Proterozoic Unconformity-related Uranium Occurrence Around Rallavagu Tanda, Palnadu Sub-Basin, Andhra Pradesh

P. Nageswara Rao, Anjan Som, T. Perumal, P. B. Maithani, V. P. Saxena and R. M. Sinha
Atomic Minerals Directorate for Exploration and Research, Department of Atomic Energy, Begumpet, Hyderabad - 500016

Abstract

Recent investıgations have brought out significant uranium occurrences (up to $065 \% \mathrm{U}_{3} \mathrm{O}_{8}$) spread over as discontinuous zones (up to $300 \mathrm{~m} \times 280 \mathrm{~m} \times 1.3 \mathrm{~m}$) over an area of about $7 \mathrm{~km} \times 2 \mathrm{~km}$ along the northern part of Palnadu sub-basin The radioactive zones are exposed along the Upper Proterozoic unconformity contact between the basement grante and the Banganapalle quartzite near Lavur Tanda, Jatram Tanda, Bolıgutta Tanda, Rallavagu Tanda and Gandht Nagar villages in Nalgonda distnct, Andhra Pradesh These findings are reported in this note along with some features of muneralisation

Keywords: Uranium occurrence, Proterozorc, Palnadu sub-basın, Andhra Pradesh

Introduction

Unconformity-1elated deposits are the most promising high-grade, low cost uranium resources in the world The deposits associated with Lower-Middle Proterozoic unconformity overlain by the Middle Proterozoic rocks in Athabasca Basın, Saskatchewan, Canada (Fogwill, 1981; Sibbald, 1986,1988) and the Pine Creek Geosyncline, Australia (Needham and Roarty, 1980, Needham et al 1988) are among the richest and the largest uranium deposits in the world In India, uranium deposits in Lower Proterozoic basement granite below the unconformity of Srisallam quartzite (Bisht et al 2001, Sinha et al 1995, 1996) and in the Banganapalle Quartzite (Jayagopal et al 1996) around Koppunuru-Dwarakapuri area in the western part of Palnadu sub-basin have indicated enormous potential for such resources

Geological Setting

The area exposes Lower Proterozorc basement grante nonconformably overlain by Upper Proterozorc Kurnool Group of rocks (Fig 1) in the northeastern part of crescentshaped Cuddapah Basin (Nagaraja Rao et al 1987) In the Palnadu basin of Kurnool Group rocks, Banganapalle quartzite is the oldest and Narjl limestone is the youngest litho-unit Along the southern margin of the Palnadu basin, Cumbum Formation is exposed and along the northern margin the basement granites The basement granite is grey to light greenish, coarse grained, and generally porphyritic It is essentally composed of quartz and plagoclase-alkalı
feldspars along with biotite, apatite, monazite, and allanite as accessories Basic dykes (width $<1 \mathrm{~m}-60 \mathrm{~m}$) trending mostly N-S, E-W \& NW-SE and quartz veins (width up to 40 m) trending N-S traverse the basement granite A lensord body of cobble pebble conglomerate ($01 \mathrm{~m}-10 \mathrm{~m}$ thick) overlies the basement granite, followed by medium to coarse-grained feldspathic quartzite, which consists of a framework of moderately sorted, sub angular to sub rounded clasts (quartz, feldspars, lithic fragments of granite) cemented by quartz overgrowth This unit is, in turn, overlain by a sequence of alternatıng purple/grey shale/siltstone and fine brown colored ferruginous quartzite The quartzite is sub horizontal and dips of $2^{\circ}-10^{\circ}$ towards southeast The major NNE-SSW Gottımukala-Botalapalem fault zone (G B F) and the N-S Musi fault zone (M S F), besides a few smaller faults trending NE-SW, NW-SE, are the chref fault zones Associated with these zones occur fault breccia and quartz veins (Fig 1)

Uranium Mineralisation

Uranıum mineralization is seen (Fig 1) all along the nonconformable basement-cover rock contact, hosted by three rock types viz basement granite, basic dykes (restricted to $1-30 \mathrm{~m}$ below the nonconformity) and sub lithic arenite (1-1 5 m above the nonconformity) The radioactivity recorded in the cobble-pebble-conglomerate/pebbly quartzite is due to thorium Field observatıons indicate that the major faults/fracture zones at the basement-cover rock interface, facilitated the migrations of mineralizing

Fig.1. Geological map of Rallavagu Tanda-Damaracherla area.

Table 1. Assay results of grab samples from R V Tanda-Damarcherla Area, Nalgonda district, A.P

Location/ Zone	Rock Type	No. of Sample	$\begin{gathered} \text { U-mineralisation } \\ \% \mathrm{U}_{3} 0_{8}(\beta / \gamma) \\ \text { Average } \end{gathered}$	Disequilibrium \%	Remarks
SE of Lavur	Granite	6	0.029	+20	Uraniferous
Tanda	Basic Dyke	3	0.050	+41.5	Uraniferous
	Quartzite	5	0.082	-24	Uraniferous
SE of Jaitram	Basic Dykes	6	0.032	+28.8	Uraniferous
Tanda	Granite	5	0.031	+35.8	Mixed U-Th (Av. 0.020% of ThO_{2})
	Conglomerate	2	-	-	Thoriferous $\text { (Av. } 0.075 \% \text { of } \mathrm{ThO}_{2} \text {) }$
NW of Cheruvumundra Tanda	Granite	12	0.028	+42	Mixed U-Th (Av. 0.013\% of ThO_{2})
	Basic dyke	3	0.024	+28	Uraniferous
SW of Rallavagu Tanda	Granite	8	0.027		Mixed U-Th (Av. 0.013% of ThO_{2})
	Granite	4	0.230		Uraniferous
	Basic Dykes	7	0.027	+36	Uraniferous
	Quartzite	4	0.047	+54	Uraniferous

(hydrothermal) fluids (Bisht et al. 2001), a process typical of unconformity related deposits in the Srisailam sub-basin (Sinha et al. 1995).

Mineralisation is noticed in the form of several anomalous E-W trending zones (up to $300 \mathrm{~m} \times 280 \mathrm{~m} \times 1-3 \mathrm{~m}$), over an area of more than $7 \mathrm{~km} \times 2 \mathrm{~km}$ along the northern margin of the Palnadu sub basin. Uranium concentration $\left(\% \mathrm{U}_{3} \mathrm{O}_{8}\right)$ in granite samples $(\mathrm{n}=48)$ ranges between <0.010 -

Fig.2. Coffinitised pitchblende (C) garlanded by secondary uranyl mineral I S-UI-RL in oil-Scale $1 \mathrm{~cm}=44$ micron.
0.65 , in basic dykes $(\mathrm{n}=21)$ between 0.011-0.072 and in quartzite ($\mathrm{n}=9$) between $0.014-0.30$. The most significant concentration of $\mathrm{U}_{3} \mathrm{O}_{8}$ was observed in the samples of Musi fault (M.S.F). The average values of $\mathrm{U}_{3} \mathrm{O}_{8}$ in each rock type of different areas are shown in Table 1.

The mineralisation is mainly due to primary uranium minerals viz., uraninite $\left(\mathrm{UO}_{2.39,}, \mathrm{a}_{\mathrm{o}}=5.4272 \pm 0.0012 \AA\right.$, $\mathrm{V}=159.86 \AA$), (Unpublished Report, AMD-XRD Lab.

Fig.3. Pitchblende (U) garlanded by secondary uranyl mineral I S-UI-RL in oil-Scale $1 \mathrm{~cm}=44$ micron.
2002), pitchblende $\left(\mathrm{UO}_{2}-\mathrm{UO}_{3}\right)$ and coffinite ($\mathrm{U}\left(\mathrm{SiO}_{4}\right)_{1 \times}$ $\left.(\mathrm{OH})_{4 \mathrm{x}}\right)$ and the secondary uranium mıneral viz , Uranophane $\left(\mathrm{Ca}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SiO}_{3} \mathrm{OH}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}\right.$, Figs 2 and 3) Some grante samples (Table 1) have shown mixed uranium/thonium values indicating the presence of refractory minerals such as monazite, zircon and allanite Computation of the analytical results shows that disequilibrium factor $\left(\mathrm{U}_{3} \mathrm{O}_{8}\right.$) $\mathrm{e}_{3} \mathrm{O}_{8}$) is about $+34 \%$ in granite, $+33 \%$ in basic dykes and $+10 \%$ in quartzite in favour of parent (uranıum)

Conclusions

Uranıum occurrence discovered along the Upper

Proterozoic nonconformity between basement granite and Banganapalle sedıments, over an area of more than $7 \mathrm{~km} \times 2 \mathrm{~km}$ around RallavaguTanda, Damaracherla area, Nalgonda district, A P , along the northern margin of Palnadu sub basin form potential target area for uranuum exploration

Acknowledgements We thank R K Gupta, former Director, Atomic Minerals Directorate for Exploration and Research for encouragement, help and permission to publish this paper We also thank our colleagues in Physics, Petrology and X-ray Diffraction Laboratones at AMD, Hyderabad for analysis and identification of minerals

References

Bisht B S , Rajasekaran, P and Sinha, R M (2001) Fluid inclusion characteristics of unconformity-related uranuum mıneralisation, Lambapur-Peddagattu area, Andhra Pradesh, Inda Jour Geol Soc India, v 58, pp 45-51
Focwill, W D (1981) Canadian and Saskatchewan uranium deposits Compilation, mettallogeny, models, exploration In TII Sibbald and W Petruk, Geology of uranum deposits, C I M Special Volume, v 32, pp 3-29
Jayagopal, A V, Prakhar Kumar and Sinha, R M (1996) Uranıum mineralisation in the Palnadu sub-basin, Cuddapah Basın, Andhra Pradesh, Indıa Curr Scı v 71(2), pp 957-959
Nagaraja Rao, B K, Rajurkar, S T, Ramalingaswamy, G and Ravindra Babu, B (1987) Stratıgraphy, structure and evolution of the Cuddapah Basin In Mem Geol Soc India, no 6, pp 33-86
Needham, R S and Roarty, M J (1980) An overview of metallic mineralısation in the Pine Greek Geosyncline In John Ferguson, and A B Goleby (Eds), Uranium in the Pine Greek Geosyncline Internatl At Energy Agency (IAEA), pp 157173
Needham, R S , Ewers, G R and Ferguson (1988) Pine Greek

Geosyncline In Recogniton of Uranum Provinces, Internatl At Energy Agency (IAEA), pp 235-261
Sibbald, TII (1986) Overview of Pre-Cambrian geology and aspects of Mettaligenesis of Northern Saskatchewan In G F Gilboy and L W Vigrass (Eds), Economic Minerals of Saskatchewan Special Publication Saskatchewan Geol Soc Canada, pp 1-16
Sibbald, TI I (1988) Geology and genesis of the Athabasca Basin Uranum deposits In Recognition of Uranium Provinces Internatl At Energy Agency (IAEA), pp 61-105
Sinha, R M, Shrivastava, VK, Sarma, GVG and Parthasarathy, TN (1995) Geological favourability for unconformity- related uranuum deposits in the northern parts of the Cuddapah basin Evidences from Lambapur uranıum occurrence, Andhra Pradesh, Indıa Explo Res Atomic Min, v 8, pp 111-126
Sinha, R M, Parthasarathy, TN and Dwivedy, K K (1996) On the possibility of identifying low cost, medium grade uranium deposits close to the Proterozoic unconformity in Cuddapah basın Andhra Pradesh, Indıa IAEA-TEC DOC-868, pp 35-55

