Open Access Open Access  Restricted Access Subscription Access

Need of Natural Biocides in Antifouling Paints for Prevention of Marine Pollution


 

Antifouling paints were developed to prevent marine growth on ship hulls in the middle of the 19th century. As they were designed to continuously leach biocides at the paint/seawater interface which were the predominant means of controlling fouling for a vast majority of the vessels, over a period of years in the latter part of the last century there has been a marked improvement in the effective life of antifouling paints.

Different types of antifouling paints came into being but after a particular breakthrough when self- polishing paints were developed in 1960s. Due to its controlled leaching rate, the self -polishing paints containing TBT was a huge success.

However, due to serious environmental effects, these paints have been banned since 2008 and have been replaced by copper based antifouling paints with some success.  It was observed that the extensive use of copper based antifouling paints has led to the accumulation of copper and its compounds in the marine environment particularly in the vicinity of ports and harbors and is beginning to pose a serious environmental problem. Foul release coatings are biocide-free –works on a foul release basis by providing a very smooth, low-friction surface which reduce the strength of adhesion of fouling. However, they are applicable only to high- speed, high-activity vessels, in addition to other issues such as high cost, difficult, application procedure and are easily prone to mechanical damage. Biocides from natural products appear to be the only viable alternative in the foreseeable future to protect ship hulls from fouling. This paper reviews the possible natural products that have the potential to be incorporated in to commercial antifouling paints and explores their range of activity.  

Antifouling paints were developed to prevent marine growth on ship hulls in the middle of the 19th century. As they were designed to continuously leach biocides at the paint/seawater interface which were the predominant means of controlling fouling for a vast majority of the vessels, over a period of years in the latter part of the last century there has been a marked improvement in the effective life of antifouling paints.

Different types of antifouling paints came into being but after a particular breakthrough when self- polishing paints were developed in 1960s. Due to its controlled leaching rate, the self -polishing paints containing TBT was a huge success.

However, due to serious environmental effects, these paints have been banned since 2008 and have been replaced by copper based antifouling paints with some success.  It was observed that the extensive use of copper based antifouling paints has led to the accumulation of copper and its compounds in the marine environment particularly in the vicinity of ports and harbors and is beginning to pose a serious environmental problem. Foul release coatings are biocide-free –works on a foul release basis by providing a very smooth, low-friction surface which reduce the strength of adhesion of fouling. However, they are applicable only to high- speed, high-activity vessels, in addition to other issues such as high cost, difficult, application procedure and are easily prone to mechanical damage. Biocides from natural products appear to be the only viable alternative in the foreseeable future to protect ship hulls from fouling. This paper reviews the possible natural products that have the potential to be incorporated in to commercial antifouling paints and explores their range of activity.  


User
Notifications
Font Size

Abstract Views: 173

PDF Views: 3




  • Need of Natural Biocides in Antifouling Paints for Prevention of Marine Pollution

Abstract Views: 173  |  PDF Views: 3

Authors

Abstract


Antifouling paints were developed to prevent marine growth on ship hulls in the middle of the 19th century. As they were designed to continuously leach biocides at the paint/seawater interface which were the predominant means of controlling fouling for a vast majority of the vessels, over a period of years in the latter part of the last century there has been a marked improvement in the effective life of antifouling paints.

Different types of antifouling paints came into being but after a particular breakthrough when self- polishing paints were developed in 1960s. Due to its controlled leaching rate, the self -polishing paints containing TBT was a huge success.

However, due to serious environmental effects, these paints have been banned since 2008 and have been replaced by copper based antifouling paints with some success.  It was observed that the extensive use of copper based antifouling paints has led to the accumulation of copper and its compounds in the marine environment particularly in the vicinity of ports and harbors and is beginning to pose a serious environmental problem. Foul release coatings are biocide-free –works on a foul release basis by providing a very smooth, low-friction surface which reduce the strength of adhesion of fouling. However, they are applicable only to high- speed, high-activity vessels, in addition to other issues such as high cost, difficult, application procedure and are easily prone to mechanical damage. Biocides from natural products appear to be the only viable alternative in the foreseeable future to protect ship hulls from fouling. This paper reviews the possible natural products that have the potential to be incorporated in to commercial antifouling paints and explores their range of activity.  

Antifouling paints were developed to prevent marine growth on ship hulls in the middle of the 19th century. As they were designed to continuously leach biocides at the paint/seawater interface which were the predominant means of controlling fouling for a vast majority of the vessels, over a period of years in the latter part of the last century there has been a marked improvement in the effective life of antifouling paints.

Different types of antifouling paints came into being but after a particular breakthrough when self- polishing paints were developed in 1960s. Due to its controlled leaching rate, the self -polishing paints containing TBT was a huge success.

However, due to serious environmental effects, these paints have been banned since 2008 and have been replaced by copper based antifouling paints with some success.  It was observed that the extensive use of copper based antifouling paints has led to the accumulation of copper and its compounds in the marine environment particularly in the vicinity of ports and harbors and is beginning to pose a serious environmental problem. Foul release coatings are biocide-free –works on a foul release basis by providing a very smooth, low-friction surface which reduce the strength of adhesion of fouling. However, they are applicable only to high- speed, high-activity vessels, in addition to other issues such as high cost, difficult, application procedure and are easily prone to mechanical damage. Biocides from natural products appear to be the only viable alternative in the foreseeable future to protect ship hulls from fouling. This paper reviews the possible natural products that have the potential to be incorporated in to commercial antifouling paints and explores their range of activity.