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ABSTRACT 

 

NP Complete (abbreviated as NPC) problems, standing at the crux of deciding whether P=NP, are among 

hardest problems in computer science and other related areas. Through decades, NPC problems are 

treated as one class. Observing that NPC problems have different natures, it is unlikely that they will have 

the same complexity. Our intensive study shows that NPC problems are not all equivalent in computational 

complexity, and they can be further classified. We then show that the classification of NPC problems may 

depend on their natures, reduction methods, exact algorithms, and the boundary between P and NP. And a 

new perspective is provided: both P problems and NPC problems have the duality feature in terms of 

computational complexity of asymptotic efficiency of algorithms. We also discuss about the NPC problems 

in real-life and shine some lights on finding better solutions to NPC problems.   
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1. INTRODUCTION 
 
In 1971, Cook [1] firstly established a theorem that a class of problems can be P-reducible 

(polynomial time reducible) to each other and each of them can be P-reducible to Boolean 

Satisfiability (SAT) problem, this class of problems is called NP (nondeterministic polynomial 

time) problems. Karp [2] applied Cook’s 1971 theorem that the SAT problem  is NP Complete 

(also called the Cook-Levin theorem) to show that there is a polynomial time reduction from the 

SAT problem  to each of 21 combinatorial problems, thereby showing that they are all NP 

complete (NPC). This was one of the first demonstrations that many natural computational 

problems occurring throughout computer science are computationally intractable, and it drove 

interest in the study of NP-completeness and the P versus NP problem [3].  The P versus NP 

problem, determining whether or not it is possible to solve NP problems quickly, is one of the 

principal unsolved problems in computer science today and listed as one of seven millennium 

problems [4], challenging tens of thousands of researchers. 

 

Simply speaking, P problems mean that the class of problems can be solved exactly in polynomial 

time while NPC  problems stands for a class of problems which  can be solved in 

nondeterministic polynomial time by Turing machine. NPC problems has far-reaching 

consequences to other problems in mathematics, biology, philosophy and cryptography.  More 

specifically, in Big O-notation of computational complexity for asymptotic efficiency of 

algorithms, P problems can be solved in polynomial time of O(n
k
) for some constant k where n is 

the size of input to the problem, while NPC problems may have computational complexity of 

O(2cn) including both exponential time and sub-exponential time, where c is constant larger than 

zero.  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018 

68 

Karp [2] ever claimed that if any of NPC problems have efficient polynomial time algorithms, 

then they all do. It is for this reason that research into the P versus NP problem centers on NPC 

problems, i.e., looking for efficient polynomial time algorithms for NPC problems. Through 

decades’ efforts by many researchers, it is still an open question. There are quite many results but 

none of them is commonly accepted yet by the research community. 

  

Intuitively, NP problems is the set of all decision problems for which the instances where the 

answer is “yes” have efficiently verifiable proofs of the fact that the answer is indeed “yes”. More 

precisely, these proofs have to be verifiable in polynomial time by a deterministic Turing machine. 

In an equivalent formal definition, NP problems is the set of decision problems where the “yes”-

instances can be accepted in polynomial time by a non-deterministic Turing machine [4]. Simply 

speaking, P-class problems mean that the class of problems can be solved exactly in polynomial 

time while NP (non-deterministic polynomial) problem stands for a class of problems for which 

each can be solved in polynomial time by a nondeterministic Turing machine. NP problems has 

far-reaching consequences to other problems in mathematics, biology, philosophy and 

cryptography.  

 

The complexity class P is contained in NP, and NP contains many important problems. The 

hardest of which are NP Complete (NPC) problems. A decision problem d is NPC  if :  d is in NP, 

and  every NP problem is reducible to d in polynomial time [2]. The most important open 

question in complexity theory, is the P versus NP problem which asks whether polynomial time 

algorithms actually exist for NPC problems and all NP problems.  

 

It is widely believed that NP!=P in 2002 [5]. In 2012, 10 years later, the same poll was repeated 

[6]; the number of researchers who answered was 126 (83%) believed the answer to be no, 12 

(9%) believed the answer is yes, 5 (3%) believed the question may be independent of the 

currently accepted axioms and therefore is impossible to prove or disprove, 8 (5%) said either 

don’t know or don’t care or don’t want the answer to be yes nor the problem to be resolved. On 

the other hand, researchers in the world never stop to tackle this problem. Fortnow [7] reviewed 

the status of the P versus NP problem on its importance, attempts to prove P≠NP and the 

approaches dealing with NPC problems. At the Web site [8] ,Woeginger provides an unofficial 

archivist of about 116 claims for the P versus NP problem from 1986 to April 2016, among them, 

49 (42%) believed the answer to be no, 62 (53%) believed the answer is yes, the other 5 (5%) 

think Undecidable, or Unprovable or Unknown, though none of them is commonly accepted yet 

by the research community.  

 

Through decades, NPC problems are treated as one class. Observing that most of NPC problems 

have different natures, in this study, we show that NPC problems are actually not the same in 

computational complexity, and they can be further classified.  We propose classifications in terms 

of their natures, reduction methods, exact algorithms, and the boundary between the P versus NP 

problem, and a new perspective: both P problems and NPC problems have the duality feature in 

terms of computational complexity of asymptotic efficiency of algorithms. We also discuss NPC 

problems in the real-life and shine light on finding better algorithms for them. 

 

2. THE NPC PROBLEMS CAN BE CLASSIFIED BASED ON THEIR 

NATURES 
 

NPC problems have different natures; they can be classified into six basic genres [2, 9], i.e., 

Satisfaction, Packing, Covering, Partitioning, Sequencing, Numerical computing.  

 

Satisfaction problems are the first kind of NPC problems. Examples include Circuit Satisfiability, 

SAT, 3SAT.  SAT problem is the first and fundamental combinatorial problem identified as NPC 
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[1]. The problem can be stated as: given a set of clauses c1, c2,…,ck over a set of variables X={x1, 

x2, …, xn}, does there exist a satisfying truth assignments?  A special case of SAT is that all 

clauses contain exactly three terms (corresponding to distinct variables). This problem is called 

3SAT.  Intuitively, the computational complexity of SAT is O(2
k
); as k close to n, it becomes to 

O(2n); 3SAT has similar computational complexity.  

Packing problems have the following structure: a collection of objects is given, and one wants to 

choose at least k of them; a set of conflicts exist among the objects, which preventing from 

choosing certain groups simultaneously. Examples include maximum Independent Set (MIS) 

problem (with computational complexity of O(k
2
C(n, k)) by brute-force method where C(n, k) is 

the combination function of choosing k elements from n elements), Set packing problem (with the 

same computational complexity  as MIS) etc.. 

Covering problems have a nature contrast to packing problems: a collection of objects is given, 

and one wants to choose a subset that collectively achieves a certain goal (the goal may not clear 

known before computing), with only k of the objects can be chose. Examples include Vertex 

cover problem (VCP) with computational complexity of O(k2
C(n, k)), Set cover problem etc.. 

Covering problems regularly complementary to Packing problems, therefore they have the same 

or similar complexities. 

Partitioning problems involve a search over all ways to divide up a collection of objects into 

subsets so that each object appears in exactly one of the subsets. Examples include 3-Dimensional 

matching, Graph coloring etc., both with computational complexity of O(2
n
) by brute-force 

method. 

Sequencing problems involve search over the set of all permutations of a collection of objects in 

some order. Examples include Traveling Salesman problems (TSP) with computational 

complexity of O(n2
2

n
) by dynamic programming (9),Hamiltonian Cycle problem (HCP). 

 

Numerical computing problems involve choosing a subset from a collection, collectively achieves 

a given goal (the goal (sum) is clearly stated). Examples include Subset Sum problem with 

computational complexity of O( )=O(2
n
) by brute-force method while O(nT) can 

be achieved by dynamic programming where T is the target value. In this complexity of O(nT) 

may not be considered as NPC problem. We will discuss this further later. 

 

We can observe that the six genres have different natures and computational complexities. If 

brute-force (trivial exhaustive) method is applied, Numerical Computing ≤ Packing ≤ Covering ≤ 

SAT ≤ Partitioning ≤ Sequencing problems in complexity. However, Numerical computing 

problems can have much less computational complexity by dynamic programming, very different 

nature than others; Sequencing problems are harder than others. We will further discuss this in the 

following.   
 

3. NPC PROBLEMS CAN BE CLASSIFIED BY REDUCTION METHODS 

 
NPC problems require that every problem in NP is reducible to a NPC (or SAT) problem  in 

polynomial time [2]. We observe that reduction methods of NP Complete problems are different 

for different problems. They can be classified as: 

 

Special formulation of NPC problems.This kind of NPC problems are easy to reduction. For 

examples, SAT problem and 3SAT. Since 3SAT is just a special case of SAT, so it is very easy to 

reduction between them. Similarly, 3-coloring problem and k-coloring problem.The reduction 

between them takes negligible time. Because of its expressive flexibility, 3SAT is often a useful 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, February 2018 

70 

starting point for reduction. Similarly graph coloring problem and 3-coloring problem are in this 

line. 

 
Complementary NPC problems.For instance, Maximum Independent Set (MIS) which forms 

the largest independent set of nodes without connection by edgesamong them and Minimum 

Vertex Cover (MVC) which forms the smallest vertex set of nodes covering all the edges in a 

graph. Let a graph G=(V, E) where V is its node set and E is its edge set. ThenI is an independent 

set if and only if  its complement (V-I) is a vertex cover, this is proved in [9].Similarly CLIQUE 

problem and Vertex cover problem are complementary. The reduction between complementary 

NPC problems takes negligible time. 

 

Hard to reduction NPC problems.For instance, HCP (Hamiltonian Cycle problem) and 3SAT. 

The connection between these two NPC problems is not obvious. Actually it is quite complicated 

to do reduction between them. It may take quite some time to design and implement the reduction 

in this case, as shown in [8]. 

 

Also in some other cases, the reduction can change the size of the original NPC problem.For 

instance, 3SAT≤p CLIQUE  (≤p stands for P-reducible) is easy as done in [10];However, the 

reduction doubles the number of nodes for CLIQUE since the negation of each variable is 

included as a node. Therefore, the computational complexity is increased from 2
n to 2

2n if 

implemented by trivial solution. Similarly 3SAT≤p SSP [8], increasing the number of variables 

from n to 2(n+k) where k is the number of clauses in 3SAT.  We cannot safely say they are still at 

the same level of computational complexity in this case. 

 

Summarizing these scenarios, what we can say is that NPC problems are not equivalent  in term 

of reduction among them. The reduction methods may take different time, and the reduction 

may change the size of the original NPC problem, which making their computational 

complexityindeed different.  

 

4. THE CLASSIFICATION CAN BE BASED ON EXACT SOLUTIONS TO 

SOME NPC PROBLEMS 

 
Though it is very hard, researchers never stop to find more efficient exact solutions than trivial 

(brute-force) solutions to NPC problems.  In [11], Woeginger surveyed that some fast, super-

polynomial time algorithms which solve NPC problems to optimum, and found that some NPC 

problems have better and faster exact algorithms than others; there is a wide variation in the worst 

case complexities of known exact algorithms, as shown in Table 1. Notice that these problems are 

representatives of the six basic genres in NPC problems. It can be seen that 

SSP≤MIS=SCP<3CP<3SAT<TSP in term of complexity, the list can be added. These evidences 

indicate that the computational complexity of exact solutions to some NPC problems can be 

further classified; we may classify NPC problems in more detailed categories such as in term of c
n
 

for each c increasing by 0.1.  There may exist a sequence of NPC problems X1, X2, X3, … , in NP, 

each strictly harder than the previous one if we sort them, as also suggested in [9]. 

 

Tarjan and Trojanowski[15] also found that  even for NPC problems it is sometimes possible to 

develop algorithms which are substantially better in the worst case than the obvious enumeration 

algorithms (trivial brute-force solutions). 
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For MIS alone, trivial solution has complexity of O(2
n
), and exact solutions with complexities of 

O(1.4422n) in 1965  [16], 1.2599n in 1977 [15], 1.2346n in 1986 [17], 1.2227n in 1999 [11], 

1.2125
n
 in 2012 [18], 1.1996

n
 in 2013 [12] are respectively found, researchers are still finding 

better exact solutions to it.  Although no polynomial time algorithm has yet been discovered for 

NPC problems, one can see that the computational complexities of some exact solutions become 

close to polynomial or called super-polynomial [11] or pseudo-polynomial [9]. 
 

Table 1.  The complexities of exact solutions to some NPC problems from [11] and some recent papers * 

Problem Complexity Paper  Genre 

MIS (maximum independent set) 1.1996
n
 [12] Packing 

Set covering problem (SCP) * 1.1996
n
  Covering 

3CP (3-coloring of planar graph) 1.3446
n
 [13] Partitioning 

SSP (subset sum problem)* nT [9] Numerical 

3SAT 1.4802
n
 [14] Satisfaction 

TSP n
2
2
n
 [9,11] Sequencing 

*: In Table 1, cited paper and their genres are also given. Notice that T is the target value for SSP and dynamic 

programming is applied for SSP; and SCP has similar complexity as MIS [9]. 

5. NPC PROBLEMS AND THE P VERSUS NP PROBLEMS ARE CLOSELY 

RELATED TO THE SIZE OF THE PROBLEM 
 
One reason that researchers still cannot find efficient solutions to NPC problems may be that the 

size (scale) is always increasing. For instances, the node number of TSP problem varies from a 

few tens to tens of thousands or more during recent 60 years of research. This is the curse of the 

dimension. 

 

With rapid increased speed of modern computers, large instances of NPC problems can be solved 

efficiently. Table2 shows records of optimum solutions to some TSP problems.  

 

One can see that the size of the problem is increasing as year goes. Notice that the instance with 

1904711 nodes is still not yet solved exactly but just has a good lower bound [19].  Similar results 

are also observed for HCP and other NPC problems. For real-life problems with small or 

moderate number of variables, they may be solved to exactly very easily. Since NPC problems 

can be P-reducible to each other, once we find a good efficient algorithm for one NPC, it 

should also work for other NPC problems. However, if the problem size increases to very 

large, finding efficient solutions to NPC problems become intractable. 
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Table 2.Records of optimum solutions to TSP problems [19]  wheren is the number  of nodes in TSP. All 

TSP problems in the table are solved to optimum except for the last one 

 

n Year (solved) Node type 

48 1954 USA cities 

64 1971 random nodes 

80 1975 random nodes 

120 1977 Germany cities 

318 1987 cities 

532 1987 USA cities 

666 1987 World cities 

1002 1987 cities 

2392 1987 cities 

3038 1992 cities 

13509 1998 USA cities 

15112 2001 cities 

24978 2004 Sweden cities 

85900 2006 cities 

100000 2009  Japan 

1904711 2010* World TSP Challenge 

 

6. THE DUALITY FEATURES OF P AND NP PROBLEMS 

 
The following definitions are based on the computational complexity of different problems in the 

worst case. 

 

Definition 1: The asymptotic efficiency of algorithms [9,10]: concerns with how the running time 

of an algorithm increases with the size of the input in the limit, as the size of the input increases 

without bound. 

 

Definition 2: The O-notation of computational complexity of an algorithm: asymptotically 

bounds a function from above within a constant factor [9,10]. For a given function g(n), we 

denote by O(g(n)) : 

 

O(g(n))={f(n): there exist positive constants c and n0 such that 0≤f(n)≤cg(n) for n≥ n0}. 

 

Fig.1 shows the intuition behind O-notation. For all values n to the right of n0, the value of 

function f(n) is on or below g(n).  

 

Fig.1 f(n)=O(g(n)) [10] 
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Since O-notation describes an upper bound, when we use it to bound the worst-case running time 

of an algorithm, we have a bound on the running time of the algorithm on every input. For 

example, the doubly nested loop structure of the insertion sort algorithm has an O(n
2
) upper 

bound; equivalently, we mean that the worst-case running time is O(n
2
). 

Definition 3: P-class problems in term of O-notation of computational complexity: they have 

computational complexity of O(n
k
) for some constant k where n is the size of input to the 

problem. 

Definition 4: NPC problems: their exact solutions may have computational complexity of  O(2cn) 

in O-notation, where n is the size of input to the problem and c is a positive constant. 

TABLE I shows computational complexities of exact solutions to some NPC problems 

(abstracted from [11]).We also consider that the representation of the input to the problem by m 

bits (in binary) and the space complexity of a problem by s bits (in binary in memory).  

Fact 1: A regular system (the computer hardware, called the system in the following) has 

capability of handling B0 numbers in term of computational and space complexity, i.e., handling 

the input efficiently within reasonable time (may be within a few hours or minutes depending on 

the applications) without overflowing the system, where B0 may be related to the memory size or 

whichever (CPU, memory, disk et.) is the bottleneck of the system. 

Based on the definitions above, the capabilityB0can be represented by 

B0=min(2
cn

, n
k
, 2

m
, 2

s
)                                                     (1)                                         

 
Table 3.  The summary of variables 

Variables Meaning 

k, c, n0 apositive constant 

n,e The size of inputs to a problem 

s, m The number of bits (binary) 

B0 min(2
cn

, n
k
, 2

m
, 2

s
) 

W, C, b apositive number 

 

For example, Subset Sub problem (SSP) is pseudo-polynomial time solvable with computational 

complexity of O(nW) [9, 10],  it is polynomial time only when both n and W are less than B0 (or 

bounded by a polynomial function) while it is NPC problem when both n and W are very large 

(beyond  B0 ). 

 

Definition 6: the transformability of P-class  problems to NPC problems: in term of 

computational complexity when the size of the representation of the inputs become very large, P-

class problems with computational complexity of O(W) can become NPC problems with 

computational complexity of  O(2cn). 

 

Lemma 1.Dynamic programming algorithm for Subset Sum problem (SSP) is pseudo-polynomial 

time. 

 

Proof. The proof is provided in [9]. For completeness,  the proof is restated here. The dynamic 

programming algorithm (DPA) for SSP has running time of O(nW), which is reasonable and 

looks like polynomial when W is small, but becomes hopelessly impractical as W (and the 

numbers of elements in the set) grow large. Consider, for example, an instance with 100 numbers, 

each of which is 100 bits long. Then the input is only 100×100=10,000 digits, but W is now 
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roughly 2
100

 (2
n
). Since integers will typically be given in bit representation, or base-b 

representation where b can be any integer. The quantity W is really exponential in the size of the 

input (2
n
); the DPA for SSP was not a polynomial-time algorithm, but referred to it as pseudo-

polynomial, to indicate that it ran in polynomial-time in the magnitude of the input numbers, but 

not polynomial in the size of their representation. ■ 

 

Based on Lemma 1 and above conditions, our main result is the following theorem.  

 

Theorem 1:The instances of SSP can have computational complexity of NPC problems and 

P-class problems, this is called the duality feature in this paper. 

Proof:  The proof is straightforward based on above definitions and Fact 1. Consider that  P 

problems can be solved in polynomial time of O(n
k
) for some constant k where n is the size of 

input to the problem (Definition 3) while NPC problems have computational complexity of O(2
cn

) 

(Definition 4).  

We consider the following two cases from computational complexity point of view, especially 

taking the representation of the input into account: 

 

1) If ((nk
≤B0) & (2cn>B0)), then P <NPC (or called P≠NPC). This is because that the system can 

handle efficiently the P problem (when n
k
≤B0) but  cannot handle efficiently the NPC 

problem. 

 

2) If   ((n
k
>B0) & (2

cn
>B0)), then P->NPC. This is because that the system cannot handle either 

one efficiently, the P problem becomes a NPC problem or the P problem is pseudo-

polynomial time by Definition 5 in this case. 

 

This completes the proof. ■ 

 

One of the obvious evidences forP problems and NPC problems are mutual transformable is the 

Subset Sum problem (SSP): it is one of 21 NPC problems in original list of Karp’s paper [2], 

named as Knapsack problem; however it is pseudo-polynomial time of O(nW) [9], it will be 

polynomial time solvable if  both n and W are less than B0 (or bounded by a polynomial function) 

while it is NPC problem when both n and W are very large (beyond  B0  in representation). 

 

Observation 1:  Even one can find efficient solution (polynomial time algorithm) to one or 

more NPC problems, some pseudo-P problems may become NPC problems in computation- 

al complexity when the representation of the input to them become very large.  

 
Observation 1 means that there still exist other problems, especially pseudo-polynomial time 

problems to become NPC problems in computational complexity even if one finds efficient 

polynomial time for one or more NPC problems. Then why do we still work on the P versus NP 

problem? Maybe just for finding better efficient solutions. 

 

7. DISCUSSION AND CONCLUSION 
 

As P-class problems have different computational complexities, we find NPC problems also have 

different computational complexities. Since NPC problems are P-reducible to each other, 

currently very good algorithms for SSP and MIS are already found, we may find better efficient 

algorithms for NPC problems in the near future. 
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NPC problems in many cases are man-made (artificial), they are much easier to solve in real 

world. For instance, SAT problem is from practical Circuit Satisfiability problem (CSP). Its 

computational complexity actually depends on the number of inputs since it involves n variables 

with k clauses.  However, in practice, it is unlikely to have too large exponential number of 

combination inputs for any circuit but reasonable number of inputs, which should be  polynomial 

time solvable. Thinking about any real circuit, if we have to check the truth assignment by 

exponential-time, the circuits may not be useful.  

 

Cloudert [20] also found that exact coloring of real-life graphs is easy since real-life graphs 

always have small or moderate number of nodes and edges, which can be solved to optimum very 

easily using today’s desktop computer. Similarly exact solution to 3-coloring of real-life planar 

graphs is very easy, since the world map only have about 200 countries there.  

 

Also TSP problems in real world may only have a few tens nodes (there is hardly a case that a 

salesman has to travel more than 100 sites at one time), which can be solve exactly and easily by 

heuristic algorithm such as LKH [21]. Notice that we show the records of TSP benchmarks in 

Table 2. Just for challenging, the current largest TSP problem has 1904711 nodes, other 

benchmark problems with nodes less than 1904711 are reported to be solved exactly to optimum 

[19].  

 

We also observe that approximation algorithms regularly perform much better than exact 

algorithms for many NPC problems. For TSP problem, LKH algorithm is heuristic (benchmark), 

known to solve many TSP problems to optimum within reasonable time (estimated computational 

complexity of O(n2.2)). Comparing against the exact solution of TSP with computational 

complexity of O(n
2
2

n
) by Dynamic Programming, LKH performs much better and faster; the 

exact solution can only solve TSP with a few tens (less than 30) of nodes using today’s fast 

desktop computer while LKH can solve TSP with a tens of thousands of nodes using the same 

desktop computer. Similarly for Hamiltonian Cycle problem (HCP) and other problems, heuristic 

algorithm may perform much better than exact algorithm for NPC problems. The current author 

also proves that a near optimal result can be assured for TSP problems using LKH algorithm [22]. 

In this case, we may consider using heuristic algorithms instead of exact solutions.   

 

As another perspective, it is recently proven mathematically that memcomputing machines (a 

novel non-Turing paradigm) have the same computational power of nondeterministic Turing 

machines [26]. Therefore, they can solve NPC problems in polynomial time with resources that 

only grow polynomially with the input size.   

 

Donald Knuth, who ever proposed the name of NP Completeness  by a poll,  said in 2014, “I've 

come to believe that P = NP, namely that there does exist an integer M and an algorithm that will 

solve every n-bit problem belonging to the class NP  in n
M

 elementary steps” [26]. However, we 

still not yet find the M.   

 

NPC problems and P versus NP problem challenge many researchers to tackle them. In this paper, 

we show that NPC problems are actually not equivalent in computational complexity except for 

trivial or brute-force solutions.  We  show that the classification of NPC problems may depend on 

their natures, reduction methods, exact algorithms, and the boundary between P and NP.  These 

may shine light on rethinking NPC problems and P versus NP problem, hopefully help to find 

better solutions for them. 

 

NPC problems have different natures, they can be classified into six basic genres [2, 7], i.e., 

Satisfaction, Packing, Covering, Partitioning, Sequencing, Numerical computing.  
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Originally, PRIMES and Graph Isomorphism were hard to determine to be in NPC or not in 

Cook’s paper [1]. In 2004, PRIMES is found in P-class and accepted by the research community 

[10].  And in 2015, Graph isomorphism is reported to have Quasipolynomial time solution [11, 

12], though the results are still under verification. These show some new perspectives and trends 

on NPC problems. 

 

As another perspective, it is recently proved mathematically that memcomputing machines (a 

novel non-Turing paradigm) have the same computational power of nondeterministic Turing 

machines [13]. Therefore, they can solve NPC problems in polynomial time with resources that 

only grow polynomially with the input size.   

 

NPC problems and the P versus NP problem challenge many researchers to tackle them through 

decades of efforts. In this paper, a new perspective is also provided: P class problems and NPC 

problems can be transformable in terms of computational complexity. Hopefully, this may shine 

light on solving the P versus NP problem. 
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