–grade hydrothermal metamorphism of basic igneous rocks in Low–grade metamorphism. In: M. Frey and D. Robinson (Eds.). Blackwell, Oxford, pp.169-201.
  • BEAUFORT, D., MEUNIER, A., PATRIER, P. and OTTAVIANI, M.M. (1992) Significance of the chemical variations in assemblages including epidote and or chlorite in the fossil geothermal field of Saint Martin (Lesser Antilles). Jour. Volcan. Geotherm. Res., v.51, pp.95-114.
  • BEAUFORT, D., PATRIER, P. and LAVERRET, E. (2005) Clay alteration associated with Proterozoic unconformity–type uranium deposits in the East Alligator Rivers uranium field, Northern Territory, Australia. Econ. Geol., v.100(3), pp.515-536.
  • BERGER, I.A. (1974) The role of organic matter in the accumulation of uranium: The organic geochemistry of coal–uranium association. Proc. Series (IAEA, IAEA–SM 183/29), pp.99-123.
  • BISCAY, P.E. (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., v.76, pp.803-832.
  • BLATT, H., MIDDLETON, G.V. and MURRAY, R.C. (1980) Origin of Sedimentary Rocks. Englewood Cliffs, N.J., Prentice Hall, 782p.
  • BOLES, J.E. and FRANKS, S.G. (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation. Jour. Sediment. Petrol., v.49, pp.55-70.
  • BOROVEC, Z. (1981) The Adsorption of Uranyl Species by Fine Clay. Chem. Geol., v.32, pp.45-58.
  • BRIME, C. (1981) Post depositional transformation of clays in Palaeozoic rocks of northwest Spain. Clays and Clay Mineral., p.16.
  • BROOKINS, D.G. (1981) Geochemistry of clay minerals for uranium exploration in the Grants mineral belt, New Mexico. Miner. Diposit, v.17 (1), pp.1432-1866.
  • BROWN, G. (1961) The X–ray identification and crystal structure of clay minerals. Miner. Soc. London, 544p.
  • DAVEY, P.T. and SCOTT, T.R. (1956) Adsorption of uranium on clay minerals. Nature, v.178, 1195p.
  • DREVER, J.J. (1973) The preparation of oriented clay mineral specimens for X–ray diffraction of analysis by a filter membrane peel technique. Amer. Mineral., v.58, pp.553-554.
  • DRIEF, A. and NIETO, F. (2000) Chemical composition of smectites formed in clastic sediments: Implications for the smectite– illite transformation. Clay Mineral., v.35, pp.665-678.
  • DUNOYER DE SEGONGAC, G. (1970) The transformation of clay minerals during diagenesis and lowgrade metamorphism. Sedimentology, v.15, pp.281-348.
  • EBERL, D.D. and SRODON, J. (1988) Ostwald ripening and interparticle–diffraction effects for illite crystals. Amer. Miner., v.73, pp.1335-1345.
  • EHRENBERG, S.N., AAGAARD, P., WILSON, M.J., FRASER, A.R. and DUTHIE, D.M.L. (1993) Depth–dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Mineral., v.28, pp.325-352.
  • ESSENE, E.J. and PEACOR, D.R. (1995) Clay mineral thermometry a critical perspective. Clays and Clay Mineral., v.43, pp.540-553.
  • FREY, M. and ROBINSON, D. (1999) Low-Grade Metamorphism. London, Blackwell Science, pp.29-31.
  • GRIM, R.E., BRADLEY W.F. and Brown, G. (1951) X-ray identification and crystal structures of clay minerals. In: G.W. Brindley (Ed). Mineral. Soc. London, pp.138-172.
  • GUGGENHEIM, S., BAIN, D., BERGAYA, F., BRIGATTI, M.F., DRITS, V.A., EBERL, D.D., FORMOSO, M.L.L., GALAN, E., MERRIMAN, R.J., PEACOR, D.R., STANJEK, H. and WATANABE T. (2002) Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the “crystallinity index”. Clay Minerals, v.37, pp.389-393.
  • HARPER, D.A., LONGSTAFFE, F.J., WADLEIGH, M.A. and MCNUTT, R.H. (1995) Secondary K–feldspar at the Precambrian– Paleozoic unconformity, southwestern Ontario. Can. Jour. Earth Sci., v.32, pp.1432-1450.
  • HASHIMOTO, Y., TADAI, O., TANIMIZU, M., TANIKAWA, W., HIRONO, T., LIN, W., MISHIMA, T., SAKAGUCHI, M., SOH W., SONG, S.R., AOIKE, K., ISHIKAWA, T., MURAYAMA, M., FUJIMOTO, K., FUKUCHI, T., IKEHARA, M., ITO, H., KIKUTA, H., KINOSHITA, M., MASUDA, K., MATSUBARA, T., MATSUBAYASHI, O., MIZOGUCHI, K., NAKAMURA, N., OTSUKI, K., SHIMAMOTO, T., SONE, H. and TAKAHASHI, M., (2008) Characteristics of chlorites in seismogenic fault zones: the Taiwan Chelungpu fault drilling project (TCDP) core sample. Earth, v.3, 16p.
  • HOEVE, J. and QUIRT, D. (1987) A stationary redox front as a critical factor in the formation of high grade unconformity-type uranium ores in the Athabasca basin, Saskatchewan, Canada. Bull. Deposit. Mineral., v.110, pp.157-171.
  • HOOTON, D.H. and GIORGETTA, N.E. (1977) Quantitative x–ray diffraction analysis by a direct calculation method. X–ray Spect., v.6(1), pp.2-5.
  • HOWER, J., ESLINGER, E.V., HOWER, M.E. and PERRY, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: Mineralogical and chemical evidence. Geol. Soc. Amer. Bull., v.87, pp.725-737.
  • IIDA, Y. (1993) Alteration and ore–forming processes of unconformity related uranium deposits. Resour. Geol., v.15, pp.299-308.
  • IMAN, M.B. and SHAW, E.H.F. (1985) The diagenesis of Neogene clastic sediments from the Bengal basins Bangladesh. Jour. Sediment. Petrol., v.55, pp.665-671.
  • IZQUIERDO, G., CATHELMEAU, M. and ALFONSOM, (1995) Clay minerals, fluid inclusions and stabilized temperature estimation in two wells from Los Azufres geothermal field, Mexico. Proceedings of the world geothermal congress, Florence, Italy. Internat. Geothermal Assoc., pp.1083-1086.
  • JACKSON, M.L. (1969) Soil chemical analysis advanced course, 5th print. Department of Soil Science University, Wisconsin, Madison WI, 894p.
  • JONES, B.F. and GALAN, E. (1988) Sepiolite and palygorskite: Hydrous phyllosilicates (Exclusive of micas). In: S.W. Bailey (Ed). Reviews in Mineralogy 19, Mineral. Soc. Amer., pp.631-674.
  • KEIL, R.G., MONFLUGON, D.B., PRAHL, F.G. and HEDGES, J.I. (1994) Sorptive preservation of labile organic matter in marine sediments. Nature, v.370, pp.549-552.
  • KISCH, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. In: Rocks G. Larsen and G.V. Chilingar, (Eds.), Diagenesis of Sediments and Sedimentary Elsevier, Amsterdam. pp.289-493.
  • KUBLER, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenese, temprature et calorimetrie. In: M. Lagache, (Ed.), Thermometrie et Barometrie Geologiques. Societe Francaise Mineralogie et de Cristallographie, pp.489-596.
  • LAIRD, D.A. (2006) Influence of layer charge on swelling of smectites, Appl. Clay Sci. v.34, pp.74-87.
  • LANSON, B., BEAUFORT, D., BERGER, G., BAUER, A., CASSAGNABERE, A. and MEUNIER, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Minerals, v.37, pp.1-22.
  • LAVERRET E., MAS, P.P., BEAUFORT, D., KISTER, P., QUIRT, D., BRUNETON, P. and CLAUER, N. (2006) Mineralogy and geochemistry of the host-rock alterations associated with the Shea Creek unconformity-type uranium deposits. Athabasca basin, Saskatchewan, Canada. Part-1. spatial variation of illite properties. Clays and Clay Mineral., v.54(3), pp.275-294.
  • MADEJOVA, J. (2003) FTIR techniques in clay mineral studies, Vib. Spectrosc., v.31, pp.1–10.
  • MAHADEVAN, T.M. (1986) Space-time controls in Precambrian uranium mineralisation in India. Jour. Geol. Soc. India, v.27, pp.47-62.
  • MERRIMAN, R.J. and PEACOR, D.R. (1999) Very low grade metapelites: Mineralogy, microfabrics and measuring reaction progress. In: M. Frey and D. Robinson (Eds.), Low–Grade Metamorphism. Blackwell Science Ltd., Oxford, pp.10-60.
  • MISHRA, B. (1996) Annual report on the exploratory drilling at Sonrai, Lalitpur District., U.P., AMD.
  • MORSE, J.W. and CASEY, J.C. (1988) Ostwald processes and mineral paragenesis in sediments. Amer. Jour. Sci., v.288, pp.537-560.
  • PACQUET, A. and WEBER, F. (1993) Petrographie et mineralogie des halos d’alteration autour du gisement de Cigare Lake et leurs relations avec les mineralisations. Can. Jour. Earth Sci., v.30, pp.674-688.
  • PATRIER, P., BEAUFORT, D., LAVERRET, E. and BRUNETON, P. (2003) High-grade diagenetic 2M1 illite from the Middle Proterozoic Kombolgie Formation (Northern Territory, Australia). Clays Clay Minerals., v.51, pp.102-116.
  • Peacor, D.R. (1992) Diagenesis and low–grade metamorphism of shales and slates. Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy. In: P.R. Buseck (Eds.). Reviews in Mineralogy. Mineral. Soc. Amer., v.27, pp.335-380.
  • PERCIVAL, J.B. and KODAMA, H. (1989) Sudoite from Cigar Lake, Saskatchewan. Can. Mineral., v.27, pp.633-641.
  • POLLASTRO, R.M. (1982) A recommended procedure for the preparation of oriented clay–mineral specimens for X–ray diffraction analysis: Modifications to Drever’s filter– membrane peel technique. USGS Open File Report, pp.8271.
  • POPPE, L.J., PASKEVICH, V.F., HATHAWAY, J.C. and BLACKWOOD, D.S. (2002) A laboratory manual for X-ray powder diffraction. USGS Open File Report, pp.1-41.
  • PRAKASH, R., SWARUP, P. and SRIVASTAVA, R.N. (1975) Geology and mineralization in the southern parts of Bundelkhand in Lalitpur dist., U.P. Jour. Geol. Soc. India, v.16, pp.143–156.
  • RAMAEKERS, P., JEFFERSON, C.W., YEO, G.M., COLLIER, B., LONG, D.G.F., CATUNEANU, O., BERNIER, S., KUPSCH, B., POST, R., DREVER, G., MCHARDY, S., JIRICKA, D., CUTTS, C. and WHEATLEY, K. (2005a) Revised geological map and stratigraphy of the Athabasca Group, Saskatchewan and Alberta.
  • RAMAEKERS, P., YEO, G.M., JEFFERSON, C.W., COLLIER, B., LONG, D.G.F., CATUNEANU, O., BERNIER, S., KUPSCH, B., POST, R., DREVER, G., MCHARDY, S., JIRICKA, D., CUTTS, C. and WHEATLEY, K. (2005b) Revised geological map and stratigraphy of the Athabasca Group, Saskatchewan and Alberta. In: C.W. Jefferson and G. Delaney, (Eds.), Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta. Geol. Surv. Canada, Bull., v.588.
  • RETALLACK, G.J. (1986a) The fossil record of soils. In: V.P. Wright (Ed.), Paleosols: Their recognition and interpretation. Oxford, Blackwells, 315p.
  • ROY, M., BAGCHI, A.K., BABU, E.V.S.S.K., MISHRA, B. and KRISHNAMURITHY, P. (2004) Petromineragraphy and mineral chemistry of bituminous shale-hosted uranium mineralization at Sonrai, Lalitpur district, Uttar Prdaesh. Jour. Geol. Soc. India, v.63, pp.291-298.
  • ROY, M., ROY, A.K. and PARIHAR, P.S. (2008) Radioactive carbonaceous material within the fractured Bundelkhand granite of Gwalior Basin at Dursendi, Gwalior district. Madhya Pradesh – A petrographic revelation. Jour. Geol. Soc. India, v.72, pp.479-483.
  • RUIZ CRUZ, M.D. and ANDREO, B. (1996) Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain). Clay Mineral., v.31, pp.133-52.
  • SHARMA, K.K. (2000) Evolution of the Archaean– Palaeoproterozoic crust of the Bundelkhand Craton, Northern Indian Shield. In: O.P. Verma and T.M. Mahadevan (Eds.), Research Highlights in Earth Sciences, DST, India. Geol. Cong., v.1, pp.95–105.
  • SINGH, J. and BAGCHI, A.K. (1994) Possibility of occurrence of breccia complex–cum–Iron oxide type uranium deposit at the contact of the Solda and Sonrai Formations of Bijawar Group in Lalitpur Dist., U.P. Extended Abst. On First order Uranium exploration Target selection in the Proterozoic Solda India, AMD, pp.5-6.
  • SINGH, K.K. and GOYAL, R.S. (1972) Copper mineralisation in the Bijawar series around Sonrai, District Jhansi, U.P. Jour. Geol. Soc. India, v.13(4), pp.252-360.
  • SOPUCK, V.J., DE CARLE, E.M. and COOPER, B. (1983) The application of lithogeochemistry in the search for unconformity-type uranium deposits, northern Saskatchewan, Canada, In: G.R. Parslow (Eds.), Jour. Geochem. Explor., v.19, pp.77-99.
  • SRIVASTAVA, R.N. (1989) Bijawar phospherites at Sonrai geology, sedimentation, exploration strategy and origin. Mem. Geol. Soc. India, v.13, pp.47-59.
  • SRODON, J. (1984) X–ray powder diffraction identification of illitic materials: Clays and Clay Miner., v.32, p.337-349.
  • TAN, K.H. (2005) Soil sampling, preparation, and analysis. (2nd ed.). CRC press, Taylor & Francis Group. 623p.
  • TUCKER, M. (Ed.) (1988) Techniques in Sedimentology. Blackwell Science Inc, 408p.
  • UPADHYAYA, T.P., RAJU, S. and SINGH, D.P. (1990) Second generation mapping of Bundelkhand granites and Bijawar group of rocks in parts of Lalitpur district, U.P., Geol. Surv. India records, v.126, pp.44-48.
  • VAN DE KAMP, P.C. (2008) Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales. Clays and Clay Miner., v.56(1), pp.66-81.
  • VELDE, B. (1985) Clay Minerals: A Physico–Chemical Explanation of their Occurrence. Elsevier, Amsterdam, 427p.
  • WEAVER, C.E. (1958b) Geological interpretation of argillaceous sedimentary rocks. Bull. Amer. Assoc. Petrol. Geol., v.42, pp.254-271.
  • WEAVER, C.E. (1958c) A discussion of the origin of clay minerals in sedimentary rocks. Clays Clay Mineral., v.5, pp.159-173.
  • WILSON, M.J. (1987) A handbook of determinative methods in clay mineralogy. In: M.J. Wilson (Ed). Blackie-Son Ltd., London, 308 p.
  • YANG, Y.L. and APLIN, A.C. (1997) A method for the disaggregation of mudstones. Sedimentology, v.44, pp.559-562.
  • ZIEGLER, K. and LONGSTAFFE, F.J. (2000) Multiple episodes of clay alteration at the Precambrian/Paleozoic unconformity, Appalachian Basin: Isotopic evidence for long–distance and local fluid migrations. Clays and Clay Mineral., v.48(4), pp.474-493.

Abstract Views: 202

PDF Views: 0




  • Clay Mineralogical Studies on Bijawars of the Sonrai Basin:Palaeoenvironmental Implications and Inferences on the Uranium Mineralization

Abstract Views: 202  |  PDF Views: 0

Authors

Surendra Kumar Jha
Department of Geology, University of Delhi, Delhi - 110 007, India
J. P. Shrivastava
Department of Geology, University of Delhi, Delhi - 110 007, India
C. L. Bhairam
Atomic Mineral Directorate for Exploration and Research, Northern Region, Delhi - 110 066, India

Abstract


Clays associated with the Precambrian unconformity-related (sensu lato) uranium mineralization that occur along fractures of Rohini carbonate, Bandai sandstone and clay-organic rich black carbonaceous Gorakalan shale of the Sonrai Formation from Bijawar Group is significant. Nature and structural complexity of these clays have been studied to understand depositional mechanism and palaeoenvironmental conditions responsible for the restricted enrichment of uranium in the Sonrai basin. Clays (<2 μm fraction) separated from indurate sedimentary rocks by disaggregation, chemical treatment and centrifugation were examined using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Presence of tv-1M type illite is inferred from the Rohini and Bandai Members of the Sonrai Formation, indicative of high fluid/rock interaction and super-saturation state of the fluids available in proximity with the uranium mineralization. It is observed that the Sonrai Formation is characterized by kaolinite > chlorite > illite > smectite mineral assemblages, whereas, Solda Formation contains kaolinite > illite > chlorite clays. It has been found that the former mineral assemblage resulted from the alteration process is associated with the uranium mineralization and follow progressive reaction series, indicating palaeoenvironmental (cycles of tropical humid to semi-arid/arid) changes prevailed during maturation of the Sonrai basin. The hydrothermal activity possibly associated with Kurrat volcanics is accountable for the clay mineral alterations.

Keywords


Clay Mineral Assemblages, Illite Crystallinity, Uranium Mineralization, XRD Patterns, Bijawar Group, Sonrai Basin.

References