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ABSTRACT: 

Formulation of vehicle dynamics problem is dealt either with Newton’s method or Lagrange’s method. This paper 

provides a broad understanding of Lagrange’s method applied to railway vehicle system. The Lagrange’s method of 

analytical dynamics provides a complete set of equations through differentiations of a function called Lagrangian 
function which includes kinetic and potential energy with respect to independent generalised coordinates assigned to 

the system. This paper also discusses rigid body rotational dynamics along with the concept of generalised coordinates 

(constrained and un-constrained) and generalised forces in detail.  
 

KEYWORDS: 

Lagrangian function; Euler’s angle; Newton’s method; Generalized forces; Generalized coordinates; Body fixed axes 
 

CITATION:  

R.C. Sharma, S.K. Sharma and S. Palli. 2018. Rail Vehicle Modelling and Simulation using Lagrangian Method, Int. J. 
Vehicle Structures & Systems, 10(3), 188-194.  
 

NOMENCLATURE: 

ii zy ,
 

Translational coordinates in lateral & vertical 
directions respectively (i =1 for car body, 2&3 for 
front & rear bolster, 4&5 for front & rear bogie 
frame and 6, 7, 8 & 9 for four wheel axles) 

iii  ,,  Euler yaw, pitch and roll rotations 

i  Angular velocity of  rigid bodies 

yz

CBk ,  Vertical and lateral stiffness between car body and 
bolster respectively (½ part) 

yz

BBFk ,  
Vertical (¼ part) and lateral stiffness between 
bolster and bogie frame 

,, YjZj FF  Vertical and lateral force at the wheel-rail contact 
point in vertical and lateral direction (j = 1,….8) 

Wt
 Lateral distance (bogie frame c.g. – vertical 

suspension between bogie frame and wheel axle) 

Ct
 Lateral distance (car body c.g. – side bearings) 

Bt  Lateral distance (bolster c.g. – vertical suspension 
between bolster and bogie frame) 

Al  Longitudinal distance (wheel axle c.g. – vertical 
suspension between bogie frame & wheel axle) 

12x  Long. distance (car body c.g. – bolster c.g.) 

12z  Vertical distance (car body c.g. – bolster c.g.) 

24z  Vertical distance (bolster c.g. – bogie frame c.g.) 

46x  Long. distance (bogie frame c.g. – wheel axle c.g.) 

46z  Vertical dist. (bogie frame c.g. –wheel axle c.g.) 

STiz  

Vertical distance of different rigid bodies c.g. from 

IIYX  plane in normal static position, i  = 1 (car 

body), 2 (bolster), 4 (bogie frame), 6 (wheel axle) 

r  Radius of wheel axle set to the track center line 

1. Introduction 

In general there are two approaches to solution of any 

vibratory systems - Newton’s method and Lagrange’s 

Method. Newton’s method is usually applied to a 
simpler system modelled with lesser degree of freedoms. 

It deals with restoring and disturbing forces which a 

vector quantity. For the analysis magnitudes and 

directions of the forces acting on the system must be 

analysed. Constraint forces must also be determined. 

Sometimes constraint forces are not determined directly 

and required to be considered as added unknown 

variables in the equations of motion. Moreover, the 

particle accelerations also present kinematical 

difficulties in analysis. An alternate approach is that of 

analytical dynamics, as represented by Lagrange’s 
equations. This method provides a complete set of 

equations of motion through differentiations of a scalar 

function i.e. Lagrangian function. The function accounts 

kinetic and potential energies; however ideal constraint 

forces are not involved. Thus, sequential methods for 

obtaining the equations of motion are possible and wide 

range of problems can be analysed.  

Lagrange’s Method also includes spring strain 

energy and Rayleigh’s dissipation energy. Generalized 

forces are determined in Lagrange’s method; however 

they are determined using the principle of virtual work 

using the differentiating expressions of position vectors 
with respect to each independent generalized coordinates 

in turn to get the equations of motions as follows [1-6], 
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Lagrangian L is defined as (T - Vg) where T is the kinetic 

energy and Vg  is the potential energy,  EP is the strain 

energy stored due to springs, ED  is the dissipation energy 

of the system  and  Qi  are the generalized forces 

corresponding to yi the generalized coordinates. The term 

energy is a scalar quantity which is convenient and 

easier to deal with. Lagrange’s method involves 

calculation of transformation matrix of body fixed 

rotations of different rigid bodies, angular velocities, 
position vectors, linear velocities and finally rotational 

and translational kinetic energy [7].  

For a complex system having many degrees of 

freedom e.g. rail vehicle system these above-mentioned 

terms are still much easier to formulate as compared to 

using Newton’s method. A number of rigid body 

dynamics modelling cases considers very large rotations. 

The appropriate examples involve aircraft [8] and 

spacecraft [9-10]. The study of large rotation dynamics 

is of prime interest in so many cases with application of 

mechanism and machine theory [7, 11] and molecular 

dynamics [12]. Most models of rigid body dynamics 
problems consider body fixed Euler rotation of axis [13]. 

Euler formulations provide independent equations of 

motion, but which contain singularities [8]. Laning-

Bortz-Stuelpnagel [14] and Rodriguez [15] have also 

formulated other methods. The consideration of 

singularities in all these methods developed an 

alternative four parameter modelling system [14], 

considering Euler parameters [16]. Such formulations 

replace the three Euler angles with four parameters and 

an algebraic constraint. This avoids the Euler angle 

singularities but leads nominally to a system level model 
in differential-algebraic form. In order to escape from 

singular equations of motion and differential-algebraic 

systems, few researchers reformulated Euler parameter 

based models, to analyse in three dimensional rigid body 

dynamics problems. Chang et al [9], Nikravesh et al [17-

20], and Vadali [22] presented equivalent replacement 

formulations based on Lagrange’s equations.  

Since Lagrange’s method consider a solution as a 

path in configuration space, and since the Euler 

parameters are accounted as generalized coordinates, this 

approach starts with a differential system of second-
order for the rotational dynamics of a single rigid body 

developed with a single algebraic constraint. Nikravesh 

and co-workers began from this starting point and 

proceed to find a closed form solution for the Lagrange 

multiplier associated with the algebraic constraint, 

resulting in an unconstrained formulation of order eight. 

They do not include a potential energy function in the 

Lagrangian approach. Similar results are obtained by 

Vadali [22]. Proceeding in a different manner, Chang et 

al introduce as quasi-velocity variables the rigid body 

angular velocities in the body fixed frame, and project 

the original order eight Lagrange equations onto an order 
seven subspace. In the process they eliminate the 

unknown Lagrange multiplier.  As an alternative to 

Lagrange’s equations, a Hamiltonian formulation of 

rigid body dynamics with Euler parameters has been 

proposed by Morton [23]. However his final formulation 

is of order eight, and includes a superfluous momentum 

variable as well as a ‘‘generally arbitrary’’ unspecified 

scalar parameter. It appears that no previous work has 

attempted to revise or improve upon the Morton 

formulation. The usefulness of formulations based on 

Hamilton’s canonical equations is well recognized [7]. 

They offer an explicit state space description of system 

dynamics problems which is convenient for numerical 

integration and well suited for coupling to automatic 

control system models. 

2. Generalized coordinate, constrained 

equation and degree of freedom 

If the starting position or static equilibrium position of a 

system is known, it is needed to select a set of 

geometrical parameters whose value uniquely defines a 

new position relative to the initial position. It is possible 

to draw a diagram in its current position by knowing the 

fixed dimensions and the position parameters. 

Geometrical quantities that meet this specification are 

called generalized coordinates [7]. The minimum 
number of generalized coordinates required to specify 

the position of the system are the degrees of freedom of 

that system. Generalized coordinates do not form a 

unique set of parameters that may be equally suitable for 

describing the motion. There is a situation where 

generalized coordinates equals the number of degrees of 

freedom. Those generalized coordinates are indeed 

unconstrained and are known as independent generalized 

coordinates [7, 13]. Constrained generalized coordinates 

(P) are related to degrees of freedom (Q) with 

constrained equations (R) using, P-Q = R. The concept is 
illustrated by considering the example of bolster body of 

railway vehicle as shown in Fig. 1. Consider the bolster 

of railway vehicle AB of length L. Coordinates of A and 

B are (xA, yA) and (xB, yB) respectively. AB makes angle 

 with the horizontal. Now xA, yA, xB and yB are 
constrained generalized coordinates. The bolster can be 

configured with minimum three degrees of freedom 

which may be any three out of four xA, yA, xB and yB 

coordinates or may be xA, yA and . The one constrained 
equation is Pythagorean Theorem. 
 

 

Fig. 1: DoF/Generalised coordinates for bolster 

3. Euler’s Axes Transformation & Angle 

For an arbitrary vector “r”, a linear relationship between 

its components in the primed and un-primed coordinate 

systems (see Fig. 2) is obtained [13] as  r’ = Cr and 
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r = xi + yj + zk = x’i' + y’j’ + z’k’   (3) 

Where C is rotation matrix which describes the relative 

orientation of coordinate systems [13]. Generally, these 

elements of a rotation matrix are different. The first 

column of the CT matrix is the components of the unit 

vector i in primed frame. Similarly, the second and third 

columns of C represent j and k respectively. Hence, the 

sum of the squares of the elements of a single column 

must be unity, or the scalar product of a unit vector with 

itself must equal one. The scalar product of any two 

different columns is zero, as the unit vectors are 

mutually orthogonal. Altogether, there are three 

independent equations for single columns, and three 
independent equations for pairs of columns, giving a 

total of six independent constraining equations. The 

number of direction cosines (nine) minus the number of 

independent constraining equations (six) yields three, the 

number of rotational degrees of freedom [13]. By 

interchanging primed and un-primed subscripts, the 

transposed rotation Matrix CT is the rotation matrix for 

the transformation from the primed frame to the un-

primed frame. Hence, the sequence of transformations C 

and CT, in either order, will return a coordinate frame to 

its original orientation as CTC = CCT = U, where U is a 
3×3 unit matrix, that is, with ones on the main diagonal 

and zeros elsewhere as CT = C−1. Rotation matrices 

whose transpose and inverse are equal are classed as 

orthogonal matrices. The determinant of any rotation 

matrix is equal to +1. In general, a rotation of axes given 

by Ca followed by a second rotation Cb is equivalent to a 

single rotation as C = CbCa. 
 

 

Fig. 2: Euler’s orientation of axes 

As the order of matrix multiplications is important, 
indicating that the order of the corresponding finite 

rotations is also important.  The rotation of a rigid body 

from some reference position to an arbitrary final 

position is represented by three rotations in a given 

sequence about specified body axes. The resulting angles 

of rotation are called Euler angles shown in Fig. 3 and 

represent an axis-of-rotation order z-y-x, where each 

successive rotation is about the latest position of the 

given body axis. The xyz body axes and the XYZ inertial 

axes coincide initially. Then three rotations are made in 

the following order: (1)  about the Z-axis, resulting in 

the primed axis system; (2)  about the y’ axis (line of 

nodes) resulting in the double-primed system; (3)  
about the x” axis, resulting in the final xyz body-fixed 

frame. A rotation matrix T, defined in terms of direction 

cosines. Euler’s body fixed rotation, axes systems and 

inertial frame of reference is illustrated in Fig. 4 for the 

railway vehicle’s car body [23].  
 

  

Fig. 3: Euler’s angle and Euler’s angular velocity 

Three rotational degrees of freedom 1(yaw), 

1(pitch) and 1(roll) are assigned to car body. Initially 
Xi, Yi and Zi  (mass centre of car body) coincide with 

inertial axes XYZ. The orientation of the body fixed axes 

X1, Y1 and Z1 system of car body mass centre is defined 

by the three Euler rotations1, 1 and 1. The first 

rotation ()is given about Z1 axis transforming X1, Y1 

and Z1 axes to ' ' '
1 1 1, ,x y z  [23] and the transformation 

matrix is written as: 

'
1 1 1 1
'
1 1 1 1
'

11

cos sin 0

sin cos 0

0 0 1

x X

y Y

Zz

 

 

     
           
       

   (4) 

The second rotation is 1  (pitch) is given about 
'

1y  axis 

resulting in 
''

1x  , 
''

1y  , 
''

1z  axes system is given by, 

1 1

1

1 1
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   (5) 

The third rotation is 1  (roll) is about
''

1x , resulting in 

'

1

'

1

'

1 ,, ZYX  as follows, 
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     1T        (7) 

 
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Fig. 4: Inertial axis frame & rigid body mass centre axis system for rail vehicle 

The unit vector  i, j, k of the body fixed coordinate 

system will be related to unit vectors I, J, K in the 
inertial frame using, 

 

1[ ]

i I

j T J

k K

   
   
   
   

     (9) 

Expressions of the transformation matrix of rotations for 

other rigid bodies can be written in the same way. 

4. Angular and linear velocity 

Incremental changes in the Euler angles are indicated by 

the corresponding angular velocity vectors; namely,   

about the Z-axis,   about the y-axis (line of nodes), and 

  about the x-axis. The absolute angular velocity of the 

xyz body-axis frame is given by, 

ω = +   +                  (10) 

In terms of body-axis components, 

ω = ωx i + ωy j + ωzk                 (11) 

For the car body mass of rail vehicle, ωx is the roll rate, 

ωy is the pitch rate, and ωz is the yaw rate. The velocity 

vector for the car body can be written as [23]: 

1' 1 1 1x I y J z K                    (12) 

This expression can also be written in matrix form as:  

 1' 1 1 1

T
x y z                  (13) 

Expressions of angular and linear velocity for other rigid 

bodies can be written in the same way. 

5. Kinetic energy 

The kinetic energy of car body mass is sum of rotational 
kinetic energy and translational kinetic energy [23], 

     
TRANSROT

KKK 111                 (14) 

The rotational kinetic energy can be written as: 

 1 1 1½ T
CROT

K I    
                (15) 

Where  1 1 1S     and  1 1 1
T T TS  .  1S  is sweeping 

matrix, corresponds to transformation matrix of rotation 

of car body [T1] and is expressed as, 

 
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Now next to car body if front bolster is assigned only 

roll rotational DoF ( 2 ) angular velocity of front bolster 

will be expressed as [23], 

       










































0

0

2

.

'

2

1

.

1

.

1

.

122









 SST

               (17) 

 




















22

222

cossin0

sincos0

001



T

              (18) 

 


















000

000

001
'

2S

                                        (19) 

 

. .
1

1 2

.

2 1 2 1 1 2 1
.

1
1 2 1 1 2

1 0 sin

0 cos( ) cos sin( )

0 sin( ) cos cos( )


 

      


    

   
   

   
     
   
         

        (20) 

  222  S                  (21) 

    222  ½  B

T

ROT
IK 

                (22) 



Sharma et al. 2018. Int. J. Vehicle Structures & Systems, 10(3), 188-194 

192 

If the car body is assigned two translational degrees of 

freedom i.e. 
1y  and 

1z . 
'1  denotes the position vector 

from the origin 
IO  of the inertial system to the centroid 

'1O  of the car body mass using, 

1' 1 1y J z K                                 (23) 

The velocity vector for the car body can be written as: 
. .

11' 1y J z K                                (24) 

This expression can also be written in matrix form as:  

 1' 1 10
T

y z                   (25) 

    '1

..

'11  ½  C

T

TRANS
MK 

              
(26) 

Expressions of rotational kinetic energy for other rigid 

bodies can be written in the same way. 

6. Potential energy  

The potential energy function of the car body can be 

written as [23]: 

}{ 111 ST

TT

C hdhdMV 
               (27) 

Where  0 0Td g ,  1 1 1 1h x y z  and

1 10 0ST STh z   . 1STz  is the vertical distance from 

IIYX   plane to the normal static position of  
1O  in 

IZ  

direction as follows, 
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 111 STC zzgMV                               (29) 

The potential energy function of the front bolster is 

determined by applying the transformation matrix of 

rotation of car body on to bolster axis [23] using, 
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2 20 0ST STh z                                                        (33) 

2STz  is the vertical distance from 
IIYX   plane to the 

normal static position of  
2O  in 

IZ  direction. The 

potential energy of front bolster can be written as: 

})(coscos

sincossin{

212211

21112112
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Expressions of potential energy for other rigid bodies 

can be written in the same way. Spring potential energy 

and Rayleigh Dissipation energy terms are determined 

on the basis of degree of freedoms assigned to each rigid 

body, location of suspension in between them and 

geometrical parameters (Figs. 5-7). Spring potential 
energy and Rayleigh dissipation energy terms between 

car body and bolster is (Figs. 5 - 6), 
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Spring potential energy and Rayleigh dissipation energy 

terms between bolster and bogie frame (5-DoF bogie 

frame is assigned i.e.
4y , 4

.

z , 4

.

 ,
4 , 

4 ) is,
 

2 4 2 4 2 2
2 2 4 4 2 4
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 

       

    

     
        

(36) 

Expressions of spring potential energy and Rayleigh 
dissipation energy terms for other connections can be 

written in the same way. 
 

 

Fig. 5: Vertical suspension between car body and front bolster: 

Actual configuration  

 

Fig. 6: Vertical suspension between car body and front bolster (end 

view): Equivalent configuration 

 

Fig. 7: Vertical suspension between bolster and bogie frame  

7. Generalized forces and moments 
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While determining the generalized forces in railway 

vehicle system creep forces and moments at the wheel 

rail contact point, wind drag forces, static forces and 

moments from them need to be considered [5, 23]. The 

directions of vertical & lateral normal forces and yaw 

moment at wheel-rail contact point are shown in Fig. 8. 

The position vector from 
IO  (origin of inertial axes 

system) to 6O  (c.g. of front bogie front wheel axle set) 

can be written as: 

46'444'2'222'1'16  
           (37) 

The position vector from IO to front bogie front wheel 

axle set left wheel rail contact point 
1L  is given by [23]: 

1'6'6661 LIL  
                                     (38) 
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(39) 
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                                (40) 

For the case of lateral displacement of car body, an 

imaginary small displacement of 1y is assumed to be 

given to the car body and work done at the eight wheel 

rail contact points by the forces shown in Fig. 8 is 

calculated. The corresponding generalized force is 

obtained by dividing the work done by 1y . Similar 

methodology has been adopted for the remaining 

generalized coordinates [5]. For the front bogie front 

wheel axle set, the partial derivative of position vector 

1IL
 
(Fig. 7) with respect to lateral displacement 

1y  of 

car body is given by, 

J
y

IL 




1

1

                                                             (41) 

The displacement of the wheel rail contact point is, 

11

1

1 . yJy
y

IL 















                (42) 

The work done by the forces at this wheel rail contact 

point is given by, 

1
1 1 1 1

1

1 1 1 1 1

( ) [ ]

[ ] .

IL
L X Y Z

X Y Z

W F I F J F K
y

y F I F J F K J y


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 

 
    

 
                                  

(43) 

111 .)( yFW YL                                                         
(44) 

The component of generalized force at this wheel rail 

contact point corresponding to generalized coordinate 

1y  is given by the Eqns. (45)-(46). 

1

11

1

1 .)(
1 y

yF

y

W
Q YL

y







                                           (45) 

11)(
1 YLy FQ 

                                                            
(46) 

Similar treatment was done for other wheel rail contact 

points. The generalized force for lateral motion of car 

body i.e.
1y  is given by, 

876543211 YYYYYYYYy FFFFFFFFQ 
            (47) 

The generalized forces for lateral motion of front bolster 

i.e.
2y  is given by, 

2 1 2 3 4

1 2 3 4 1 2

( )

( )( )

y Y Y Y Y

Z Z Z Z

Q F F F F

F F F F  

   

    
                             (48) 

Expressions of generalised forces for the other rigid 

bodies can be written in the same way. 
 

 

Fig. 8: Vertical and lateral normal forces and yaw moment at eight 

wheel-rail contact point 

8. Conclusions 

Newtonian’s method is vectorial in nature. When the 

equations of motion of any system are formulated using 

Newtonian’s method, the acceleration is required to be 

absolute, therefore it is required to be measured relative 

to inertial frame. Sometimes the motion of a particle is 

known relative to a rotating and accelerating frame, and 

it is desired to find its absolute velocity and acceleration. 

In general, these formulations are complex except 

moving frame is not rotating [7, 13]. Lagrangian method 
on the other hand is scalar in approach. It main deals 

with calculation of energies and their differentiation with 

respect to each independent generalised coordinates on 

the basis of degrees of freedom assigned to the system 

[7, 13]. When applied to vehicle system both linear and 

angular degrees of freedom are assigned. In this context 

body fixed Euler’s rotation is accounted and 

transformation matrix of rotation can be determined with 

simplicity. For particular railway vehicle system the 

approach of determining the mathematical expression of 
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position vector, linear or rotational kinetic energy, 

potential energy and generalised forces is from inertial 

axis to car body mass centroidal axis then to bolster, 

bogie frame, wheel axle and finally wheel-rail contact 

points [23]. The equations of motion once obtained can 

be utilised to investigate the several performance indices 

of the vehicle [1-6, 24-29]. Lagrangian approach is used 

to investigate the performance of rail-road vehicle, 

marine ship, aircraft, and all - terrain vehicles. The 
advantage with approach is the complex systems having 

many degrees of freedom can be solved comparatively 

with more simplicity [7].  Both linear and non-linear 

systems can be formulated using this approach. These 

systems are analysed using different approach once the 

system is formulated. 
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