PREHNITIZATION IN THE IMPURE CALCAREOUS BANDS OF SANKARIDRUG. SALEM DISTRICT, TAMIL NADU, INDIA

S. SARAVANAN, G. THIMMI CHETTY AND S. RAMANATHAN Department of Geology, Presidency College, Madras

During the course of geological investigation in the Sankaridrug area, Tamil Nadu, a pale green mineral associated with quartz, diopside and grossularite occurring in the impure metamorphosed limestone was collected. The mineral exhibits radiating structure and shows vitreous to pearly lustre. It is subtransparent and the fragment becomes colourless when the mineral is powered. The S. G. of the mineral is 2.97.

Under the microscope, the mineral is colourless and exhibits radiating and sheaf texture. The relief of the mineral is high; and lamellar twinning is observed in a few grains. The mineral seems to have formed at the expense of calcite. The mineral was subjected to optical, chemical and X-ray investigations and was identified as prehnite. The results are tabulated with the data depicting the various characters of prehnite reported and described by Yoshimura, et. al. (1966) and Nuffield (1943).

	TABLE	ſ			TABL	e II.		
OPT	FICAL CHAI	RACTERS	CHEMICAL COMPOSITION					
1	2	3	Constituen	its 1	2	3	Niggli Values : I	
1.611	1.613	1.615	SiO ₂	42.48	43.24	41.67	si = 91.15	
1.619	1.622	1.629	TiO ₂	nil	tr.	0.12	al = 31.99	
1.634	1.639	1.644	Al ₂ O ₃	, 24.26	24.93	24.44	fm = 2.01	
0.023	0.26	0.29	Fe ₂ O ₃	0.58	0.45	1 03	c = 66.00	
58	60 to 65	69 (Calc- 68)	FeO	0.20	0.03	0.32	alk = nil	
- · .			MnO	_	tr.	_	$\mathbf{k} = \mathbf{nil}$	
			MgO	0.16	0.67	0.25	mg = 0.26	
			CaO	27.45	26.46	27.25		
			Na ₂ O	nil	0.27	0.18		
			K₂O	nil	0.14	0.18		
			H₂O+	4.44	4.02	4.44		
			H₂O_	—	0.02			
				99.57	100.23	99.88		

1. Prehnite, Sankaridrug, Tamil Nadu, India

Analyst: G. Thimmi Chetty

2. Prehnite, Hokuba-mura, Nagona, Japan

3. Prehnite, Ashcroft, British Columbia

Analyst: E. W. Nuffield

SHORTER COMMUNICATIONS

	TABLE III					
Constituents	Wt%	Cations in 24 (O, OH, I				
SiO ₂	42.48	6.024		6.024		
TiO ₂	nil					
Al ₂ O ₃	24.26	_ 4.047	ſ			
Fe ₂ O ₅	0.58	0.068				
FeO	0 20	0.025		4.174		
MnO		—	1			
MgO	0.16	0.034	J			
CaO	27.45	4.168)			
Na₂O	nil		}	4.168		
K₂O	nil	_	j			
H₂O	4.44	4.196		4.196		

The analysis of the mineral has been recalculated adopting Warren's formula and is given in Table III.

The Warren's formula for the mineral is

(Ca, K, Na)4.168(Fe''', Fe", Mg, Al")4.174Si6.024O19.832(OH)4 196

				Prehnite-Sankaridrug		
				dÅ	I	
				5,1562	10	
				4.5132	10	
				3.4139	65	
				3.224	55	
TABLE IV				3.0183	90	
-RAY	T.	INIT CELL DIM	INSION	2.7659	40	
-KAI	L.	int cele dim		2 5799	5	
		1	2	2.5291	100	
				2.326	20	
	a	4.596 Å	4,60 Å	2.2902	10	
				2.1097	5	
	b	5.52	5.46	2.0502	5	
	с	18.7	18.44	1.9219	10	
				1.8354	15	
1	Drahnita	, Sankaridrug, Ta	1.7596	45		
		•		1.6905	5	
2.	Prefinite	, Ashcroft, Britis	t: E. W. Nuffield	1.6556	15	
		Analys	a. E. W. Indificial	1.6157	15	
				1.5372	25	
				1.5012	15	
				1.4029	20	
				1.3668	10	
				1.2915	15	
				1.208	10	
				1.127	15	

304

Discussion: Several theories have been advocated by different authors for the formation of Prehnite depending on the modes of occurrence. This may be summarised as follows:

- 1. As veins, cavities, and nodules in basic volcanic rocks. (Walker, T. L. and Parsons, A. L., 1926)
- 2. As veins and pseudomorphs in granite and allied acid rocks. (Deer, W. A., Howie, R. A. and Zussman, J., 1962)
- 3. As a product of incipient metamorphism in rocks like greywackes. (Coombs, et al, 1959)
- 4. As an alteration product along the contact of impure limestones with any intrusive rocks. (Bilgrami, S. A. and Howie, R. A., 1960)

In the present investigation the examination of the thin section of the impure limestone specimen collected at regular intervals from the contact of the rock with intrusive granites has clearly revealed the effect of pneumatolytic agencies, generated during the final phase of consolidation of the latter (Harker, 1950). Only a few grains of calcite are converted to prehnite. The other calc-alumino-silicate, grossularite, which is normally susceptible to such hydrolytic action is left unaltered. This indicates the low temperature of the hydrothermal solution and its lack of concentration in chlorine, flourine, and boron. The mineral assemblage calcite-prehnite-quartz fixes the rock in a subfacies lying between the zeolite and typical greenschist facies (Coombs, *et al* 1959) suggesting the temperature of alteration as $300^{\circ}C \pm 50^{\circ}C$. This conforms to the meagre degree of prehnitization observed in the rock. This is in accordance with the mode of origin suggested by several authors for the formation of prehnite occurring in impure limestones adjoining the intrusives.

Acknowledgements: The authors wish to thank Mr. P. A. Ananthakrishnan for taking photographs and Mr. P. K. Ponnuswamy for the X-ray interpretation.

References

- BILGRAMI, S. A. and HOWIE, R. A., (1960) The mineralogy and petrology of a Rodingite dike, Hindubagh, Pakistan, Amer. Min., v. 45, p. 791.
- COOMBS, D. S., ELLIS, A. J., FYFE, W. S. and TAYLOR, A. M., (1959) The zeolite facies with comments on the interpretation of hydrothermal synthesis, *Geochim. et Cosmochim. Acta*, v. 17, pp. 53-107.
- DEER, W. A., HOWIE, R. A. and ZUSSMAN, J., (1962) Rock Forming Minerals, v. 3, Longmans Publications.
- HARKER, A., (1950) Metamorphism, Methuen & Co., Ltd., London
- NUFFIELD, E. W., (1943) Prehnite from Ashcroft, British Columbia, Univ. Toronto Stud., Geol. Ser., no. 48, pp. 49-64.
- WALKER, T. L. and PARSONS, A. L., (1926) Zeolites and related minerals from Lake Nipigon, Ontario, Univ. Taronto Stud. Geol. Ser., no. 22, p. 15.
- YOSHIMURA, T., HAYASHI, M. HANISHI, O., (1966) Prehnite from Hokuba-mura Nagona, Japan, Jour. Min. Soc. Japan, pp. 84-93.