Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Deccan Volcanism Linked to the Cretaceous-Tertiary Boundary Mass Extinction: New Evidence from ONGC Wells in the Krishna-Godavari Basin


Affiliations
1 Geosciences Department, Princeton University, Princeton, NJ 08544, United States
2 Keshava Dev Malaviya Institute of Petroleum Exploration, Oil and Natural Gas Corporation, Dehradun, India
3 Oil and Natural Gas Corporation, Regional Geoscience Laboratory, Chennai, India
4 Geological and Paleontological Institute, Anthropole, CH-1015 Lausanne, Switzerland
     

   Subscribe/Renew Journal


A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world's largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (∼80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1-CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 megaflow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment.

Deccan volcanism phase-3 began in the early Danian near the C29R/C29n boundary correlative with the planktic foraminiferal zone P1a/P1b boundary and accounts for ∼14% of the total volume of Deccan eruptions, including four of Earth's longest and largest mega-flows. No major faunal changes are observed in the intertrappeans of zone P1b, which suggests that environmental conditions remained tolerable, volcanic eruptions were less intense and/or separated by longer time intervals thus preventing runaway effects. Alternatively, early Danian assemblages evolved in adaptation to high-stress conditions in the aftermath of the mass extinction and therefore survived phase-3 volcanism. Full marine biotic recovery did not occur until after Deccan phase-3. These data suggest that the catastrophic effects of phase-2 Deccan volcanism upon the Cretaceous planktic foraminifera were a function of both the rapid and massive volcanic eruptions and the highly specialized faunal assemblages prone to extinction in a changing environment. Data from the K-G Basin indicates that Deccan phase-2 alone could have caused the KTB mass extinction and that impacts may have had secondary effects.


Keywords

Cretaceous-Tertiary, Mass Extinction, Deccan Volcanism, Longest Lava Flows, Krishna-Godavari Basin.
Subscription Login to verify subscription
User
Notifications
Font Size

  • ABRAMOVICH, S., YOVEL-COREM, S., ALMOGI-LABIN, A. and BENJAMINI, C. (2010) Global climate change and planktic formaminiferal response in the Maastrichtian. Paleoceanography, v.25, PA2201, doi: 10.1029/2009PA001843.
  • ABRAMOVICH, S. and KELLER, G. (2002) High stress late Maastrichtian Paleoenvironment in Tunisia: Inference from planktic foraminifera. Paleogeog., Paleoclimat., Paleoeco., v.178, pp.145-164.
  • ABRAMOVICH, S. and KELLER, G. (2003) Planktic foraminiferal response to latest Maastrichtian abrupt warm event a case study from mid-latitude DSDP Site 525. Mar. Micropal., v.48, pp.225-249.
  • ABRAMOVICH, S., KELLER, G., ADATTE, T., STINNESBECK, W., HOTTINGER, L., STUEBEN, D., BERNER, Z., RAMANIVOSOA, B. and RANDRIAMANANTENASOA, A. (2002) Age and Paleoenvironment of the Maastrichtian-Paleocene of the Mahajanga Basin, Madagascar: a multi-disciplinary approach. Mar. Micropaleo., v.47, pp.17-70.
  • ABRAMOVICH, S., KELLER, G., STUEBEN, D. and BERNER, Z. (2003) Characterization of late Campanian and Maastrichtian planktic foraminiferal depth habitats and vital activities based on stable isotopes. Paleoclimat. Paleoecol. Paleogeog., v.202, pp.1-29.
  • BAKSI, A.K. (2005) Comment on "40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relations to the Deccan Traps" by Knight et al. [Earth and Planet Sci. Lett. 208 (2003) 85-99]. Earth Planet. Sci. Lett., v.239, pp.368- 373.
  • BAKSI, A.K., BYERLY, G.R. CHAN, L.-H. and FARRAR, E. (1994) Intracanyon flows in the Deccan province, India: Case history of the Rajahmundry Traps. Geology, v.22, pp.605-608.
  • BERGGREN, W.A., KENT, D.V., SWISHER, C.C. and AUBRY, M.-P. (1995) A revised Cenozoic geochronology and chronostratigraphy. In: W.A. Berggren, D.V. Kent, M.-P. Aubry, Nd J. Hardenbol (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation, SEPM, Spec. Publ., no.54, pp.129-212.
  • CANDE, S. and KENT, D.V. (1995) Revised calibration of the geomagnetic polarity Timescale for the Late Cretaceous and Cenozoic. Jour. Geophys. Res., v.100, pp.6093-6095.
  • CARON, M. (1985) Cretaceous planktic foraminifera. In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (Eds.), Plankton Stratigraphy: Cambridge. Cambridge University Press, pp.17-86.
  • CHENET, A.-L., QUIDELLEUR, X., FLUTEAU, F. and COURTILLOT, V. (2007) 40K/40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet. Sci. Lett., v.263, pp.1-15.
  • CHENET, A.-L., FLUTEAU, F., COURTILLOT, V., GERARD, M. and SUBBARAO, K.V. (2008) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar. Jour. Geophys. Res., v.113, doi:10.1029/2006JB004635.
  • CHENET, A.-L., COURTILLOT, V., FLUTEAU, F., GERARD, M., QUIDELLEUR, X., KHADRI, S.F.R., SUBBARAO, K.V. and THORDARSON, T. (2009) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paloemangnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500 mthick composite section. Jour. Geophys. Res., v.114, B06103, doi:10.1029/2008JB005644.
  • COCCIONI, R. and LUCIANI, V. (2006) Guembelitria irregularis bloom at the K-T boundary: Morphological abnormalities induced by impact-related extreme environmental stress? In: C. Cockell, C. Koeberl and I. Gilmour, I. (Eds.), Biological Processes Associated with Impact Events. Impact Studies, Springer, pp.179-196.
  • COURTILLOT, V., BESSE, J., VANDAMME, D., MONTIGNY, R., JAEGER, J.-J. and CAPPETTA, H. (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett., v.80, pp.361-374.
  • COURTILLOT, V., FERAUD, G., MALUSKI, H., VANDAMME, D., MOREAU, M.G. and BESSE, J. (1988) The Deccan flood basalts and the Cretaceous-Tertiary boundary. Nature, v.333, pp.843-846.
  • COURTILLOT, V., GALLET, Y., ROCCHIA, R., FERAUD, G., ROBIN, E., HOFMANN, C., BHANDARI, N. and GHEVARIYA, Z.G. (2000) Cosmic markers, 40Ar/39Ar dating and Paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province. Earth Planet. Sci. Lett., v.182, pp.137-156.
  • COWIE, J.W., ZIEGLER, W. and REMANE, J. (1989) Stratigraphic Commission accelerates Progress, 1984 to 1989. Episodes, v.12, pp.79-83.
  • DECONTO, R. M., BRADY, E.C., BERGENGREN, J. and HAY, W.W. (2000) Late Cretaceous climate, vegetation, and ocean interactions, in Warm Climate in Earth History, In: B.T. Huber, K.G. MacLeod and S.L. Wing (Eds.), Cambridge Univ. Press, New York. pp.241-274.
  • DESSERT, C., DUPRE, B., GAILLARDET, J., FRANCOIS, L.M. and ALLEGRE, C.J. (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geol., v.202, pp.257-273.
  • DONNADIEU, Y., PIERREHUMBERT, R., JACOB, R. and FLUTEAU, F. (2006) Modelling the primary control of paleogeography on Cretaceous climate. Earth Planet. Sci. Lett., v.248, pp.426- 437.
  • DUNCAN, R.A. and PYLE, D.G. (1988) Rapid Eruption of the Deccan Flood Basalts at the Cretaceous/Tertiary boundary. Nature, v.333, pp.841-843.
  • GARG, R., KHOWAJA-ATEEQUZZAMAN and PRASAD, V. (2006) Significant dinoflagellate cyst biohorizons in the Upper Cretaceous-Palaeocene succession in the Khasi Hills, Meghalaya. Jour. Geol. Soc. India, v.67, pp.737-747.
  • GERTSCH, B., KELLER, G., ADATTE, T. GARG, R. PRASAD, V., FLEITMANN, D. and BERNER, Z. (2011) Environmental effects of Deccan volvanism across the Cretaceous-Tertiary transition in Meghalaya, India. Earth Planet. Sci. Lett., v., pp.310, pp.272-285
  • GOVINDAN, A. (1981) Foraminifera from the infra- and intertrappean subsurface sediments of Narsapur Well-1 and age of the Deccan Trap flows. Proc. 9th Indian Colloquium of Micropalaeontology and Stratigraphy, pp.81-93.
  • GRADSTEIN, F., OGG, J. and SMITH, A. (2004) A Geologic Time Scale. Cambridge, U.K. Cambridge University Press, 598p.
  • JAIPRAKASH, B.C., SINGH, J. and RAJU, D.S.N. (1993) Foraminiferal events across the K/T boundary and age of Deccan volcanism in Palakollu area, Krishna-Godavari Basin, India. Jour. Geol. Soc. India, v.41, pp.105-117.
  • JAY, A.E. and WIDDOWSON, M. (2008) Stratigraphy, structure and volcanology of the south-east Deccan continental flood basalt province: implications for eruptive extent and volumes. Jour. Geol. Soc. London, v.165, pp.177-188.
  • JAY, A.E., MAC NIOCAILL, C., WIDDOSON, M., SELF, S. and TUNER, W. (2009) New Palaeomagnetic data from the Mahabaleshwar Plateau, Deccan Flood Basalt Province, India: Implications from the volcanostratigraphic architecture of Continental Flood Basalt Provinces. Jour. Geol. Soc. London, v.166, pp.1-12.
  • KELLER, G. (1988) Extinctions, survivorship and evolution across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Mar. Micropal., v.13, pp.239-263.
  • KELLER, G. (1989) Extended Cretaceous/Tertiary boundary extinctions and delayed population change in planktic foraminifera from Brazos River, Texas. Paleoceanography, v.4(3), pp.287-332.
  • KELLER, G. (2001) The end-Cretaceous Mass Extinction: Year 2000 Assessment. Jour. Planet. Space Sci., v.49, pp.817-830.
  • KELLER, G. (2003) Biotic effects of impacts and volcanism. Earth Planet. Sci. Lett., v.215, pp.249-264.
  • KELLER, G. (2008) Impact Stratigraphy: old principle - new reality. Geol. Soc. America, Special Paper no.437, pp.147-178.
  • KELLER, G. and LINDINGER, M. (1989) Stable Isotope, TOC and CaCO3 record across the Cretaceous/Tertiary Boundary at El Kef, Tunisia, Paleogeog., Paleoclimat., Paleoecol., v.73(3/4), pp. 243-265.
  • KELLER, G. and ABRAMOVICH, S. (2009) Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress. Palaeogeo. Palaeoclimat., Palaeoec., v.284, pp.47-62.
  • KELLER, G., D'HONDT, S.L. and VALLIER, T.L. (1983) Multiple microtectite horizons in upper Eocene marine sediments: no evidence for mass extinctions Science, v.221, pp.150-152.
  • KELLER, G., LI, L. and MACLEOD, N. (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: How catastrophic was the mass extinction? Paleogeog., Paleoclimat., Paleoecol., v.119, pp.221-254.
  • KELLER, G., ADATTE, T., STINNESBECK, W., LUCIANI, V., KAROUI, N. and ZAGHBIB-TURKI, D. (2002) Paleoecology of the Cretaceous- Tertiary mass extinction in planktic foraminifera. Paleogeog., Paleoclimat., Paleoecol., v.178, pp.257-298.
  • KELLER, G., ADATTE, T., TANTAWY, A. A., BERNER, Z. and STUEBEN, D. (2007a) High Stress Late Cretaceous to early Danian paleoenvironment in the Neuquen Basin, Argentina. Cret. Res., v.28, pp.939-960.
  • KELLER, G., ADATTE, T., BERNER, Z., HARTING, M., BAUM, G., PRAUSS, M., TANTAWY, A.A. and STUEBEN, D. (2007b) Chicxulub impact predates KT boundary: new evidence from Brazos, Texas: Earth Planet. Sci. Lett., v.25(3-4), pp.339-356.
  • KELLER, G., ADATTE, T., GARDIN, S., BARTOLINI, A. and BAJPAI, S. (2008) Main Deccan volcanism phase ends near the K-T boundary: Evidence from the Krishna-Godavari Basin, SE India. Earth Planet. Sci. Lett., v.268, pp.293-311.
  • KELLER, G., KHOSLA, S.C., SHARMA, R., KHOSLA, A., BAJPAI, S. and ADATTE, T. (2009a) Early Danian planktic foraminifera from Cretaceous-Tertiary intertrappean beds at Jhilmili, Chhindwara District, Madhya Pradesh, India. Jour. Foram. Res., v.39, pp.40-55.
  • KELLER, G., ADATTE, T., BAJPAI, S., MOHABEY, D.M., WIDDOWSON, M., KHOSLA, A., SHARMA, R., KHOSLA, S. C., GERTSCH, B., FLEITMANN, D. and SAHNI, A. (2009b) K-T transition in Deccan traps and intertrappean beds in central India mark major marine Seaway across India. Earth Planet. Sci. Lett., v.282, pp.10- 23.
  • KELLER, G., SAHNI, A. and BAJPAI, S. (2009c) Deccan volcanism, the KT mass extinction and dinosaurs. Jour. Biosciences, v.34, pp.709-728.
  • KELLER, G., ADATTE, T., PARDO JUEZ, A. and LOPEZ-OLIVA, J. (2009d) New evidence concerning the age and biotic effects of the Chicxulub impact in NE Mexico. Jour. Geol. Soc. London, v.166, pp.393-411.
  • KELLER, G., ABRAMOVICH, S., BERNER, Z. and ADATTE, T. (2009e) Biotic effects of the Chicxulub impact, K-T catastrophe and sea-level change in Texas. Paleogeog. Paleoclimat. Paleoecol., v.271, pp.52-68.
  • KIDDER, K.L. and WORSLEY, T.R. (2010) Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions: Palaeogeog., Palaeoclimat., Palaeoecol., v.295, pp.162-191.
  • KNIGHT, K.B. RENNE, P.R. HALKETT, A. and WHITE, N. (2003) 40Ar/ 39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan Traps. Earth Planet. Sci. Lett., v.208, pp. 85-99.
  • KNIGHT, K.B., RENNE, P.R., BAKER, J., WAIGHT, T. and WHITE, N. (2005) Reply to 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps: Discussion' by A.K. Baksi. Earth Planet. Sci. Lett., v.239, pp. 374-382.
  • KUCERA, M. and MALMGREN, B.A. (l998) Terminal Cretaceous warming event in the mid-latitude South Atlantic Ocean: evidence from poleward migration of Contusotruncana contusa (planktonic foraminifera) morphotypes. Palaeogeog., Palaeoclimat., Palaeoec, v.138, pp.1-15.
  • LI, L. and KELLER, G. (1998a) Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera of South Atlantic DSDP Sites 525A and 21. Mar. Micropal., v.33(1-2), pp. 55- 86.
  • LI, L. and KELLER, G. (l998b) Diversification and extinction in Campanian-Maastrichtian planktic foraminifera of northwestern Tunisia: Eclogae Geol. Helvetiae, v.91, pp.75- 102.
  • LI, L. and KELLER, G. (1998c) Abrupt deep-sea warming at the end of the Cretaceous. Geology, v.26(11), pp.995-998.
  • LUCIANI, V. (2002) High resolution planktonic foraminiferal analysis from the Cretaceous/Tertiary boundary at Ain Settara (Tunisia): Evidence of an extended mass extinction. Palaeogeog., Palaeoclimat., Palaeoec., v.178 (3), pp.299-319.
  • MALARKODI, N., KELLER, G., FAYAZUDEEN, P.J. and MALLIKARJUNA, U.B. (2010) Foraminifera from the early Danian Intertrappean beds in Rajahmundry Quarries, Andhra Pradesh, SE India. Jour. Geol. Soc. India, v.75, pp.851-863.
  • MCLEAN, D. (1978)A terminal Mesozoic "Greenhouse": Lessons from the past. Science, v.201 (4354), pp.401-406.
  • MCLEAN, D. (1985) Deccan Traps Mantle Degassing in the Terminal Cretaceous Marine Extinctions. Cretaceous Res., v.6, pp.235- 259.
  • MEHROTRA, N.C. and SARGEANT, W.A.S. (1987) Late Cretaceous to Early Tertiary dinoflagellate cysts from Narsapur Well -1, Godavari-Krishna Basin, south-India, Geobios, v.20, pp.149- 191.
  • MISRA, K.S. (2005) Distribution pattern, age and duration and mode of eruption of Deccan and associated volcanics. Gondwana Geol. Mag., v.8, pp.53-60.
  • Nordt, L., Atchley, S. and Dworkin, S. (2003) Terrestrial Evidence for Two Greenhouse Events in the Latest Cretaceous. GSA Today, v.13(12), pp.4-9.
  • OLSSON, R.K., WRIGHT, J.D. and MILLER, K.D. (2001) Palobiogeography of Pseudotextularia elegans during the latest Maastrichtian global warming event. Jour. Foram. Res., v.31, pp.275-282.
  • PANDE, K., PATTANAYAK, S.K., SUBBARAO, K.V., NAVANEETHAKRISHNAN, P. and VENKATESAN, T.R. (2004) 40Ar/ 39Ar age of a lava flow from the Bhimashankar Formation, Giravali Ghat, Deccan Traps. Proc. Indian Acad. Sci., v.113, pp.755-758.
  • PARDO, A. and KELLER, G. (2008) Biotic effects of environmental catastrophes at the end of the Cretaceous: Guembelitria and Heterohelix blooms. Cretaceous Res., v.29 (5/6), pp.1058- 1073.
  • PRASAD, B. and PUNDEER, B.S. (2002) Palynological events and zones in Cretaceous- Tertiary Boundary sediments of Krishna- Godavari and Cauvery basins, India. Palaeontographica Abt. B, v.262, pp.39-70.
  • RAJU, D.S.N. (2008) Stratigraphy of India. ONGC Bull., Spec. Issue, no.43(1), 44p.
  • RAJU, D.S.N., JAIPRAKASH, B.C., KUMAR, A., SAXENA, R.K., DAVE, A., CHATTERJEE, T.K. and MISHRA, C.M. (1994) The magnitude of hiatus and sea-level changes across K/T boundary in Cauvery and Krishna-Godavari basins. India. Jour. Geol. Soc. India, v.44, pp.301-315.
  • RAJU, D.S.N., JAIPRAKASH, B.C. KUMAR, A. SAXENA, R.K. DAVE, A. CHATTERJEE, T.K. and MISHRA, C.M. (1995) Age of Deccan volcanism across KTB in Krishna-Godavari Basin: new evidences. Jour. Geol. Soc. India, v.45, pp.229-233.
  • RAJU, D.S.N. JAIPRAKASH, B.C. and KUMAR, A. (1996) Paleoenvironmental set-up and age of basin floor just prior to the spread of Deccan volcanism in the Krishna-Godavari Basin, India. Mem Geol. Soc. India, v.37, pp.285-295.
  • REMANE, J., KELLER, G., HARDENBOL, J. and BEN HAJ ALI, M. (l999) Report on the international workshop on Cretaceous-Paleogene transition: Episodes, v.22(1), pp.47-48.
  • ROCCHIA, R., ROBIN, E., FROGET, L. and GAYRAUD, J. (1996) Stratigraphic distribution of extraterrestrial markers at the Cretaceous-Tertiary boundary in the Gulf of Mexico area: implications for the temporal complexity of the event. In: Ryder, G., Fastovsky, D. and Gartner, S. (Eds.), The Cretaceous-Tertiary event and other Catastrophes in Earth history. Geol. Soc. America, Spec. Paper no.307, pp.279-286.
  • SAXENA, R.K. and MISRA, C.M. (1994) Time and duration of Deccan volcanism in the Razole area, Krishna-Godavari Basin, India. Curr. Sci., v.66(1), pp.73-76.
  • SAXENA, R.K. and MISRA, C.M. (1995) Campanian-Maastrichtian nannoplankton biostratigraphy of the Narsapur claystone Formation, Krishna-Godari Basin, India. Jour. Geol. Soc. India, v.45, pp.323-329.
  • SELF, S., JAY, A.E., WIDDOWSON, M. and KESZTHELYI, L.P. (2008a) Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth? Jour. Volc. and Geoth. Res., v.172, pp.3-19.
  • SELF, S., BLAKE, S., SHARMA, K., WIDDOWSON, M. and SEPHTON, S. (2008b) Sulfur and Chlorine in Late Cretaceous Deccan Magmas and Eruptive gas release. Science, v.319, pp.1654- 1657.
  • SHETH, H.C., PANDE, K. and BHUTANI, R. (2001) 40Ar/39Ar age of a national geological monument: The gilbert Hill basalt, Deccan Traps, Bombay. Curr. Sci., v.80, pp.1437-1440.
  • TANTAWY A.A. (2003) Calcareous nannofossil biostratigraphy and paleoecology of the Cretaceous-Tertiary transition in the western desert of Egypt. Mar. Micropal., v.47, pp.323-356.
  • VENKATESAN, T.R., PANDE, K. and GOPALAN, K. (1993) Did Deccan volcanism pre-date the Cretaceous-Tertiary transition? Earth Planet. Sci. Lett., v.119(1-2), pp.181-189.
  • VENKATARENGAN, R., RAO, G.N., PRABHAKAR, K.N., SINGH, D.N., AWASTHI, A.K., REDDY, P.K., MISHRA, P.K. and ROY, S.K. (1993) Lithostratigraphy of the Krishna-Godavari Basin, Unpublished ONGC Internal Document III, Allied Printers, Dehradun, pp.1- 29.
  • VON SALIS, K. and SAXENA, R.K. (1998) Calcareous nannofossils across the K/T boundary and the age of the Deccan Trap volcanism in southern India. Jour. Geol. Soc. India, v.51, pp.183-192.
  • WILF, P., JOHNSON, K.R. and HUBER, B.T. (2003) Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proc. Nat. Acad. Sci., USA, v.100(2), pp.599-604.

Abstract Views: 192

PDF Views: 1




  • Deccan Volcanism Linked to the Cretaceous-Tertiary Boundary Mass Extinction: New Evidence from ONGC Wells in the Krishna-Godavari Basin

Abstract Views: 192  |  PDF Views: 1

Authors

G. Keller
Geosciences Department, Princeton University, Princeton, NJ 08544, United States
P. K. Bhowmick
Keshava Dev Malaviya Institute of Petroleum Exploration, Oil and Natural Gas Corporation, Dehradun, India
H. Upadhyay
Keshava Dev Malaviya Institute of Petroleum Exploration, Oil and Natural Gas Corporation, Dehradun, India
A. Dave
Keshava Dev Malaviya Institute of Petroleum Exploration, Oil and Natural Gas Corporation, Dehradun, India
A. N. Reddy
Oil and Natural Gas Corporation, Regional Geoscience Laboratory, Chennai, India
B. C. Jaiprakash
Oil and Natural Gas Corporation, Regional Geoscience Laboratory, Chennai, India
T. Adatte
Geological and Paleontological Institute, Anthropole, CH-1015 Lausanne, Switzerland

Abstract


A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world's largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (∼80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1-CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 megaflow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment.

Deccan volcanism phase-3 began in the early Danian near the C29R/C29n boundary correlative with the planktic foraminiferal zone P1a/P1b boundary and accounts for ∼14% of the total volume of Deccan eruptions, including four of Earth's longest and largest mega-flows. No major faunal changes are observed in the intertrappeans of zone P1b, which suggests that environmental conditions remained tolerable, volcanic eruptions were less intense and/or separated by longer time intervals thus preventing runaway effects. Alternatively, early Danian assemblages evolved in adaptation to high-stress conditions in the aftermath of the mass extinction and therefore survived phase-3 volcanism. Full marine biotic recovery did not occur until after Deccan phase-3. These data suggest that the catastrophic effects of phase-2 Deccan volcanism upon the Cretaceous planktic foraminifera were a function of both the rapid and massive volcanic eruptions and the highly specialized faunal assemblages prone to extinction in a changing environment. Data from the K-G Basin indicates that Deccan phase-2 alone could have caused the KTB mass extinction and that impacts may have had secondary effects.


Keywords


Cretaceous-Tertiary, Mass Extinction, Deccan Volcanism, Longest Lava Flows, Krishna-Godavari Basin.

References