
International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

DOI:10.5121/ijcsit.2018.10106 67

ON THE CLASSIFICATION OF NP COMPLETE

PROBLEMS AND THEIR DUALITY FEATURE

WenhongTian
1,2

, WenxiaGuo
1
 and Majun He

1

1
University of Electronic Science and Technology of China, Chengdu, China

2
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science

ABSTRACT

NP Complete (abbreviated as NPC) problems, standing at the crux of deciding whether P=NP, are among

hardest problems in computer science and other related areas. Through decades, NPC problems are

treated as one class. Observing that NPC problems have different natures, it is unlikely that they will have

the same complexity. Our intensive study shows that NPC problems are not all equivalent in computational

complexity, and they can be further classified. We then show that the classification of NPC problems may

depend on their natures, reduction methods, exact algorithms, and the boundary between P and NP. And a

new perspective is provided: both P problems and NPC problems have the duality feature in terms of

computational complexity of asymptotic efficiency of algorithms. We also discuss about the NPC problems

in real-life and shine some lights on finding better solutions to NPC problems.

KEYWORDS

P Problems, NP problems, NP Complete Problems,Reduction, The Duality Feature

1. INTRODUCTION

In 1971, Cook [1] firstly established a theorem that a class of problems can be P-reducible

(polynomial time reducible) to each other and each of them can be P-reducible to Boolean

Satisfiability (SAT) problem, this class of problems is called NP (nondeterministic polynomial

time) problems. Karp [2] applied Cook’s 1971 theorem that the SAT problem is NP Complete

(also called the Cook-Levin theorem) to show that there is a polynomial time reduction from the

SAT problem to each of 21 combinatorial problems, thereby showing that they are all NP

complete (NPC). This was one of the first demonstrations that many natural computational

problems occurring throughout computer science are computationally intractable, and it drove

interest in the study of NP-completeness and the P versus NP problem [3]. The P versus NP

problem, determining whether or not it is possible to solve NP problems quickly, is one of the

principal unsolved problems in computer science today and listed as one of seven millennium

problems [4], challenging tens of thousands of researchers.

Simply speaking, P problems mean that the class of problems can be solved exactly in polynomial

time while NPC problems stands for a class of problems which can be solved in

nondeterministic polynomial time by Turing machine. NPC problems has far-reaching

consequences to other problems in mathematics, biology, philosophy and cryptography. More

specifically, in Big O-notation of computational complexity for asymptotic efficiency of

algorithms, P problems can be solved in polynomial time of O(n
k
) for some constant k where n is

the size of input to the problem, while NPC problems may have computational complexity of

O(2cn) including both exponential time and sub-exponential time, where c is constant larger than

zero.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

68

Karp [2] ever claimed that if any of NPC problems have efficient polynomial time algorithms,

then they all do. It is for this reason that research into the P versus NP problem centers on NPC

problems, i.e., looking for efficient polynomial time algorithms for NPC problems. Through

decades’ efforts by many researchers, it is still an open question. There are quite many results but

none of them is commonly accepted yet by the research community.

Intuitively, NP problems is the set of all decision problems for which the instances where the

answer is “yes” have efficiently verifiable proofs of the fact that the answer is indeed “yes”. More

precisely, these proofs have to be verifiable in polynomial time by a deterministic Turing machine.

In an equivalent formal definition, NP problems is the set of decision problems where the “yes”-

instances can be accepted in polynomial time by a non-deterministic Turing machine [4]. Simply

speaking, P-class problems mean that the class of problems can be solved exactly in polynomial

time while NP (non-deterministic polynomial) problem stands for a class of problems for which

each can be solved in polynomial time by a nondeterministic Turing machine. NP problems has

far-reaching consequences to other problems in mathematics, biology, philosophy and

cryptography.

The complexity class P is contained in NP, and NP contains many important problems. The

hardest of which are NP Complete (NPC) problems. A decision problem d is NPC if : d is in NP,

and every NP problem is reducible to d in polynomial time [2]. The most important open

question in complexity theory, is the P versus NP problem which asks whether polynomial time

algorithms actually exist for NPC problems and all NP problems.

It is widely believed that NP!=P in 2002 [5]. In 2012, 10 years later, the same poll was repeated

[6]; the number of researchers who answered was 126 (83%) believed the answer to be no, 12

(9%) believed the answer is yes, 5 (3%) believed the question may be independent of the

currently accepted axioms and therefore is impossible to prove or disprove, 8 (5%) said either

don’t know or don’t care or don’t want the answer to be yes nor the problem to be resolved. On

the other hand, researchers in the world never stop to tackle this problem. Fortnow [7] reviewed

the status of the P versus NP problem on its importance, attempts to prove P≠NP and the

approaches dealing with NPC problems. At the Web site [8] ,Woeginger provides an unofficial

archivist of about 116 claims for the P versus NP problem from 1986 to April 2016, among them,

49 (42%) believed the answer to be no, 62 (53%) believed the answer is yes, the other 5 (5%)

think Undecidable, or Unprovable or Unknown, though none of them is commonly accepted yet

by the research community.

Through decades, NPC problems are treated as one class. Observing that most of NPC problems

have different natures, in this study, we show that NPC problems are actually not the same in

computational complexity, and they can be further classified. We propose classifications in terms

of their natures, reduction methods, exact algorithms, and the boundary between the P versus NP

problem, and a new perspective: both P problems and NPC problems have the duality feature in

terms of computational complexity of asymptotic efficiency of algorithms. We also discuss NPC

problems in the real-life and shine light on finding better algorithms for them.

2. THE NPC PROBLEMS CAN BE CLASSIFIED BASED ON THEIR

NATURES

NPC problems have different natures; they can be classified into six basic genres [2, 9], i.e.,

Satisfaction, Packing, Covering, Partitioning, Sequencing, Numerical computing.

Satisfaction problems are the first kind of NPC problems. Examples include Circuit Satisfiability,

SAT, 3SAT. SAT problem is the first and fundamental combinatorial problem identified as NPC

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

69

[1]. The problem can be stated as: given a set of clauses c1, c2,…,ck over a set of variables X={x1,

x2, …, xn}, does there exist a satisfying truth assignments? A special case of SAT is that all

clauses contain exactly three terms (corresponding to distinct variables). This problem is called

3SAT. Intuitively, the computational complexity of SAT is O(2
k
); as k close to n, it becomes to

O(2n); 3SAT has similar computational complexity.

Packing problems have the following structure: a collection of objects is given, and one wants to

choose at least k of them; a set of conflicts exist among the objects, which preventing from

choosing certain groups simultaneously. Examples include maximum Independent Set (MIS)

problem (with computational complexity of O(k
2
C(n, k)) by brute-force method where C(n, k) is

the combination function of choosing k elements from n elements), Set packing problem (with the

same computational complexity as MIS) etc..

Covering problems have a nature contrast to packing problems: a collection of objects is given,

and one wants to choose a subset that collectively achieves a certain goal (the goal may not clear

known before computing), with only k of the objects can be chose. Examples include Vertex

cover problem (VCP) with computational complexity of O(k2
C(n, k)), Set cover problem etc..

Covering problems regularly complementary to Packing problems, therefore they have the same

or similar complexities.

Partitioning problems involve a search over all ways to divide up a collection of objects into

subsets so that each object appears in exactly one of the subsets. Examples include 3-Dimensional

matching, Graph coloring etc., both with computational complexity of O(2
n
) by brute-force

method.

Sequencing problems involve search over the set of all permutations of a collection of objects in

some order. Examples include Traveling Salesman problems (TSP) with computational

complexity of O(n2
2

n
) by dynamic programming (9),Hamiltonian Cycle problem (HCP).

Numerical computing problems involve choosing a subset from a collection, collectively achieves

a given goal (the goal (sum) is clearly stated). Examples include Subset Sum problem with

computational complexity of O()=O(2
n
) by brute-force method while O(nT) can

be achieved by dynamic programming where T is the target value. In this complexity of O(nT)

may not be considered as NPC problem. We will discuss this further later.

We can observe that the six genres have different natures and computational complexities. If

brute-force (trivial exhaustive) method is applied, Numerical Computing ≤ Packing ≤ Covering ≤

SAT ≤ Partitioning ≤ Sequencing problems in complexity. However, Numerical computing

problems can have much less computational complexity by dynamic programming, very different

nature than others; Sequencing problems are harder than others. We will further discuss this in the

following.

3. NPC PROBLEMS CAN BE CLASSIFIED BY REDUCTION METHODS

NPC problems require that every problem in NP is reducible to a NPC (or SAT) problem in

polynomial time [2]. We observe that reduction methods of NP Complete problems are different

for different problems. They can be classified as:

Special formulation of NPC problems.This kind of NPC problems are easy to reduction. For

examples, SAT problem and 3SAT. Since 3SAT is just a special case of SAT, so it is very easy to

reduction between them. Similarly, 3-coloring problem and k-coloring problem.The reduction

between them takes negligible time. Because of its expressive flexibility, 3SAT is often a useful

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

70

starting point for reduction. Similarly graph coloring problem and 3-coloring problem are in this

line.

Complementary NPC problems.For instance, Maximum Independent Set (MIS) which forms

the largest independent set of nodes without connection by edgesamong them and Minimum

Vertex Cover (MVC) which forms the smallest vertex set of nodes covering all the edges in a

graph. Let a graph G=(V, E) where V is its node set and E is its edge set. ThenI is an independent

set if and only if its complement (V-I) is a vertex cover, this is proved in [9].Similarly CLIQUE

problem and Vertex cover problem are complementary. The reduction between complementary

NPC problems takes negligible time.

Hard to reduction NPC problems.For instance, HCP (Hamiltonian Cycle problem) and 3SAT.

The connection between these two NPC problems is not obvious. Actually it is quite complicated

to do reduction between them. It may take quite some time to design and implement the reduction

in this case, as shown in [8].

Also in some other cases, the reduction can change the size of the original NPC problem.For

instance, 3SAT≤p CLIQUE (≤p stands for P-reducible) is easy as done in [10];However, the

reduction doubles the number of nodes for CLIQUE since the negation of each variable is

included as a node. Therefore, the computational complexity is increased from 2
n to 2

2n if

implemented by trivial solution. Similarly 3SAT≤p SSP [8], increasing the number of variables

from n to 2(n+k) where k is the number of clauses in 3SAT. We cannot safely say they are still at

the same level of computational complexity in this case.

Summarizing these scenarios, what we can say is that NPC problems are not equivalent in term

of reduction among them. The reduction methods may take different time, and the reduction

may change the size of the original NPC problem, which making their computational

complexityindeed different.

4. THE CLASSIFICATION CAN BE BASED ON EXACT SOLUTIONS TO

SOME NPC PROBLEMS

Though it is very hard, researchers never stop to find more efficient exact solutions than trivial

(brute-force) solutions to NPC problems. In [11], Woeginger surveyed that some fast, super-

polynomial time algorithms which solve NPC problems to optimum, and found that some NPC

problems have better and faster exact algorithms than others; there is a wide variation in the worst

case complexities of known exact algorithms, as shown in Table 1. Notice that these problems are

representatives of the six basic genres in NPC problems. It can be seen that

SSP≤MIS=SCP<3CP<3SAT<TSP in term of complexity, the list can be added. These evidences

indicate that the computational complexity of exact solutions to some NPC problems can be

further classified; we may classify NPC problems in more detailed categories such as in term of c
n

for each c increasing by 0.1. There may exist a sequence of NPC problems X1, X2, X3, … , in NP,

each strictly harder than the previous one if we sort them, as also suggested in [9].

Tarjan and Trojanowski[15] also found that even for NPC problems it is sometimes possible to

develop algorithms which are substantially better in the worst case than the obvious enumeration

algorithms (trivial brute-force solutions).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

71

For MIS alone, trivial solution has complexity of O(2
n
), and exact solutions with complexities of

O(1.4422n) in 1965 [16], 1.2599n in 1977 [15], 1.2346n in 1986 [17], 1.2227n in 1999 [11],

1.2125
n
 in 2012 [18], 1.1996

n
 in 2013 [12] are respectively found, researchers are still finding

better exact solutions to it. Although no polynomial time algorithm has yet been discovered for

NPC problems, one can see that the computational complexities of some exact solutions become

close to polynomial or called super-polynomial [11] or pseudo-polynomial [9].

Table 1. The complexities of exact solutions to some NPC problems from [11] and some recent papers *

Problem Complexity Paper Genre

MIS (maximum independent set) 1.1996
n
 [12] Packing

Set covering problem (SCP) * 1.1996
n
 Covering

3CP (3-coloring of planar graph) 1.3446
n
 [13] Partitioning

SSP (subset sum problem)* nT [9] Numerical

3SAT 1.4802
n
 [14] Satisfaction

TSP n
2
2
n
 [9,11] Sequencing

*: In Table 1, cited paper and their genres are also given. Notice that T is the target value for SSP and dynamic

programming is applied for SSP; and SCP has similar complexity as MIS [9].

5. NPC PROBLEMS AND THE P VERSUS NP PROBLEMS ARE CLOSELY

RELATED TO THE SIZE OF THE PROBLEM

One reason that researchers still cannot find efficient solutions to NPC problems may be that the

size (scale) is always increasing. For instances, the node number of TSP problem varies from a

few tens to tens of thousands or more during recent 60 years of research. This is the curse of the

dimension.

With rapid increased speed of modern computers, large instances of NPC problems can be solved

efficiently. Table2 shows records of optimum solutions to some TSP problems.

One can see that the size of the problem is increasing as year goes. Notice that the instance with

1904711 nodes is still not yet solved exactly but just has a good lower bound [19]. Similar results

are also observed for HCP and other NPC problems. For real-life problems with small or

moderate number of variables, they may be solved to exactly very easily. Since NPC problems

can be P-reducible to each other, once we find a good efficient algorithm for one NPC, it

should also work for other NPC problems. However, if the problem size increases to very

large, finding efficient solutions to NPC problems become intractable.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

72

Table 2.Records of optimum solutions to TSP problems [19] wheren is the number of nodes in TSP. All

TSP problems in the table are solved to optimum except for the last one

n Year (solved) Node type

48 1954 USA cities

64 1971 random nodes

80 1975 random nodes

120 1977 Germany cities

318 1987 cities

532 1987 USA cities

666 1987 World cities

1002 1987 cities

2392 1987 cities

3038 1992 cities

13509 1998 USA cities

15112 2001 cities

24978 2004 Sweden cities

85900 2006 cities

100000 2009 Japan

1904711 2010* World TSP Challenge

6. THE DUALITY FEATURES OF P AND NP PROBLEMS

The following definitions are based on the computational complexity of different problems in the

worst case.

Definition 1: The asymptotic efficiency of algorithms [9,10]: concerns with how the running time

of an algorithm increases with the size of the input in the limit, as the size of the input increases

without bound.

Definition 2: The O-notation of computational complexity of an algorithm: asymptotically

bounds a function from above within a constant factor [9,10]. For a given function g(n), we

denote by O(g(n)) :

O(g(n))={f(n): there exist positive constants c and n0 such that 0≤f(n)≤cg(n) for n≥ n0}.

Fig.1 shows the intuition behind O-notation. For all values n to the right of n0, the value of

function f(n) is on or below g(n).

Fig.1 f(n)=O(g(n)) [10]

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

73

Since O-notation describes an upper bound, when we use it to bound the worst-case running time

of an algorithm, we have a bound on the running time of the algorithm on every input. For

example, the doubly nested loop structure of the insertion sort algorithm has an O(n
2
) upper

bound; equivalently, we mean that the worst-case running time is O(n
2
).

Definition 3: P-class problems in term of O-notation of computational complexity: they have

computational complexity of O(n
k
) for some constant k where n is the size of input to the

problem.

Definition 4: NPC problems: their exact solutions may have computational complexity of O(2cn)

in O-notation, where n is the size of input to the problem and c is a positive constant.

TABLE I shows computational complexities of exact solutions to some NPC problems

(abstracted from [11]).We also consider that the representation of the input to the problem by m

bits (in binary) and the space complexity of a problem by s bits (in binary in memory).

Fact 1: A regular system (the computer hardware, called the system in the following) has

capability of handling B0 numbers in term of computational and space complexity, i.e., handling

the input efficiently within reasonable time (may be within a few hours or minutes depending on

the applications) without overflowing the system, where B0 may be related to the memory size or

whichever (CPU, memory, disk et.) is the bottleneck of the system.

Based on the definitions above, the capabilityB0can be represented by

B0=min(2
cn

, n
k
, 2

m
, 2

s
) (1)

Table 3. The summary of variables

Variables Meaning

k, c, n0 apositive constant

n,e The size of inputs to a problem

s, m The number of bits (binary)

B0 min(2
cn

, n
k
, 2

m
, 2

s
)

W, C, b apositive number

For example, Subset Sub problem (SSP) is pseudo-polynomial time solvable with computational

complexity of O(nW) [9, 10], it is polynomial time only when both n and W are less than B0 (or

bounded by a polynomial function) while it is NPC problem when both n and W are very large

(beyond B0).

Definition 6: the transformability of P-class problems to NPC problems: in term of

computational complexity when the size of the representation of the inputs become very large, P-

class problems with computational complexity of O(W) can become NPC problems with

computational complexity of O(2cn).

Lemma 1.Dynamic programming algorithm for Subset Sum problem (SSP) is pseudo-polynomial

time.

Proof. The proof is provided in [9]. For completeness, the proof is restated here. The dynamic

programming algorithm (DPA) for SSP has running time of O(nW), which is reasonable and

looks like polynomial when W is small, but becomes hopelessly impractical as W (and the

numbers of elements in the set) grow large. Consider, for example, an instance with 100 numbers,

each of which is 100 bits long. Then the input is only 100×100=10,000 digits, but W is now

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

74

roughly 2
100

 (2
n
). Since integers will typically be given in bit representation, or base-b

representation where b can be any integer. The quantity W is really exponential in the size of the

input (2
n
); the DPA for SSP was not a polynomial-time algorithm, but referred to it as pseudo-

polynomial, to indicate that it ran in polynomial-time in the magnitude of the input numbers, but

not polynomial in the size of their representation. ■

Based on Lemma 1 and above conditions, our main result is the following theorem.

Theorem 1:The instances of SSP can have computational complexity of NPC problems and

P-class problems, this is called the duality feature in this paper.

Proof: The proof is straightforward based on above definitions and Fact 1. Consider that P

problems can be solved in polynomial time of O(n
k
) for some constant k where n is the size of

input to the problem (Definition 3) while NPC problems have computational complexity of O(2
cn

)

(Definition 4).

We consider the following two cases from computational complexity point of view, especially

taking the representation of the input into account:

1) If ((nk
≤B0) & (2cn>B0)), then P <NPC (or called P≠NPC). This is because that the system can

handle efficiently the P problem (when n
k
≤B0) but cannot handle efficiently the NPC

problem.

2) If ((n
k
>B0) & (2

cn
>B0)), then P->NPC. This is because that the system cannot handle either

one efficiently, the P problem becomes a NPC problem or the P problem is pseudo-

polynomial time by Definition 5 in this case.

This completes the proof. ■

One of the obvious evidences forP problems and NPC problems are mutual transformable is the

Subset Sum problem (SSP): it is one of 21 NPC problems in original list of Karp’s paper [2],

named as Knapsack problem; however it is pseudo-polynomial time of O(nW) [9], it will be

polynomial time solvable if both n and W are less than B0 (or bounded by a polynomial function)

while it is NPC problem when both n and W are very large (beyond B0 in representation).

Observation 1: Even one can find efficient solution (polynomial time algorithm) to one or

more NPC problems, some pseudo-P problems may become NPC problems in computation-

al complexity when the representation of the input to them become very large.

Observation 1 means that there still exist other problems, especially pseudo-polynomial time

problems to become NPC problems in computational complexity even if one finds efficient

polynomial time for one or more NPC problems. Then why do we still work on the P versus NP

problem? Maybe just for finding better efficient solutions.

7. DISCUSSION AND CONCLUSION

As P-class problems have different computational complexities, we find NPC problems also have

different computational complexities. Since NPC problems are P-reducible to each other,

currently very good algorithms for SSP and MIS are already found, we may find better efficient

algorithms for NPC problems in the near future.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

75

NPC problems in many cases are man-made (artificial), they are much easier to solve in real

world. For instance, SAT problem is from practical Circuit Satisfiability problem (CSP). Its

computational complexity actually depends on the number of inputs since it involves n variables

with k clauses. However, in practice, it is unlikely to have too large exponential number of

combination inputs for any circuit but reasonable number of inputs, which should be polynomial

time solvable. Thinking about any real circuit, if we have to check the truth assignment by

exponential-time, the circuits may not be useful.

Cloudert [20] also found that exact coloring of real-life graphs is easy since real-life graphs

always have small or moderate number of nodes and edges, which can be solved to optimum very

easily using today’s desktop computer. Similarly exact solution to 3-coloring of real-life planar

graphs is very easy, since the world map only have about 200 countries there.

Also TSP problems in real world may only have a few tens nodes (there is hardly a case that a

salesman has to travel more than 100 sites at one time), which can be solve exactly and easily by

heuristic algorithm such as LKH [21]. Notice that we show the records of TSP benchmarks in

Table 2. Just for challenging, the current largest TSP problem has 1904711 nodes, other

benchmark problems with nodes less than 1904711 are reported to be solved exactly to optimum

[19].

We also observe that approximation algorithms regularly perform much better than exact

algorithms for many NPC problems. For TSP problem, LKH algorithm is heuristic (benchmark),

known to solve many TSP problems to optimum within reasonable time (estimated computational

complexity of O(n2.2)). Comparing against the exact solution of TSP with computational

complexity of O(n
2
2

n
) by Dynamic Programming, LKH performs much better and faster; the

exact solution can only solve TSP with a few tens (less than 30) of nodes using today’s fast

desktop computer while LKH can solve TSP with a tens of thousands of nodes using the same

desktop computer. Similarly for Hamiltonian Cycle problem (HCP) and other problems, heuristic

algorithm may perform much better than exact algorithm for NPC problems. The current author

also proves that a near optimal result can be assured for TSP problems using LKH algorithm [22].

In this case, we may consider using heuristic algorithms instead of exact solutions.

As another perspective, it is recently proven mathematically that memcomputing machines (a

novel non-Turing paradigm) have the same computational power of nondeterministic Turing

machines [26]. Therefore, they can solve NPC problems in polynomial time with resources that

only grow polynomially with the input size.

Donald Knuth, who ever proposed the name of NP Completeness by a poll, said in 2014, “I've

come to believe that P = NP, namely that there does exist an integer M and an algorithm that will

solve every n-bit problem belonging to the class NP in n
M

 elementary steps” [26]. However, we

still not yet find the M.

NPC problems and P versus NP problem challenge many researchers to tackle them. In this paper,

we show that NPC problems are actually not equivalent in computational complexity except for

trivial or brute-force solutions. We show that the classification of NPC problems may depend on

their natures, reduction methods, exact algorithms, and the boundary between P and NP. These

may shine light on rethinking NPC problems and P versus NP problem, hopefully help to find

better solutions for them.

NPC problems have different natures, they can be classified into six basic genres [2, 7], i.e.,

Satisfaction, Packing, Covering, Partitioning, Sequencing, Numerical computing.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

76

Originally, PRIMES and Graph Isomorphism were hard to determine to be in NPC or not in

Cook’s paper [1]. In 2004, PRIMES is found in P-class and accepted by the research community

[10]. And in 2015, Graph isomorphism is reported to have Quasipolynomial time solution [11,

12], though the results are still under verification. These show some new perspectives and trends

on NPC problems.

As another perspective, it is recently proved mathematically that memcomputing machines (a

novel non-Turing paradigm) have the same computational power of nondeterministic Turing

machines [13]. Therefore, they can solve NPC problems in polynomial time with resources that

only grow polynomially with the input size.

NPC problems and the P versus NP problem challenge many researchers to tackle them through

decades of efforts. In this paper, a new perspective is also provided: P class problems and NPC

problems can be transformable in terms of computational complexity. Hopefully, this may shine

light on solving the P versus NP problem.

ACKNOWLEDGMENTS

This research is supported by National Science Foundation of China (NSFC) with grant ID

(61672136, 61650110513)); Xi Bu ZhiGuang Plan of CAS (R51A150Z10); Science and

Technology Plan of Sichuan Province (2016GZ0322).

REFERENCES

[1] S.A. Cook (1971). The Complexity of Theorem Proving Procedures, Proceedings of the third annual

ACM symposium on Theory of computing. pp. 151158, March of 1971.  

[2] R. M. Karp (1972), Reducibility Among Combinatorial Problems, In R. E. Miller and J. W. Thatcher

(editors). Complexity of Computer Computations. New York: Plenum. pp. 85-103.  

[3] Clay Mathematics Institute, http://www.claymath.org/millennium-problems/millennium-prize-

problems.

[4] Wikipedia, http://en.wikipedia.org/wiki/NP-complete.  

[5] W. I. Gasarch, (June 2002). The P=?NP poll , SIGACT News 33 (2): 34-47.

doi:10.1145/1052796.1052804. Retrieved 2008-12-29.  

[6] W. I. Gasarch, The Second P=?NP poll, SIGACT News 74, 2012.  

[7] Lance Fortnow, The Status of the P versus NP problem, Communications of the ACM. 52 (9): 78–86,

2009.

[8] P vs NP website, http://www.win.tue.nl/gwoegi/P-versus-NP.htm  

[9] J. Kleinberg, E. Tardos, Algorithm Design, 2006, Pearson Education Asia Limited, pp. 475-479.

[10] T. Cormen,C. Leiserson, R.L. Rivest,C. Stein, Introduction to Algorithm, 2nd edition, MIT Press,

2004.

[11] G. J. Woeginger, Exact algorithms for NP-hard Problems: A Survey, Combinatorial optimization -

Eureka, you shrink! Pages 185 - 207 , Springer-Verlag New York, Inc. New York, NY, USA ©2003

[12] M. Xiao, H. Nagamochi, Exact Algorithms for Maximum Independent Set, Algorithms and

Computation, Volume 8283 of the series Lecture Notes in Computer Science pp 328-338.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

77

[13] R. Beigel and D.Epspstein, 3-coloring in time O(1.3446^n): A no MIS algorithm, Proceedings of the

36th Annual Symposium Foundations of Computer Science (FOCS'1995),444-453.

[14] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C.H. Papadimitriou, P. Raghavan, and

U. Scho ̈ning, A deterministic (2 – 2/(k + 1))^n algorithm for k-SAT based on local search,

Theoretical Computer Science 289 (2002) 69–83.

[15] RE.Tarjan and AE. Trojanowski, Finding a maximum independent set, SIAM J. Comput.,vol.6, No.3,

Sept. 1977.

[16] J.W. Moon and L. Moser, On cliques in graphs. Israel Journal of Mathematics 3, 23–28,1965.

[17] T. Jian, An O(2^(0.304n)) algorithm for solving maximum independent set problem. IEEE

Transactions on Computers 35, 847–851,1986.

[18] N. Bourgeois, B. Escoffier, V. T. Paschos, J. M. M. van Rooij, Fast algorithms for max independent

set, Algorithmica 62(1-2), 2012.

[19] W. Cook, In Pursuit of the Traveling Salesman, Princeton University Press, 2012.  

[20] O. Coudert, Exact Coloring of Real-Life Graphs Is Easy, in Proceedings of DAC '97 Proceedings of

the 34th annual Design Automation Conference, Pages 121-126, Anaheim, California, USA — June

09 - 13, 1997

[21] K. Helsgaun, General k-opt submoves for the Lin-Kernighan TSP heuristic. Mathematical

Programming Computation, 2009,doi: 10.1007/s12532-009-0004-6.

[22] W. Tian, C. Huang, X. Wang, A Near Optimal Approach for Symmetric Traveling Salesman Problem

in Eclidean Space, To appear in Proceedings of ICORES 2017, Portugal, also available at arxiv

https://arxiv.org/pdf/1502.00447.pdf  

[23] L. Babai, Graph Isomorphism in Quasipolynomial Time, https://arxiv.org/abs/1512.03547, Dec 11,

2015.

[24] A. Cho , Science news, mathematician-claims-breakthrough-complexity-theory,

http://www.sciencemag.org/news/2015/11/mathematician-claims-breakthrough-complexity-theory,

Nov. 11, 2015.

[25] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, The Annals of Mathematics, Pages 781-793 from

Volume 160, Issue 2, 2004. 

[26] F. L. Traversa, C. Ramella, F. Bonani and M.D. Ventra, memcomputing NP-complete problems in

polynomial time using polynomial resources and collective states, Science, Vol. 1, no. 6, e1500031,

Nov. 2015.

AUTHORS

Prof. WenhongTian has a PhD from Computer Science Department of North Carolina State University.

He is a professor at University of Electronic Science and Technology of China. His research interests

include dynamic resource scheduling algorithms and management in Cloud Data Centers, dynamic

modeling and performance analysis of communication networks. He published about 40 journal and

conference papers, and 3 English books in related areas. He is a member of ACM, IEEE and CCF.

Ms. WenxiaGuo is a PhD candidate at University of Electronic Science and Technology of China. Her

research interests include approximation algorithm for NP-hard problems, and scheduling algorithms for

resource allocation in Cloud Computing and BigData processing.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018

78

Mr. Majun He is a master student at University of Electronic Science and Technology of China. Her

research interests include approximation algorithm for NP-hard problems, and scheduling algorithms for

resource allocation in Cloud Computing and BigData processing.

