
International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

DOI:10.5121/ijcsit.2017.9206 69

A NOTE ON GÖDEL´S THEOREM

J. Ulisses Ferreira

Trv Pirapora 36 Costa Azul, 41770-220, Salvador, Brazil

ABSTRACT

This short and informal article shows that, although Godel's theorem is valid using classical logic, there

exists some four-valued logical system that is able to prove that arithmetic is both sound and complete.

This article also describes a four-valued Prolog in some informal, brief and intuitive manner.

KEYWORDS

Gödel, incompleteness theorem, four-valued logic, Hilbert’s program

1. INTRODUCTION

In 1931, Kurt Gödel, after his revolutionary theorem, placed a full stop on Hilbert's dream of
formalizing mathematics. Gödel demonstrated that it would not work even for arithmetic[1].

On the other hand, in the nineties, I started inserting a third value called "unknown" in Plain[2],
i.e. a programming language that I was designing at that time. The unknown constant was
theoretically referred to as uu since the end of nineties, when I was doing PhD abroad. In my own
PhD thesis, I introduced a five-valued logic from the values in {tt, ff, uu, ii, kk}[3]. In 2004, I
published not only that logic as a journal article but I also published a 7-valued logic in a
Conference in San Diego[4], adding the values {fi, it} ("false or inconsistent", "inconsistent or
true", respectively) for being able to be used together with the same uncertainty model proposed
during my Master's course in 1990. My 7-valued logic that makes use of that uncertainty model
permits that, during the computation, as the system obtains novel pieces of information, variables
change their values. An example of this is the paternity test: before the discovery of the DNA
test, it was possible to conclude whether a child was a daughter or son of a particular man by
hereditary physical characteristics. However, there was always uncertainty up to some extent.
The uncertainty factor could be represented by uu (unknown), at least as an initial state of some
variable. Since the DNA test was discovered, all variables which represents the hypothesis of
being the child's father should change their states from uu to either kk or tt or ff.

As part of my previous contribution, the kk value means "knowable", and it is usable when
something is not already known, but it is already known that it is consistent. It can either be true
or false but not both. It can be known by God or someone else or some machine, for instance, but
it is not already known by the machine or person who is deductively reasoning, and it may be
unknown forever, but at least its consistency is guaranteed. This is the meaning of the kk value,
which fits in the referred uncertainty model when a variable thresholds collapse: False = True,
which means that there is nothing strictly between the False and the True thresholds. In the above
example of the paternity test, uu used to represent the initial state before the discovery of the
DNA test, whereas kk represents the initial state given the existence of the DNA test, but before
knowing the result of a particular DNA test, either ff or tt.

Individually and previously, Kleene, Lukasiewicz and Priest proposed their three-valued logics.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

70

In 1977, Nuel Belnap (1930-) had proposed his logic on 4 values[5]. What I observed several
years ago is that Gödel's proof may not work together with some logics that have more than 3
values. The 4 necessary values mean "true", "false", "unknown" and "inconsistent", or similar
meanings. That is, at least these 4 values and meanings. The latter two values correspond to N
(none) and B (both) in the four-valued Belnap's logic, respectively, and correspond to uu and ii,
respectively, in both referred logics of mine, as well as in my four-valued logic presented in this
article, and the four-valued Prolog also described here.

The problem Gödel introduced was due to existing self-references and paradoxes, which made
propositions of arithmetic result in both true and false. Together with the observation that any
proof over mathematics was also a mathematical object itself. However, Boolean logics are
clearly unable to permit that formal systems written in them capture the problem pointed out by
Gödel in his theorem.

One condition for a four-valued formal system being able to prove all true propositions, and only
the true propositions, is certainly that it has the same results of the classical logic, except for
when one or two operands have values other than true and false. In any proof, a result here is the
true value only, and do not include values such as "unknown". Belnap's four-valued logic does
not fail under this condition, for, although (B ˅ N = T), where T represents the true value, the
values of the operands are "B" and "N", which are not Boolean.

In my PhD thesis, there was a kind of typo in the truth-table for the specific case ff↔ff, which
results in tt in my logic but ff was written instead: a kind of mistake in only one of the two truth-
tables for the equivalence operation. However, taking this into account, and by using only one of
those equivalence operations, my five-valued logic suffices regarding that condition. Moreover, I
checked in 2007, by using a program of mine, which seems to be correct, whether such a four-
valued logic exists, and its computation resulted in several logics, where one of them was
Belnap's logic. The 12th solution written by my program computation was the logic which
pleased me the most, and I think that other people might have done the same as I did, and even
preferred the same logic as I did, but I have never seen one. In 2011, I could not claim the
authorship of that four-valued logic, but the true truth-tables of my preference are the following:

Table 1. The present author’s four-valued logic true table

Section 2 dedicates to Gödel’s theorem and his proof, and I informally describe a system for
capturing all possible results. In section 3, I briefly describe a four-valued Prolog programming
language, whereas section 4 contais my conclusions.

2. ON GÖDEL’S PROOF

The set of all propositions on arithmetical true is written for the two Boolean values, but that set
could be complete but cannot be sound, i.e. it is clearly inconsistent. However, I write an external
layer with an external view of that set. My layer is written with 4 or more values. It interprets that
set and, thus, both layers together form a formal system where the two-valued system is the
server while the four-valued system is the client. The external layer makes use of the internal one.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

71

The system with at least four values is pretty simple and works in the following manner:

Whenever one attempts to prove that a proposition is true and the two-valued system results in
true, the external layer still tries to prove that the proposition is false: If the two-valued system

results in true, the external layer results in ii, the inconsistent value. However, on the other hand,
if the two-valued system results in false instead, the external layer results in true.

Whenever one attempts to prove that a proposition is true and the two-valued system results in
false, the external layer still tries to prove that the proposition is false: If the two-valued system

results in false, the external layer results in uu, the unknown value. However, on the other hand, if
the two-valued system results in true instead, the external layer results in false.

In other words, the meaning of a two-valued internal query is only the attempt to prove, which
either succeed or not. In this way, the whole formal system is clearly sound and complete. In
1997, I wrote a three-valued Prolog which I called Kleene at that time and Globallog in the
following year[6] for becoming more modest, and the same language is the subject of one of the
chapters of my PhD thesis.

The system described above in this section can be more clearly written in a Pascal-like language
style as follows:
1. An algorithm in Pascal-like language

type
proposition = string;

QueryAnswers = (LocalFalse, LocalTrue, NotFound);
FourValues = (uu, ff, tt, ii);

(* … *)

function TryProposition2v(p: proposition, q: QueryAnswers): boolean;
begin

(*

any polynomial search algorithm with unification for checking whether the
proposition p is true. Alternatively, this function also returns

the information that the search algorithm has been unable to answer
whether the proposition p is true or false with respect to the current state
of the knowledge base. In this case, where no unification has been found,
the result is false.

*)

end;

function proposition4v(p: proposition): FourValues;
begin

if TryProposition2v(p,LocalTrue) then if

TryProposition2v(p,LocalFalse) then

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

72

proposition4v := ii
else

proposition4v := tt

else

if TryProposition2v(p,LocalFalse) then
proposition4v := ff

else

proposition4v := uu
end;

Clearly, such an algorithm captures all possibilities, and can be adapted to extend from the
propositional logic to a more sophisticated and even second-order logic with propositions.

Certainly, we are unable to state all mathematical true, for mathematics is a science and, as such,
new theorems and proofs, new mathematical objects, are being formulated all the time by
researchers. So, a proper four-valued formal system is able to state when a proposition is still
unknown due to the uu value. On the other hand, such a formal system captures the notion of
paradoxes due to the ii value. Therefore, it is sound and complete.

3. A FOUR-VALUED PROLOG

For further work, a four-valued Prolog can be formally defined, implemented and used. In this
section, I introduce a brief, informal and intuitive description of the adaptation of the three-valued
Prolog defined by the present author[6]. Let us call Prolog4v the sample programming language
whose interpreter is intended to be the four-valued formal system.

3.1 Syntactical and Semantic Definitions

Definition 1. A program in Prolog4v is a sequence S of clauses c1 … cn . Thus, it is said that a

computation by S proves a goal g if and only if there exists some ci in S such that g is an

immediate consequence of ci , assuming that the body of ci can be proven. The notion of clause
and body are in the following definition subsection.

Given S as a sequence of clauses c1 … cn, a program in Prolog4v corresponds to the disjunction

among all clauses. That is: c1 ˅ … ˅ cn , where the disjunctive operator ˅ is the same operator of
the four-valued logic in table 1. Nonetheless, the interpreter, also called formal system here,
carries out its computation “downwards”, i.e. from the first to the last clause. The sequence of
clauses is often written like a Prolog program is, i.e. one clause occupies one line.

Definition 2. A clause is a language construct which has one of the forms bellow:

[not] p(t1, , … , tn).

or

[not] p(t1, , … , tn) ← [not] p1(t1,1, , … , tr,1), … , [not] pm(t1,m , … , ts,m).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

73

The first clause above corresponds to a fact whereas the second clause corresponds to a rule. All
clauses end with a dot symbol. As usual in syntax definitions, the above brackets are not part of
the language but, instead, they mean that the negation operator in optional in the clauses. Any rule
contains its head, which is on the left of the inference operator ←, and its body, which is on the
right of the same operator. At the lexical level of Prolog4v, there are two different inference
operators to be chosen by the programmer, either “:-“ like in Prolog or “:=”. The former operator
obeys the Closed World Assumption[7] and makes use of the Negation as Failure[8]. This means
that if the body of a rule results in uu, the “:-“ operator makes the head of the same rule become
ff. Similarly, if the body of a rule results in ii, the “:-“ operator also makes the head of the same
rule become ff. The latter operator “:=” is a contribution of mine, which obeys what I called the
Open World Assumption in my PhD thesis[6] and it corresponds to the → operator described in
table 1.

Briefly, if no clause unifies some given goal g, the answer of the query for g is uu, the unknown
constant of Prolog4v.

The body of any rule is formed by a sequence of predicates with zero or more indexed parameters
t, separated by the comma symbol (“,”), which in its turn corresponds to the ˄ operator of the
four-valued logic that I introduced in table 1, in the introductory section. During the computation,

each predicate pj,(t1,j , … , tu,j) corresponds to a new four-valued goal and to a new four-valued
query.

Definition 3. There exist four predefined constants in Prolog4v, namely, ff, tt, uu and ii.

The above constants correspond to the four operands F, T, U and I, respectively, of the four-
valued logic described in table 1.

Note that, in accordance with table 1, if any of those queries in a body results in ff, the
computation of the whole rule results in ff regardless of the existence of any possible
inconsistency or lack of information in the other queries of the body of the rule in question. The
queries are performed from left to right like in Prolog, but it is easy to see that Prolog4v
interpreter can carry out the computation in parallel and it canb even distribute the computation
among a number of machines. Also from table 1, note that, a rule results in tt if and only if all
containing queries result in tt, that is, the trivial and Boolean cases clearly must hold.

With respect to the “:=” inference operator, which in its turn corresponds to the → implication
operator of the introduced four-valued logic, but containing the sides of the implication swapped,
I could have chosen any pairs of operands of the → table whose results are all tt. However, the
main diagonal of the → table is what makes sense in the real world, hence they are my choices.
That is to say, ff → ff, tt → tt, uu → uu, as well as ii → ii all result in tt and therefore → operator
is not only sound but also makes sense in the real world. During the computation, if the body of a
rule results in ii the query for the whole rule results in ii and, in this way, the inconsistency is
propagated, possibly to the level of the user, such as a mathematician.

However, any query with the negation operator can be treated as a unity. That is, although the
four-valued logic introduced in table 1 contains the “not” operator ⌐, the system might not make
use of it. Instead, the not operator can be part of the query as well as it is part of the unification
algorithm, i.e. the system tries to unify the predicate including the “not” operator. Furthermore,
not uu does not result in ii, whereas not ii does not result in uu either. Instead, the system ought
to propagate uu and also ii. Thus, not uu results in uu whereas not ii results in ii. These are the
only two exceptions with respect to table 1. In other words, there are two different forms of

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

74

negation.

In contrast with the negation in table 1, let us call the not operator in the definition 2 “abstract
negation”. I had also called “abstract negation” in the three-valued Prolog. Here, the negation is a
four-valued extension.

Finally, the ↔ operator in the above four-valued logic is simply not used by the system.

3.2 Examples

Consider the following example of a two-clause program in Prolog4v:

happy(ann). not
happy(ann).

Over the last thirty years, some proposals have been made for solving the inconsistency
problem[9], such as setting priorities, possibly in some implicitly way, for all clauses. The

literature on inconsistency in deductive databases and logic programs is large[10] but I think that
there is little references on abstract negation.

In the above example, a query like happy(ann) clearly results in ii. Accordingly, a query like not
hapy(ann) also results in ii. In both cases, the system tries to prove both and, in accordance with
the algorithm 1, implicitly makes two binary queries, for both the positive and the negative forms
of the predicate.

Now, consider the classical non-flying bird example:

fly(X) := bird(X), not penguin(X).
not fly(Y) := penguin(Y).
bird(tweety).

penguin(Z) :- bird(Z), polar(Z).

To answer the query fly(tweety), the system unifies the goal with the head of the first rule,
binding the variable X to the constant tweety. Then, the system finds the subgoal bird(tweety)
which in turn unifies the third clause and that subquerry results in tt. Then, in the body of the first
rule, not penguin(tweety), is the next subgoal to be explored. Note that, because of the inference
operator chosen, penguin is the head of a closed-world rule. Then, the subgoal unifies the fourth
clause binding Z to tweety. As the subgoal bird(tweety) had already been proven, the next
subgoal is polar(tweety). To explore this subgoal, the system does not unify any clause and,
because of this, this subquery results in uu. The body of the fourth clause results in uu since T Ʌ
U results in U in table 1. The subquery penguin(tweety) results in ff because of the closed-
world assumption made by using the “:-“ operator. If one replaces “:-“ by “:=” in the fourth
clause, the subquery penguin(tweety) in uu instead.

Now, consider a new clause

polar(tweety).

is asserted and the system places it at the end of the sequence of clauses. For the same query

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

75

fly(tweety), the system now answers ff. That is, it learns. In comparison to a similar Prolog
program:

fly(X) :- bird(X), not penguin(X).
bird(tweety).
penguin(Z) :- bird(Z), polar(Z).

The same query fly(tweety) would have resulted in true because the third clause alone ensures
that only a polar bird is a penguin. That is, until the knowledge base is complete, the system
sometimes gives wrong answers with respect to the real world. For instance, for a query such as
fly(airplane), results in uu in Prolog4v program above, whereas the same query results in false in
the three-clause Prolog program above. Following this, binary formal systems are clearly not
appropriate to write mathematical truths.

As another example, suppose that I know that Berne is the capital of Switzerland and that each
county has one capital only. In Prolog4v, one would write

capital(berne,switzerland).

not capital(X,Y) := capital(Z,Y), X <> Z.

where <> stands for the different from (≠) operator. A non-ground query, i.e. a query where there
is some unbound variable, for instance capital(bern,X) (note the different spellings) would result
in X = uu, whereas a ground query such as capital(zurich,switzerland) would definitely result in
ff as follows: the corresponding goal would not unify the first clause but would unify the second
one because the presence of the not abstract negation in its head does not fail during the
computation of the unification algorithm. In this case, X is bound to zurich and Y is bound to
switzerland. Then, the system tries to prove the subgoal capital(Z,switzerland) and unifies the
first clause, i.e. the fact capital(berne,switzerland) binding Z to berne. Now, the system
evaluates the expression X <> Z, which in turn results in tt as zurich is not berne. Since all
premises of the rule are true, the body results in tt and the system concludes that the head not
capital(zurich,switzerlan) is tt and, hence, that capital(zurich,switzerland) is ff, and that is the
response of the query at the user’s level.

4. CONCLUSIONS

There exists some four-valued formal system that is able to state all arithmetical truth. I think that
its descriptions is comprehensive even for undergraduate student. Philosophy students can also
understand the present article.

The computation by the referred formal system roughly takes the double the time of a typical
binary formal system: some time for trying to prove that a goal is true and some additional time
for trying to prove that the same goal is false. Therefore, its computation is polynomial.

ACKNOWLEDGEMENTS

Many thanks to my Master's course supervisors, namely, Pedro Sérgio Nicolletti and Hélio
Menezes Silva.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 9, No 2, April 2017

76

REFERENCES

[1] Gödel, Kurt, (1931) Über formal unentscheidbareSätze der Principia Mathematica und

verwandterSysteme I. MonatsheftefürMathematikunPhysik, Vol. 38, pp173-198.
[2] Ferreira, Ulisses (2000) uu for programming languages. ACM SIGPLAN Notices, 35(8): pp20-30.
[3] Ferreira, Ulisses (2004) A five-valued logic and a system. Journal of Computer Science and

Technology, 4(3): pp134-140, October.
[4] Ferreira, Ulisses (2004) Uncertainty and a 7-valued logic. In Pradip Peter Dey, Mohammad N. Amin,

and Thomas M. Gatton, editors, Proceedings of The 2nd International Conference on Computer
Science and its Applications, pp 170-173, National University, San Diego, CA, USA, June.

[5] Belnap Jr, Nuel, (1975) A useful four-valued logic. In J. Michael Dunn and George Epstein, editors,
Proceedings of the Fifth International Symposium on Multiple-Valued Logic, Modern Uses of
Multiple-Valued Logic, pp 8-37. Indiana University, D. Reidel Publishing Company.

[6] Ferreira, Ulisses (2004) A prolog-like language for the internet. In Veljko Milutinovic, editor,
Proceedings of IPSI CAITA-04, Purdue, Indiana, USA.

[7] Reiter, R. (1978) On Closed World Data Bases in Logic and Data Bases, Plenum Press, New York, pp
55-76.

[8] Clark, Keith (1978) Negation as Failure in Logic and Data Bases, Plenum Press, New York, pp 293-
322.

[9] Dung, P. M. & Mancarella P. (1996) Production Systems need Negation as Failure, Proceedings of
the XIII National Conference on Artificial Intelligence, vol 2, AAAI Press and the MIT Press, pp
1242-1247.

[10] Seipel, Dietmar (1998) Partial Evidential Stable Models for Disjunctive Deductive Databases, in
Logic Programming and Knowledge Representation, Third International Workshop / LPKR’97,
Lecture Notes in Artificial Intelligence, vol. 1471, Springer, New York, October, pp 66-83

AUTHOR

The present author studied as a Master student at the Universidade Federal da Paraíba in
Campina Grande, Brazil, and as a postgraduate student in the Department of Computer Science
at the University of Edinburgh, and did some further research work at Trinity College in Dublin
from 1998 until 2001.

