Assessment to Enhance and Demonstrate Graduate Attributes

Thanikachalam Vedhathiri, B.E., M. Tech., Ph.D., M.S., FIE., FIGS., FFIUCEE Former Professor and HOD, Center for International Affairs, National Institute of Technical Teachers Training and Research, Chennai, INDIA

ABSTRACT

India has engineers to develop with competencies required for independent practice in which the graduates can work similarly to competent senior engineers and managers. Graduate attributes form a set of individually assessable outcomes that are components indicative of the graduate's capacity to acquire competence to independently practice at the desired level of the industry. In the knowledgeglobal based economy, the engineering graduates should possess the needed outstanding abilities to solve complex and real-life programs of the fast-growing global industry. A sizable percentage of Indian Engineering graduates are found to be lacking industry-specific skills, competencies and rendered jobless. A snap study on the alumni shows that fine- tuning of assignments based on industrial practice is essential. The SWOT Analysis suggests that the need for continuous quality development programs for engineering students. All the engineering programs are to be accredited under NBA as per the Washington Accord so that the graduate engineers can register in other countries if they migrate. Otherwise, they have to work for a minimum of two years as an intern. India has to establish an Engineering Council for the registration of the engineering graduates as similar to the Architectural Council. The need for industry-focused complex development programs for all students has been identified based on the qualitative research done. It is found that there is an urgent need for graduates to prepare portfolios and plan to acquire desired competence through seminars, research. industry- specific capstone projects, and selfplanned practicum. It is suggested to introduce a course on failures, guest lectures on the industrial methods, trends in new technologies, innovations, and offer industry-specific dissertations.

Keywords: Focused Engineering Student Attributes Development, Student Portfolio, Onthe-job-training and Development, Role of Industry-based dissertation in offering needed competence.

Introduction

Engineering According to International Alliance Graduate Attributes form a set of individually assessable outcomes that are components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The goal of engineering education is to build on the skills earned through education for professional practice. Graduate attributes form a set of individually assessable outcomes indicative of the graduate's outstanding strength to acquire at the desired level.

The Washington Accord base the judgement of substantial equivalence of programs accredited by signatories on both the Graduate Attributes and the best practice indicators for evaluating program quality listed in the Accords' Rules and Procedures.

As per Washington Accord, Engineering Graduates apply knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to solve complex industrial engineering problems.

Graduate attributes are assessable outcomes, supported by level statements, developed by signatories that give confidence that educational objectives of programs are being achieved. The employers could entrust the planning, design, construction of the structure even in extreme field conditions. The required skills and competencies to undertake the job are due to

well-planned curricula and the instructional system adopted.

Range of Problem Solving according to Washington Accord (IAE 2013):

Table-1 Attributes and Complex Engineering Problems

Attribute	Complex Engineering
	Problems
Depth of	Can't be solved without
knowledge	in-depth engineering
required	higher-order cognitive at
	various levels.
Range of	Involve wide-ranging or
conflicting	conflicting technical,
requirements	engineering, and other
	issues.
Depth of	Have no obvious solution
analysis	and require abstract
required	thinking, originality in
	analysis to formulate
	suitable design models.
Familiarity of	Involve infrequently
issues	encountered issues.
The extent of	Are outside problems
applicable codes	encompassed by global
	standards and codes of
	practice for professional
	engineering
The extent of	Involve diverse groups of
stakeholder	stakeholders with widely
involvement	varying needs.
and conflicting	
requirements	
Interdependence	Are high-level complex
	problems including many
	parts or sub-problems.

Table-2 Range of Engineering Tasks (IAE,2013)

Attribute	Complex Tasks
Preamble	Complex Tasks: That has
	some or all of the following
	characteristics:
Range of	Involve the use of diverse
resources	resources like human
	resources, funds, equipment,
	materials, information,
	communication, and
	technologies.

Level of	Require resolution of
interactions	significant problems from
	interactions between wide-
	ranging, or conflicting
	technical, engineering or other
	issues.
Innovation	Involve creative use of
	engineering higher-order
	skills and research-based
	knowledge in novel ways.
The	Have a significant
consequence	consequence in a range of
to society	contexts, characterized by
and the	difficulty of prediction and
environment	mitigation.
Familiarity	Can extend beyond previous
	experiences by applying
	principled-based design
	approaches.

Table-3KnowledgeProfileasperWashington Accord (IAE, 2013)

of notional solon and annihoship to the branch of
of natural sciences applicable to the branch of
specialization.
2. Conceptually-based engineering
mathematics, numerical analysis, statistics,
and formal aspects of computer and
information, communication technologies to
support analysis and modeling applicable to
the branch of specialization.
3. A systematic, theory-based formulation of
Engineering fundamentals required in the
engineering course.
4. Engineering specialist knowledge that
provides theoretical frameworks and bodies
of knowledge for accepted practice areas in
the engineering discipline; much is at the
forefront of the discipline.
5. Knowledge that supports engineering
design in a practice are a .
6. Knowledge of engineering practice in the
practice areas in the engineering discipline.
7. Understanding of the role of engineering in
society and identified issues in the
engineering profession in the discipline:
ethics and the professional responsibility of
an engineer to public safety, the impacts of
engineering activity; economic, social,
cultural, environmental, and sustainability.

8. Engagement with selected knowledge in the research literature of the program.

After globalizing the Indian economy, foreign direct investments (FDIs) have surged through establishing manufacturing plants in the Indian industrial corridors and hubs. This resulted in an unprecedented demand for industry-ready graduates.

All India Council for Technical Education (AICTE) select faculty members to undergo Quality Improvement Programs (QIPs) in Indian Institutes of Technology, Indian Institute of Science (IISc), State Technical Universities, and Autonomous Engineering Colleges. Many state universities offered distance education programs or Massive Open Online Courses (MOOCs). Under World Bank assisted projects in Technician Education (Tech Ed-I to III), and Technical Education Quality Improvement (TEQIP) the engineering faculty members have been developed in many areas of engineering education. Indian Society for Technical Education (ISTE) is organizing summer and winter schools for updating the knowledge of the engineering faculty. Similar to these programs, new interdisciplinary courses are urgently needed for vocational teachers. All these efforts have focused on graduate attributes.

Ministry of Education (Formerly Ministry of Human Resource Development, MHRD) has started faculty development programs through Pandit Madan Mohan Malavia National Mission on Teachers and Teaching (PMMMNMTT). Ministry of education has established Academic Staff Colleges (ASC), now known as Human Resources Development Centers (HRDCs) in many universities for training the in-service faculty members. Now, these HRDCs are developing the faculty of arts, commerce, and science. Many journals are being published by many institutes and professional associations to disseminate the research papers and findings to the faculty members. Many national and international seminars and conferences are organized to publish the research papers and update the abilities and competencies of the faculty members. The organizers also offer many workshops to improve the critical skills of the faculty members with a deep focus on the international graduate attributes. Many

organizations like Coursera, World Bank Institute, edX, etc. offer more than 1000 MOOCs for the benefit of the global faculty members, students, and others. Many educational organizations offer webinars. Many universities offer online master's degree programs in many branches. A few universities offer face to face (FTF) summer courses for the benefit of the MOOC participants.

Academic Problems Faced by the Engineering Students and the Faculty Members

Thousands of engineering graduates are NOT considered by employers for NOT possessing needed skills and competencies. Engineering faculty development courses are required to update the curricula, on-the-job training, competencies, attributes, and entrepreneurship development. They never had any mentors.

Unfortunately, many faculty development programs are not properly designed and implemented to meet the needs of various categories of faculty members. Many education administrators do not permit the implementation of sequential advanced faculty development programs in their institutes. Sometimes many curricula are NOT planned to meet the needs of Industry-4.0 which are due to improper linkage with the industries. Many revised and cuttingedge curricula could not be implemented due to the severe shortage of competent faculty members and for want of modern equipment and resources.

Case -1

Postgraduate structural engineering designed a water tank of 100000 liters capacity. After three years, it started tilting. Later it was declared unsafe and was demolished. The reason was, the structural engineer assumed the 'bearing capacity of the subsoil'. The subsoil is an unconsolidated silty soil. Up to 10 m, this loose silty soil is present whose bearing capacity is almost zero. The Structural Engineer should have demanded soil testing and bearing capacity of the subsoil. This shows that he did not possess the needed attributes. All the structural engineers need sufficient knowledge of regional deposits, physical characteristics, bearing

capacity, consolidation coefficient, shear strength, etc. before designing.

Case -2

A factory was constructed for a heavy forging of the components for tanks. When they operate one forging machine, there were very vibrations and sometimes resonance will occur. They could not operate more than one machine at a time. The reason was the soil dynamics under heavy forging machines were not investigated, The foundation engineer did not study the machine foundation. There is need for a course on the foundation for machine all foundation engineers. Again, the problem of shortage of attributes raise due to poor planning of the curriculum.

Case -3

A postgraduate civil engineer carried out a site plan for a two-acre plot. Later, local people approached the court and stopped the building construction. The problem was the civil engineers never studied development control rules, Town and Construction Acts, etc. Again, this is proof of incomplete attributes.

Case-4

An Agricultural Engineering Graduate could not design drip irrigation for a 10-acre planation. He can't prepare a layout, specify the required materials and estimate.

Case-5

An Automobile Engineer couldn't diagnose the starting trouble of SUV. All five cases center around the desired attributes of the graduate engineers.

These cases show the need for appropriate curriculum development, assessment of skills, planning, design, and implementation of cutting-edge programs for each cadre of the graduates. Many institutes don't plan the curriculum based on the needs-assessment. The faculty development programs should be based professional needs. Many faculty on development institutes suffer from increasing vacancies in the faculty and a shortage of modern resources. Further. many

interdisciplinary postgraduate and doctoral programs are not available for the teachers. All these problems in faculty development have to be investigated and acceptable suggestions are to be made so that the graduates fully possess the needed attributes.

Objectives

The Objectives of this research are as follows:

- Identify the type of curriculum for various cadres of Engineering Education that will enhance the quality and attributes of engineering graduates.
- Suggest the establishment of various competency specific student development programs focused on the attributes and market-ready engineering graduates in the knowledge-based economy.
- Recommend engineering students to prepare portfolios indicating a list of development programs needed based on the advances of engineering, technology, management of higher education, communication technology, and the needs specified attributes of the industry to meet the career vision of the graduates.
- Suggest to review of the improved performance of the alumni and identify further student attribute development programs so that the graduates reach excellent careers.

Research Methodology

The research methodology is based on qualitative research using a naturalistic process.

Research Questions

The research work centers around the answers to the following research questions:

• What are the skills and attributes/ competencies that are required for the engineering graduates at various cadres that will enable them to develop industry-ready engineering graduates?

- Who is offering needed student development programs centered around the attributes in India by focusing on needed human capital?
- What are the benefits of acquiring skills and competencies that are earned by the engineering faculty members and that would be passed on to the engineering graduates?
- Is there any standardized list of abilities/attributes at various cadres for developing the needed human and knowledge capitals?
- What are the strengths/attributes of the graduates of engineering colleges to implement jobs and tasks in Industry-4.0?
- What are the weaknesses of the graduates and the engineering education subsystem which will pull down them in an industry?
- What are the new global opportunities available for the engineering graduates in the knowledge-based Indian economy?
- What are the threats that Indian Engineering Institutes face which would affect the performance and attributes of the engineering graduates?
- Whether the engineering graduates prepare any future-focused portfolio?
- How will the faculty members acquire needed skills and competencies in Engineering Education which can assist the graduates?
- Whether the faculty members can plan needed student development courses based on their portfolio?
- How will senior Engineering faculty members facilitate the growth of knowledge capital and human capital?
- How will the CEO assess the impact of engineering faculty development on the performance of the graduates?

• How will the engineering institutes get more return on the investments (RoI) made on the faculty training, modernization of the workshops, computers, and laboratories due to the performance of the graduates?

Literature Survey

Without any proper faculty development, industry-relevant curricula, instructional design, and delivery, there CAN'T be highquality graduates with desirable attributes.

Khedkar (2012) emphasized the need for faculty development to facilitate the university for international collaboration in engineering education.

Francois Cilliers and Ara Teklan (2015) have created the following 11 key considerations and actions for an effective faculty development program in an institutional context (Table-1):

Table-1KeyConsiderationsandInterventions (Cilliers and Ara Teklan,2015)

Focus	Interve	entions
Conside	1.	Relate faculty
rations		development to job
		requirements and
		balance the
		institutional need and
		individual aspiration.
	2.	Relate faculty
		development to the
		context of industrial
		practice.
	3.	Provide opportunities
		to practice with peers
		in a safe environment.
	4.	Make the path to
		change clear and
		feasible.
	5.	Anticipate challenges
		in transferring
		learning to practice.
	6.	Reward participants
		for implementing
		what has been
		learned.
Particip	7.	Consider the
ants		participants' personal

	capacity to implement
	what is learned.
	8. Provide resources for
	goal setting, follow-
	up, and feedback on
	performance.
Implem	9. Allow participants to
entation	apply learning in the
	workplace.
	10. Anticipate how the
	context can influence
	implementation.
	11. Design the program to
	enhance
	accountability for
	implementation.

They have concluded that the goal of any faculty development program is for the participants to utilize new knowledge, regardless of the context or motives for their participation. Focus on the enabling environment in which participants can translate the learning into practice and improve the attributes of the graduates.

NAE Grand Challenges (2006)

Engineering educators must embark on a worldwide transition to a more holistic approach to engineering. This requires i) a major paradigm shift from control of nature to participation with nature; ii) awareness of ecosystems, ecosystem services, and the preservation and restoration of natural capital; and iii) a new mindset of mutual enhancement of nature and humans that embraces the principles of sustainable development, renewable resources management, appropriate technology, natural capitalism (Hawken et al, 1999). Engineering educators must take a closer look at how engineering students are being prepared to enter the 'real world'. Engineers of the future must be trained to make intelligent decisions that protect and enhance the quality of life on earth rather than endangering it. Prepare engineers to become facilitators of sustainable development, appropriate technology, and social and economic changes is one of the greatest challenges faced by the engineering profession today.

Veronica Diaz et al. (2009) suggested appropriate faculty development for the 21st Century. According to them, the faculty need support in keeping up with an increasingly technological workplace, developing ways to further integrate technology into an instructional experience, and assessing student learning in a variety of instructional delivery modes.

Mona Holmquist (2016) stated that a lack of qualified teachers is a global challenge for future knowledge development. She suggested bridging the gap between practice and theory to enhance teaching quality as well as the importance of practice-based professional development to maintain teachers to work as teachers in a long-run perspective and recommended to use of designed modules.

Daniel Druhora (2017) observed that students are turning to engineer diplomacy to solve 21st Century Grand Challenges. Engineering Diplomacy students have to confront the global challenges from day one of class. Topics should range from water diplomacy to virtual reality and artificial intelligence, to weapons of mass destruction, nonproliferation, counterterrorism, nuclear energy, climate change, oceans and the high seas, food security, conflict resolution, and emergency response to a coastal-disasters.

Gerardo Gonzalez (2017) stated that faculty members play a massive role in the delivery of a world-class student experience. According to him, faculty ought to be aware of forces that are shaping their future roles and must maintain a voice on how their role ensures that any transitions align with professional standards for high-quality scholarship, teaching, and service.

Bilal, Salman, and Songsheeng (2019) have stated that faculty vitality is the main ingredient to enhance professional education and competence. Enriching the faculty vitality in key domains of teaching, assessing, research, professionalism, and administration is perceived to improve the educational environment significantly and enhances the academic performance of learners. Faculty Development Program (FDP) has been considered as a stand-alone educational pedagogy in fostering the knowledge and professional skills of faculty.

Synthesis of Literature

- Focus on outstanding faculty development to create desired needed course outcomes/attributes of the engineering graduates;
- Creation of human capital to support the industries and knowledge-based Indian economy.
- Development of knowledge capital to support the leadership of the Indian industries;
- Institutional development through the high performing graduate engineers to undertake complex projects under International Development Agencies (IDAs);
- Establishing in-house faculty development programs based on the needs;
- Improve the return on investment (RoI) through outcome-based graduate programs, consultancy projects, research, and development to create innovative products and services.

Suggestions from the National Educational Policy (NEP 2020) [17]

> • The objective of Professional Education

"Build a holistic approach to the preparation of professionals, by ensuring broad-based competencies and 21st-Century skills, and understanding of the social-human context, and a strong ethical compass, in addition to the highest-quality professional capacities".

• Professional Education must seek to develop individuals with the

capacity to combine a strong foundation of theoretical knowledge and specific competencies; the ability to connect theory to practice; an understanding of how their profession impacts and is impacted by society; generic competencies such as decision making, critical thinking, problemsolving and communication; and an ethical compass and disposition to be constructive. contributing citizens. Achieving such a goal necessitates that professional education is integrated with liberal education.

- Teacher education programs in professional education, at the college and university level, tend to have a wide scope of objectives. These need to be focused and teachers need to be educated to specialize in teaching subjects.
- Collaborative and experiential learning methods and an awareness of professional ethics need to be brought in systematically through improved education.
- India must take the lead in preparing professionals in cutting fast edgegrowing prominence such as Artificial Intelligence, 3-D Machining, Big Data Analysis, and Machine Learning among others in technical education.
- Teacher Preparation and Continuous Professional Development (CPD): A very large effort towards the CPD of teachers will be needed to successfully implement the National Policy.

Inferences

The National Education Policy 2020 emphasizes on the 21st-century skills, social-human context, and the desired abilities of the graduates and teacher education.

Lessons Learned from the Tracer Studies [32]

NITTTR conducted several tracer studies to get authentic feedback from the alumni on the quality of curriculum, implementation, industry visits, and knowledge on the current industrial practices. It is learned that the courses are to be very much focused on the key skills required by the employers. The instructional delivery is to be focused on solving the industrial problems faced by the graduates.

SWOT Analysis

Strength, Weakness, Opportunity, Threat (SWOT) analysis has been done to identify the strength of the graduate engineers, their weaknesses, new opportunities for the students and faculty members, and the possible threats for the system and presented in Table-2.

Table-2.SWOTAnalysisofIndianEngineering Education Subsystem

Strengths	Weaknesses		
Motivated and high	Poorly designed		
performing young	curricula cause all		
students.	types of failures.		
Focus on high-level	Poor instructional		
academic/industry	planning leads to poor		
careers.	quality graduates.		
Have a goal for	Also, the growth		
acquiring	opportunities for the		
postgraduate degrees	graduates in the		
and doctoral degrees	branch of		
even many colleges	specialization due to		
are NOT offering and	the absence of		
supporting.	industrial exposure.		
Wish to contribute to	The teachers were not		
knowledge capital.	exposed to the		
Goal to become	attributes expected		
professional	from the students.		
engineers in the short	The students never		
run.	had any mentors to		
Committed to lifelong	guide them. Not		
learning in the	exposed to current		
workplace.	technology and		
Capable of	industrial		
maintaining life	applications. No		
balance. The best	research is work		
students are selected	based on the needs of		
through national	MSMEs.		
engineering entrance	Most of the programs		
tests. They are all	are outdated due to		
willing to excel.	poor planning of the		
	curriculum without		

	any focus on the fast-		
	growing technology.		
Opportunities	Threats		
Fast-growing	If the students are		
industries due to	NOT getting		
global value chain	appropriate jobs,		
(GVC) in the state.	colleges will be		
New industrial	closed due to a poor		
development is due to	number of students		
a globalized economy	who opt for		
and global value	engineering programs		
chains (GVCs).	in that college.		
A fast-growing	Due to a shortage of		
economy demands	trained human		
sufficient human	resources and		
capital with desired	infrastructure and		
attributes.	multinational		
More career	companies would be		
development	preferring other fast-		
opportunities for	developing countries		
highly qualified	in Asia like		
graduates are there.	Indonesia, Malaysia,		
They can also become	Vietnam, Cambodia,		
entrepreneurs.	Thailand. GDP		
	growth will be		
	lowered.		

Analysis of Skills at Entry Level and Methods of Acquiring Competencies and Abilities

Table-3.Skills and Competencies andMethod of Acquiring

N 0.	Skills and Compe tencies	Method of Acquiri ng	Resourc es and Facilitat ing Factors	Re fer en ces
1	Industr y- specific Instruct i-onal Design	Courses offered by NITTT Rs, Human Resourc e Develop ment Units, ISTE Summer Schools, In- house	Well- designed course planning , Library, Internet Facilitie s, Planning for the cognitiv e skills to be acquired , etc.	2, 25, 26, 35, 36, 37, 38, 39, 40, 41.

		T 1:	A ·	
		Faculty Develop ment Courses, Webinar s, Worksh ops, etc.	Assignm ents, tests, case studies, industry - specific project works.	
2	Curricu lum Evaluat ion, Needs Analysi s, Develo pment, Formati ve Evaluat ion, etc.	Courses are to be offered as stated above, Project- based learning , synthesi s of the outcome of tracer studies/ longitud inal studies, through the seminar s on the industri al needs, and a focus on Industry -4.0 needs.	As stated above. Project- based learning, In house teams, Just in time learning, Industria 1 visits, and Collabor ation with the industrie s for internshi ps.	5, 13 6, 9,
3	Prepari ng Measur ing Tools	As stated above, worksho ps, and self- study.	Commit ment to quality outcome s and learner accompl ishment.	Te xtb oo ks on Ed uc ati on al M eas ure me nt an d

				E
				Ev
				alu ati
4	Laborat	Econo	Omanatia	on. W
4		Focus	Operatio	
	ory Instruct	0n Joorning	n monuolo	or ks
	ion	learning theories,	manuals, Calibrati	
	1011	use of		ho
		the		ps on
		results	equipme nt.	
		for	111.	qu alit
		design,		y y
		manufac		tes
		t-uring,		tin
		etc.		
5	Design	As	Softwar	g.
5	Design	stated	e and	
		above,	hardwar	
		Content	e,	
		updatin	e, Industria	
		g, and	1	
		Work	standard	
		Specific	s,	
		Softwar	s, Collabor	
		e	ation	
		Applicat	and	
		ions.	cooperat	
			ion with	
			industrie	
			s.	
6	Engine	AutoCA	Softwar	W
	ering	D etc.	e,	eb-
	Drawin		Hardwar	ba
	g		e and	se
	-		printers,	d
			Advance	lea
			d	rni
			Textboo	ng
			ks, and	ma
			Reports.	ter
				ial
				S
7	Estimat	Based	Industria	Co
	ion	on the	1	st
		current	standard	ac
		industri	s,	co
		al	current	unt
		practice	market	ing
		s, value	rates	•
		s, value analysis, etc.	rates	•

0				~
8	Project	Particip	Needs	Go
	Proposa	ating in	analysis,	ver
	1	the	vision,	nm
		project	and mission,	ent
		develop	assessin	pol ici
		ment		
		meeting s and	g the industria	es, ass
		preparin	1 needs,	ess
			compara	me
		g a proposal	tive	nt
		for the	analysis	of
		develop	of global	hu
		ment of	initiative	ma
		the	S.	n
		departm		ca
		ent.		pit
				al
				ne
				ed
				S
				of
				the
				ind
				ust
0	9		**	ry.
9	Counse	Short	Human	
	ling	courses	relations	
		on educatio	, interpers	
		nal	onal	
		psychol	develop	
		ogy.	ment	
		°8J.	skills,	
			and	
			human	
			resource	
			dynamic	
			s.	
			з.	
10	Coachi	Short	Do	
10	Coachi ng	Short courses		
10		courses on		
10		courses on coachin		
	ng	courses on coachin g	Do	
10	ng Mentori	courses on coachin g Courses		
	ng	courses on coachin g Courses on	Do	
	ng Mentori	courses on coachin g Courses on educatio	Do	
	ng Mentori	courses on coachin g Courses on educatio nal	Do	
	ng Mentori	courses on coachin g Courses on educatio nal manage	Do	
	ng Mentori	courses on coachin g Courses on educatio nal manage ment	Do	
	ng Mentori	courses on coachin g Courses on educatio nal manage ment and	Do	
	ng Mentori	courses on coachin g Courses on educatio nal manage ment	Do	

10	D 11	9	[
12	Publica tion of Instruct ional Materia ls	Courses on instructi onal design and publicat ion of material s through reputed publishe rs	Publishi ng through reputed publishe rs.	
13	Instruct ional Leaders hip	Advanc ed courses on interper sonal relations hips and leadersh ip. Instructi onal system technolo gy	Advance s in institutio nal develop ment, diverse global participa nts, growth strategie s.	20, 32, 33, 34.
14	Accredi tation through approve d standar ds.	Quality, Effectiv eness, Efficien cy, Outcom es, Program educatio nal objectiv es, and human capital develop ment.	Global standard s, instructi onal resource s, manage ment support, strategic planning , etc.	Gl ob al sta nd ard s
15	Cooper ation with the Local Compa nies	Industry - Institute - Govern ment- Society-	Identify the technolo gy used by the compani es in the region	,

16	Content Updatin g in Engine ering, Mathe matics, and Science Courses	Partners hip, Creation of linkages with the industri es. Advanc ed courses, finishin g school courses, MOOCs offered by Courser a, EdX, World Bank Institute , etc.	and create an active link with them. Identify the advance s in various subjects and the institute s which offer these courses. Apply for undergoi ng these courses through the institute s.	,
17	Interdis ciplinar y Researc h Method ology in Engine ering Educati on.	Identify the institute s which offer interdisc iplinary research program s and prepare a proposal and apply them through the college.	If selected, undergo the program . Also, try to identify the organiza tions which offer MOOCs in this area and apply them.	,
18	Underta king Action Researc h	Identify the organiza tions which offer	DO	

	D :	1.05	
	Projects	ACP	
	(ACP)	and	
		select.	
19	Plannin	Identify	Many
	g	the	research
	Industr	organiza	articles
	У	tions	are
	Releva	which	availabl
	nt	offer	e on
	Curricu	this type	GOOGL
	lum in	of	E. Try to
	Engine	course	select
	ering	and	and
	Courses	apply.	downloa
	to meet		d them.
	the		
	needs		
	of		
	Industr		
	y-4.		
20	Plannin	Identify	Check
	g	the	through
	industri	industri	alumni
	al	es in the	and get
	training	region	the list
	courses	and link	of
	for the	with	possible
	student	them	courses.
	S	Send a	
		list of	
		students	
		,	
		applicati	
		ons and	
		negotiat	
		e for	
		admissi	

Continuous Professional Development (CPD) for Heads of Institutions and others in Leadership Roles [17]

• There shall be CPD opportunities made available for those in leadership positions. New leaders must be fully supported through formal and informal mentoring. Post appointment professional conferences/seminars with other colleagues in similar positions, professional training programs, or a formal advanced degree must be made available. To all those in leadership positions.

• The process of appointment should consider outstanding achievers and similar internal candidates who have been developed within the institution.

Senior Level Faculty Members

Fully qualified faculty members with more than 25 years of experience and planning for CEO posts. The accomplishments should be outstanding. The vision for growth is essential. Leadership should be outstanding. Try to plan outstanding new postgraduate and doctoral programs to create human capital. Assess global developments and plan new programs. The skills in institutional development should be foremost. Desired skills are presented in Table-5.

Table- 5. Analysis of Skills at Senior Leveland Methods of Acquiring Competencies andAbilities

Ν	Skills	Method	Resourc	Refer
0.	and	of	es and	ences
	Compe	Acquiri	Facilitat	
	tencies	ng	ing	
			Factors	
1	Develo	Conduct	Planning	2,4
	ping	а	based on	
	Industry	compara	the	
	-	tive	qualifica	
	Specific	assessme	tions	
	Postgra	nt of	fixed by	
	duate	program	industrie	
	Progra	s of	s,	
	ms:	global	advances	
	Now	research	in the	
	there is	universit	technolo	
	a	ies and	gy, &	
	demand	develop	trends in	
	for	validated	new	
	interdis	innovati	innovati	
	ciplinar	ve	ve	
	У	program	product	
	postgra	s.	design.	
	duate		Involve	
	progra		alumni.	
	ms that			
	are also			
	industry			
	-			

	specific			
2	Plannin g and Conduc ting Nationa l Confere nces for Dissemi nating the Advanc es in Cutting Edge Technol ogies.	Consult national and professio nal associati ons/ societies and plan national conferen ces.	Conduct planning meetings with research universit ies and leading industrie s to plan the conferen ce.	8,18
3	Plannin g and Conduc ting Internat ional Confere nces to Synthes ize Innovati ons.	Form a multidis ciplinary global team of experts.	Generate funds from industria l sponsors and compani es who are marketin g new products. Get the support of governm ents.	
4	Industry - Institute - Govern ment- Society- Partners hip to underta ke product develop ment and executi ve	Strat a partners hip by involvin g all departm ents. Focus on consulta ncy and product develop ment.	A dedicate d Senior Professo r, a website for providin g the informati on on the innovati ons, products, and projects,	

	training		complete	
	•		d.	
5	Networ	Utilize	Develop	
	king	new	multidisc	
	with	opportun	iplinary	
	Global	ities like	postgrad	
	Researc	Indo-	uate and	
	h	USA 21 st	doctoral	
	Univers	Century	program	
	ities and	Knowled	S.	
	Organiz	ge	Conduct	
	ations.	Initiative	diverse	
		,	global	
		SPARK,	faculty	
		etc.	develop	
			ment.	
6	Protecti	Register	Validate	
	ng	your	the	
	Intellect	innovati	utility	
	ual	ons and	and fix a	
	Capital	apply for	price/	
	and	patents.	royalty	
	Transfe	•	for	
	r to		utilizatio	
	Industri		n.	
	es			
	through			
	Agreem			
	ents.			
7	Entrepr	Focus on	Get	
	eneursh	entrepre	funds	
	ip	neurship	from	
	develop	-based	Angel	
	ment,	program	investors	
	Startups	s.	. Assist	
	,	Mentor	in	
	Incubati	the	incubatio	
	on, etc.	participa	n. Assist	
		nts	in getting	
		through	patents.	
		alumni.	-	
8	Creatin	Establish	Support	
	g	Research	the	
	Researc	Parks	global	
	h Parks	through	bidding	
	and	outstandi	for	
	Innovati	ng and	projects.	
	on	multidis	Create	
	Centers.	ciplinary	corpus	
		faculty.	funds.	
9	Creatin	Conduct	Have an	
	g a	academi	open	
	Learnin	c audits	discussio	
1	g	every	n. Create	
	2			

	0			I
	Organiz	year.	a	
	ation.	Learn	problem-	
		the	solving	
		success	voluntar	
		and	y groups	
		failure	(Quality	
		factors.	Circles).	
		10000151	Synthesi	
			ze the	
			results	
			and	
			incorpor	
			ate them	
			into the	
			policies.	
10	Plannin	Sale of	Modern	,
	g new	Publicati	labs and	
	educati	ons,	worksho	
	onal	,	р	
	busines	Teachin	facilities,	
	S S		Physical	
	s models	g- learning	space,	
	based	U	Software	
		aids,	Sonware	
	on the	video	, 	
	Nationa	program	Auditori	
	1	s,	um,	
	Educati	MMLPs,	Classroo	
	on	Training	ms,	
	Policy.	materials	Playgrou	
		,	nd,	
		Contract	Transpor	
		Manufac	t	
		turing,	facilities,	
		Lease of	trained	
		Halls,	staff	
		,	members	
		Rooms, Income	memoris	
			, outstor di	
		through	outstandi	
		Executiv	ng	
		e 1 1	faculty	
		develop	members	
		ment	,	
		program	intellectu	
		s, etc.	al	
			propertie	
			S	
			patented,	
			etc.	
11	Develo	A group	Bid for	
11		of	research	
	p a Researc	institutes	and	
	-			
	h Classier	joined to	develop	
	Cluster	form a	ment	
	for	consorti	projects	
	underta	um of	under	

	king	research	MNCs,	
	comple	institutes	IDAs,	
	х	,	etc.	
	research	extensio	Provide	
	projects	n	training	
		centers,	in	
		satellite	preparin	
		institutes	g a	
		, etc.	technical	
		,	proposal	
			and	
			financial	
			proposal,	
			writing	
			agreeme	
			nts, etc.	
12	Transfo	Educatio	Processi	
14	rmation	nal	ng of	
	in	Leadersh	offering	
	Indian		academi	
	Enginee	ip models,	c	
	ring	Adminis	c autonom	
	Educati	trative		
			y,	
	01 through	processe	project- based	
	through Academ	s, etc.	administ	
	ic		rative, and	
	Autono			
	my to		financial	
	High		autonom	
	Perform		у.	
	ing			
	Faculty			
10	Teams.	Г	IT 11	
13	Intrapre	Encoura	Follow	
	neurshi	ge the	the MoE	
	p and	outstandi	formula	
	Innovati	ng	for	
	on in	faculty	sharing	
	Enginee	to bid for	the	
	ring	the	project	
	Educati	projects	gains.	
	on.		~	
14	Global	Academi	Compara	
	Conver	с	tive	
	gence to	Council,	studies	
	Improv	Academi	on	
	e the	c Audit,	educatio	
	Internal	Apprecia	nal	
	Quality	tive	program	
	Assuran	Appraisa	s,	
	ce for	1,	internal	
	Enginee	Quality	quality	
	ring	in	maintena	
<u> </u>	ing	111	mannena	

	-		
	Progra	Academi	nce,
	ms from	с	recruitm
	Certific	Activitie	ent
	ate to	s, etc.	processe
	Postdoc		S.
	toral		
	Progra		
	ms.		
15	Develo	The	Online
	ping	methodo	posting,
	Massive	logy of	Internet
	Open	developi	facilities,
	Online	ng self-	Trained
	Courses	instructi	instructi
	courses	onal	onal
	•	modules.	designer
		modules.	s, self-
			evaluatio
			n tools
16	Establis	Dianning	
10		Planning	Support
	h an in-	training	from the administ
	house	and	
	Faculty	develop	rators,
	Develo	ment	funds,
	pment	materials	planning,
	Center.	based on	and
		the	impleme
		faculty	ntation
		needs'	process.
		analysis.	
17	Reward	A policy	Norms
	the	of	approved
	High	sharing	by the
	Faculty	the	Board of
	Teams.	gains,	Governo
		MoE	rs.
		guidelin	
		es,	
		sharing	
		the gains	
		in the	
		consulta	
		ncy	
		works	
		and	
		projects	
18	Create	Identify	Train the
10	Project	feasible	team
	Specific		members
	Multidi	projects based on	in
	sciplina	in-house	planning
	ry	expertise	and
	Faculty	and	developi
	Teams		ng

	1		
and	resource	solutions	
Nurture	s.	. Follow	
		the 3M	
		Principle	
		S.	
Conduc	Inform	Prepare a	
t Open	the	list of	
House	industry	outcome	
for	executiv	s due to	
Collabo	es and	research	
ration.	society.	and	
	•	accompli	
		shments.	
Establis	Book,	Expert	
h	lab	writers,	
Publicat	manual,	editors,	
ion	drawing	proofrea	
Center.	manual	ders,	
	producti	draughts	
	on	man,	
	principle	DTP	
	s,	software,	
	printing,	etc.	
	and		
	publicati		
	on.		
	Nurture · Conduc t Open House for Collabo ration. Establis h Publicat ion	NurtureSocial ConductionNurturesInformtOpentheindustryforexecutivCollaboes andration.society.EstablisBook,hlabPublicationdrawingCenter.manualproductiononprinciples,printing,andpublicationpublication	NurtureNurtureSolutionNurturesFollow.Follow.PrinciplesConducInformPrepare atUpentheHouseindustryforexecutivforexecutivsdue toCollaboes andration.society.andaccomplishments.shments.EstablisBook,hlabPublicatmanual,iondrawingproductidraughtsonman,principleDTPs,software,printing,etc.andpublicati

Developing A Portfolio

Students have to prepare portfolios and plan to acquire needed abilities and the underlying competencies. This will assist them to develop the department through new graduate and postgraduate programs based the industrial needs. In the long run, they can't be left behind. The graduates outstanding accomplishments and contributions would facilitate the faster growth of the economy and a high return on tinvestment (ROI).

Desired Radical Innovations in Engineering Education

The senior faculty members must focus on the industry-specific curriculum development process. The graduates have to be developed through industry participation. The whole growth of the graduates' center around the vision and mission of the faculty members guided by the accrediting standards. Innovative graduates would improve their return on investment. Ultimately the competitiveness of the region would increase.

Radical and Innovative Self-directed Faculty Development Programs which need the Administrative Support

Many outstanding faculty members are selected to undergo international workshops, conferences, and internships based on their performances. Many CEOs refuse to forward the applications. The following cases are presented for the positive support of the CEOs (Table-7.).

Table. 7. Self-directed	Faculty	Development
Programs		

No.	Type of Self-	Administrative
1.00	directed Faculty	Support
	Development	11
	Programs	
1.	The internship	Should provide
	offered by a	nomination by
	foreign university	availing the leave
	is based on the	at credit.
	performance in an	
	international	
	workshop for one	
	semester where	
	no expenditure is	
	involved by the	
	parent institute.	
2	Selection to	The faculty has to
	undergo a training	be relieved to
	program in a	make travel plans
	foreign university	and join the
	under a bilateral	university
	agreement with	programs.
	the Indian	
	government and	
	the application	
	was sent through	
	proper channel.	
3	The research	The chief
	papers have been	executive officer
	accepted and the	has to grant
	faculty have been	permission to the
	awarded a travel	faculty member to
	grant for	attend the
	attending the	conference since
	international	no expenditure is
	conference.	involved.
4.	A faculty has	The faculty
	been selected	member's
	initially to	application has to
	participate in a	be dispatched
	technical working	within the
	group planned by	deadline.

an international development
agency

Methods Adopted to Improve the Attributes of Postgraduate Engineering Students of HRD.

- 1. Offering interdisciplinary courses in Industrial Psychology, Sociology, Human Resource Development and Management, Human Resource Development, Multimedia, etc.
- 2. Involving the students in executive development programs.
- 3. Identifying dissertation topics from MSMEs, Government Engineering Departments, and Large-scale companies.
- 4. Encouraging them to participate in national conferences.
- 5. Attend the diverse global faculty development programs, forming small groups for case study analysis.
- 6. Providing to prepare bids for projects under IDAs.
- 7. Industrial exposures
- 8. Encouraging participation in the meetings of the Indian Society for Training and Development, Indian Society for Technical Education, & Institution of Engineers (India).
- 9. Case studies on real-life problems
- 10. Arranging guest lectures from industries.
- 11. Arranging visits to industrial exhibitions.
- 12. Arranging to participate in international seminars and conferences.
- 13. Providing real-life cases based on the topics to solve.
- 14. Exposure to maintenance activities.
- 15. Planning houses based on client needs.

All the above courses focused on industryspecific attributes. All the students are employed within three months after completing the program.

Faculty Development Programs with a focus on the Industrial Problems and Graduates Attributes

- 1. Cooperative Programs in the Irrigation Management and Training Institute, Trichy, Tamil Nadu
- 2. Planned Ground Water Engineering Program in Collaboration with Ground Water Engineering Section of the Irrigation Engineering department.
- 3. Transportation Engineering Program in collaboration with Airport Engineering Department, Highways, and Port Trust.
- 4. Developing Automobile Body Building Textbook in Collaboration with Ashok Leyland Ltd.
- 5. Developing Curriculum in Building Technology in collaboration with the Builders Society of Tamil Nadu.
- 6. Management Development Program in collaboration with Management Development in Government, Kerala.
- 7. Development of Film Technology Program in collaboration with the Institute of Film Technology.
- 8. Development of Diploma Program in Footwear Technology in Collaboration with Central Leather Research Institute.
- 9. Development of Wood Technology Program in collaboration with the Industries in Kerala.
- 10. Developing M.Sc. (Forestry) in collaboration with Tamil Nadu Forestry Department.

All these faculty development programs assisted the teachers to focus on the attributes required by the graduates.

A Course on Building Failures for the Teacher Trainees

A course on Building Failures was introduced to the Dip. T.T. trainees and B. Tech. Ed trainees. It is a tree credit course. Many textbooks are available. The objectives of this course are:

- To investigate the causes for failures.
- To identify the attributes that are required to prevent such failures.
- Develop utmost precautions in planning, designing, and constructing a building in complex soil conditions, earthquake quack zones, extreme wind forces etc.

• Introduce the safety concepts to the students.

The Outcome of this Course: The teachers' trainees learned the causes due to poor soil investigation, poor design, poor drafting, poor construction, and poor maintenance. They developed a positive attitude to improve the attributes of the students,

CONCLUSIONS

In a knowledge-based economy, the engineering graduates should possess industry-relevant advanced skills and competencies to critically analyze the complex industry problems in product analysis, design, prototype development, manufacturing, and maintenance. The engineering graduates must prepare their skill-based portfolios and they should plan to acquire outstanding abilities and attributes in learning industry-relevant courses. interdisciplinary research programs, and innovative startups, incubation, etc. The engineering students have to achieve the portfolios over a fixed period. The Boards of Governors must ensure that highly qualified faculty members are selected and offered needed faculty development programs that facilitate high-quality graduates who can bring innovations in product design, testing, manufacturing, and maintenance. The training and development organizations must prepare competency-based development needed programs for all cadres of the faculty members and heads of institutions. Such efforts are to be validated periodically and new courses are to be prepared. The CEOs have to relieve the faculty members to undergo foreign university training, present papers, and participate in the technical working committee meetings when their primary application has been sent through the proper channel. Self-planned engineering faculty development has to be supported that will lead to excellence in engineering education. The engineering students are to be guided to undertake dissertations from the MSMEs. They also are exposed to the failures of buildings, systems, machines, and projects so that they are forewarned about the causes. This approach would improve the attributes of the graduates. Annual feedback from the alumni on the key attributes will assist the faculty to inculcate the industry needs. It is suggested to plan maintenance workshops as one of the skill development activities for all engineering programs which will close the skill gap and improve the attributes of the graduates.

References

1.Andres Antonio Alonso. (2017). Harvard Institute for Superintendents and District Leaders. Harvard Graduate School of Education. Boston: USA. https://www.gse.harvard.edu/ppe/harvardinstitute-superintendents-and-district-leadersinterest-form

2.Anita. S., and Thanikachalam. V. (2011). Opportunities for Indian Engineering and Technical Institutes to Offer Programmes for Overseas Students and Establishing Overseas Institutes under Mode 2 and Mode 3 of GATS. Journal of Engineering and Technology Education. 4 (2).

3.Anubhuti Vishnoi. (2018). Future Vice-Chancellors to Undergo Leadership Training, The Economic Times, Oct 5, 2018. Retrieved from:

https://www.economictimes.com/industry/educ ation/future-vice-chancellors

4. Bilal, Salman. Y. Guraya, and Songsheng Chen. (2017). The Impact of Effectiveness of Faculty Development Program in Fostering the Faculty's Knowledge, Skills, and Professional Competence: A Systematic Review and Meta-Analysis. Saudi Journal of Biological Sciences, 26 (2019) 688-697

5.Brad Davies. (2014). The Role and Relevance of Universities in the Digital Economy, Exploring the Opportunities and Risks arising from MOOCs, Big Data, and Cyber Security in Contemporary Higher Education. CISCO

6.Colleen Flaherty. (2016). New Study Suggests that Faculty Development has a Demonstrable Impact on Student Learning. Inside Higher Education.

https://www.insidehighered.com/news/2016/02 /10/new-study-suggests-faculty-developmenthas-demostratable -impact-student-learning

7.College of Engineering, University of Washington. Partnership with Industry. https://www.engr.washington.edu/industry

8.Constance Ewing Cook. (2008). Professional Development for Chinese University Leaders: Collaboration, Not Competition. New Frontiers of Educational Research (NFER). <u>https://link.springer.com/chapter/10.1007/978-</u> <u>3-642-39813-1_9/fulltext.html</u>

9. Daniel Druhora. (2017). Students turn to diplomacy to solve 21st Century Grand Challenges,

https://viterbischol.Use.Edu/Author/Druhora/

10.Gary Rhoades. (2012). Faculty Development to Enhance Student Attainment, Paper presented at National Commission on Higher Education Attainment. USA

11. Gerardo Gonzalez. (2017). Changing with Times: Faculty's Role in Delivering a Great Student Experience. <u>https://evolution.com/wpcontent/uploads/2017/10/sized-Oct-16-2017-</u> <u>Gonzalez.jpg</u>

12.Hawken, P., A. Lovins, and L.H. Lovins. (1999). Natural Capitalism. Boston: Little, Brown, and Company. 13.International Engineering Alliance (2013) Graduate Attributes and Professional Competencies. Version 3: 21 June 2013. https://www.ieagreements.org/assets/uploads/D ocuments/Policy/Graduate-Attribute-and-Professional-Competencies

14.James P. Honan and Herman Leonard. (2018). Crisis Leadership in Higher Education. Boston: Harvard Graduate School of Education. <u>https://www.hks.harvard.edu/form/clhebrochur</u> <u>e</u>

15.Jose Guimon. (2013). Promoting University-Industry Collaboration in Developing Countries. Policy Brief: Washington DC: World Bank

16.Judith Block McLaughlin. (2018). Harvard Seminar for New Presidents. Harvard Graduate School. <u>https://www.gse.harvardedu/ppe/harvard-seminar-new-presidentsinterest</u> -for

17 Kasturirangan. K. et al. (2019). National Policy in Education. New Delhi: Ministry of Human Resource Development.

18. Michael Fischer. (2008) The Role of Science and Engineering in Development: Summary of Discussion. National Research Council. Science and Technology and Future Development of Science: International Workshop Proceedings. Washington, DC: The National Academic Press. p 31-34.

19. Khedkar. M. (2012). Role of Universities in International Collaboration in Engineering Education- Faculty Development. ASEE International Forum: San Antonio, Texas. <u>https://peer.asee.org/17057</u> 20.Ken Boal. (2016). The Role and Opportunities for Universities in the Digital Economy.

https://www.blogs.cisco.com/education/therole-and-opprtunities-for-universities

21.List of Engineering Skills, https://www.thebalancecareers.com/list-ofengineering-skills-2063751

22.Lynn F. Jacobs and Jeremy S. Hyman. (2009). 10 Tips for Success for Engineering Students. US News. www.usnews.com/education/blogs/professorguide/

23.Mark Crawford. (2012). 9 Self-improvement Strategies for Engineers. <u>https://www.asmeorg/topics-resources/content/9-</u> <u>selfimprovement-strategies-for-engineers</u>

24.Mary Deane Sorcinelli. (2007). Faculty Development: The Challenge Going Forward. American Association of American Colleges and Universities. Fall of 2007. 9(4) 1-7.

25.Mathew. B.V. and Thanikachalam. V. (2012). An Analysis of Careers in Building Industry in Asia and the Curriculum of Bachelor's Degree in Civil Engineering. Journal of Engineering and Technology Education. 6(3): 1-10.

26.Mathew. B.V. and Thanikachalam. V. (2013). Critical Needs of an Undergraduate Program in Building Technology and Management. Journal of Engineering, Science, and Management Education. 6(2):158-169.

27.Mildred M. Pearson and Krishna Thomas.(2010). Creating Quality Faculty Development Programs to Impact Teaching and Learning. The Higher Learning Commission. A Collection of Papers Self-Study and Institutional Development. P 83-87.

28.Mona Holmquist. Lak of Qualified Teachers: A Global Challenge for Future Knowledge Development.

DOI://http:dx.doi.org/10.5772/intcchopen.8341 7

29.NAE (2006) Grand Challenges: Engineering for the Developing World. https://nas.edu/legal/privacy/index/html

30.Navitas Ventures. (2017). Digital Transformation in Higher Education. <u>https://www.navitaventures.com/wp.content/up</u> <u>loads/2017/08/HE-Digital-Transformation</u>

31. Norman Neureiter. (2008). The Role of Scientific Technical International and Cooperation in National Economic Development. National Research Council. Science and Technology and the Future Development of Sciences: International Workshop Proceedings. Washington, DC: The National Academic Press. P 55-60.

32.National Report on Employment Status of Polytechnic Pass outs in India (Tech Ed- I and Tech ED-II States)- Project on Strengthening Technician Education with the assistance from the World Bank, 31st December, 1999. Noida: EDCIL Ltd.

33.Rebecca Brent and Richard M. Felder. (2001). Engineering Faculty Development: Getting the Sermon beyond the Chore. Journal of Faculty Development. 18(3)73-81

34.Rebecca Brent, Richard Felder, et al. (2000).Engineering Faculty Development: AMulticoalition Perspective. 2000 Annual AEEEConference. Session of 2630.

35.Sheeba Rani. S. and Thanikachalam. V. (2012). Status Study and Need for Effective Master Degree Program in Embedded System Technologies in South India. Procedia Technology 00(2011)000-000 Published by Elsevier Ltd.

36.Sheeba Rani. S. and Thanikachalam. V. (2013). Enhancing Employability Quotient of Postgraduates in Embedded Systems: Curriculum-Based Research Study. International Journal of Technology and Engineering Science (IJTES.1(4) 287-295.

37.Sivanesan. T. and Thanikachalam. V. (2009). Development of Industry-based Curriculum for Manufacturing Technology to meet the Human Resource Needs of the Chennai Industrial Hub. Journal of Engineering and Technology. 3(2) 1-15.

38.Srividhya. E. and Thanikachalam. V. (2014). Comparative Study on the Effectiveness of Bachelor of Computer Applications Curriculum. Asian Journal of Research in Social Science and Humanities. IV(V) 134-144.

39.Srividhya. E. and Thanikachalam. V. (2014). Evaluation of the Effectiveness of a B.Sc. Computer Science Curricula. Journal of Engineering Science and Management Education. 7(II) 124-135.

40.Subbaraj. S. and Thanikachalam. V. (2013). A Study on the Effectiveness of the Present Mechanical Engineering Curriculum with Specific Reference to Design and Management Education Curriculum with Specific Reference to Design Competencies .6 (iv): October -December. 2013. 41.Subbaraj. S and Thanikachalam. V. (2013). Evaluation of Curricula of B.E./B.Tech. Degree in Mechanical Engineering in Chennai Metropolitan Area Considering Industrial Needs. Journal of Engineering and Technology Education. 7(2) 19-29.

42. Susan Hines (2011). How to Evaluate the Impact of Faculty Development Programs. Magna Publications: White Paper: Magna Online Seminar.

43.The National Academic Press Open Book. The Engineer of 2020: Visions of Engineering in the New Century (2004). Chapter: 4 Attributes of Engineer in 2020. https://www.nap.edu.edu/real/10999/chapeter6

44.Veronica Diaz et al. (2009). Faculty Development for the 21st Century. Educause Review 44(3):46-55.

45.Vish Viswanathan. (2012). A Multidisciplinary Approach to University Leader Development Workshop. The Mittal South Asia Institute. Boston: Harvard University

46.Yojana Sharma. (2012). 1000 University Leaders to Receive 'upgrade' training abroad. University World News Global Edition Issue 251, 09 December 2012 Short CV of the Author: Thanikachalam Vedhathiri, B.E. (Civil Engineering, 1968, Univ. of Madras)., M. Tech. (Soil Mechanics and Foundation Engineering, 1970, IIT Madras)., Ph.D. (Filter Design for Earth and Rockfill Dams, 1975. Univ. of Madras)., M.S. (Instructional System Technology, 1988, Indiana University, Bloomington, USA)., FIGS., FIE., FFIUCEE, Former Senior Researcher under Fulbright Scheme of USA. Guided 18 scholars for Ph.D. in Engineering Education. Completed 12 global projects under IDAs. Published around 200 papers, textbooks, lab manuals, drawing manuals, and educational video programs.

.