
International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

10.5121/ijcsit.2010.2311 150

��������	�
������	
������	�������	
���������
�������
����
������
���

Yaser Miaji Osman Gazali�and Suhaidi Hassan

ymiaji@gmail.com osman@uum.edu.my Suhaidi@ieee.org

UUM College of Arts and Sciences
University Utara Malaysia

06010, UUM Sintok, Malaysia
ymiaji@gmail.com

Abstract—Event ordering in distributed system (DS) is disputable and proactive subject
in DS particularly with the emergence of multimedia synchronization. According to the
literature, different type of event ordering is used for different DS mode such as
asynchronous or synchronous. Recently, there are several novel implementation of these
types introduced to fulfill the demand for establishing a certain order according to a
specific criterion in DS with lighter complexity.
Purpose – This paper demonstrates most significant implementation of types of event
ordering in DS.
Designing, methodology, approach – This paper firstly, present each type separately.
Then it presents its implementation approaches. The comparison between those types is
achieved later in the paper.
Finding – Most types used in event ordering in DS share same properties with some
delicate differences. However, some types which used for asynchronous mode cannot
be used in the synchronous.
Value – This paper is considered as a reference for scholars how desire to direct their
research; develop potential investigation; or introduce new type of event orderings in
DS.

Keywords-component;

 Distributed system; event ordering;

1. INTRODUCTION
A distributed system refers to a system that consists of a number of computers that do
not share a memory or a clock and communicate with each other by exchanging
messages over a communication network. A distributed operating system operates on
multiple autonomous computers but appears to its users as a single machine. Figure (1-
1) illustrates the embedded and basic architecture and features of distributed system.

Computer
 Node

Communication Network

Computer
 Node

Computer
 Node

Computer
 Node

Computer
 Node

Fig (1-1): Architecture of a Distributed System

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

151

Obviously, there are several benefits from using such system. Performance is improved
and the cost is reduced with the exception of certain special computation intensive
applications, equivalent computing power may be obtained with a network of
workstations at a much lower cost than a traditional time-sharing system. Requests of
services may be satisfied using hardware/software resources on other computers on the
communication network which means an enormous increase in resource sharing [4].
Furthermore, concurrent execution of tasks and load distributing can lead to improved
response time. Moreover, fault tolerance can be achieved through the replication of data
and services. Finally, one distinct feature is new hardware and software resources can
be added without replacing the existing resources which called as modular
expandability [8].
On the other hand, there are several drawbacks of using distributed system as
highlighted next. The global knowledge problem which means that global state of the
system is hard to acquire due to the unavailability of a global memory and a global
clock and the unpredictability of message delays [10]. Naming is another problem
which means the directory of all the named objects in the system (services, files, users,
printers, etc.) must be maintained to allow proper access. Both schemes of replicated
directories and partitioned directories have their strengths and weaknesses. Scalability
which defined as any mechanisms or approaches adopted in a system must not result in
badly degraded performance when the system grows. Compatibility which means that
the interoperability among the resources in a system must be an integral part of the
design of a distributed system is another issue. Also, process synchronization is
especially difficult in distributed systems due to the lack of shared memory and a global
clock [5]. Resource management refers to schemes and methods devised to make local
and remote resources available to users in an effective and transparent manner.
Moreover, securities which cope with two issues are relevant: authentication (verifying
claims) & authorization (deciding and authorizing the proper amount of privileges).
Structuring which defines how various parts of the operating system are organized [7].
On the top of all these issues appears the lack of common memory a system wide
common clock is an inherent problem in distributed systems [14]. In the absence of
global time, it becomes difficult to talk about temporal order of events. Without a
shared memory, an up-to-date information about the state of the system is not available
to every process via a simple memory lookup. The state information must therefore be
collected through communication. The combination of unpredictable communication
delays and the lack of global time in a distributed system make it difficult to know how
up-to-date collected state information really is [1].
After the demonstration of a brief pros and cons of distributed system the reminder of
the paper is organized as following; next section present the importance of event
ordering in distributed system. The most popular event ordering scheme is presented in
section four. The implementation of these schemes is presented in section five [3].
Finally, the comparison and conclusion are drawn.

2. THE IMPORTANCE OF EVENT ORDERING
Event ordering in distributed system consists in establishing a certain order among the
events that occur according to some particular criteria. According to the chosen criteria,
the resulting event ordering allows a greater of smaller degree of asynchronous
execution. In a distributed system, there are three of events; internal, send and receive
events. The internal events occur inside a process and they are never known by the rest

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

152

of the participants. On the other hand, the send and receive events are those through
which the participants communicate and cooperate. In this study, it is only considered
the send and receive events since they modify the global state of a system [2].
There are several problem associated with event ordering in DS. For example, if there is
event a and event b, how definite someone would say that a occur before b particularly
in the absent of physical clock such the DS case. From this point of view the demand
for a Symantec to organize and order the events is appeared [9]. There are two broad
categories of events ordering; total ordering and partial ordering. Beside the ordering
scheme there are two more methods used in the ordering which is no-ordering and Firs
Come Firs Serve (FCFS). However, in order to define any ordering scheme there should
be a definition of which event occur first [7]. In this regards, there are many approaches
which is presented in next section. The implementation of each of the ordering category
which varies and hence the research toward the improvement of the implementation is
potential, is presented latter. Next section presents most significant event ordering
scheme in more details.

3. SCHEME USED FOR DEFINING THE ORDER OF EVENTS
As stated formerly, there are two broad scheme; the total and partial event orderings.
Before establishing the demonstration of the event ordering scheme, there will by a
presentation of how the order is defined. In other words which event occurs before the
other particularly in absence of physical time figure (3-1) is used to aid the explanation.

Figure (3-1): A DS with two computer nodes

3.1. Hppened befor relationship
In this scheme there are three rules that define that a is occurred before b:

1. If a and b in the same process and a occurred before b.
2. If a is a sending process and b is a receiving for the same process.
3. If a occurred before b and b occurred before c then a is occurred before c.

To sum up, the happened-before relation captures the causal dependencies between
events, for instance whether two events are causally related or not. Event a causally
affects event b if a → b. Two events a and b are said to be concurrent (denoted as a||b)
if not (a → b or b → a). In other words, concurrent events do not causally affect each
other.

3.2. Logical Clock
A clock Ci is associated with each process Pi in the system, that can be thought of as a
function for assigning a number Ci (a) to any event a, called the timestamp of event a, at
Pi. The happened before relation “→” can now be realized by using the logical clocks if
the following conditions are met:
[C1] For any two events a and b in a process Pi, if a occurs before b, then Ci (a) < Ci

(b).
[C2] If a is the event of sending a message m in process Pi and b is the event of

receiving the same message m at process Pj, then Ci (a) < Cj (b).

 $250 $100

Communication Channel

S1:A S2:B

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

153

These two conditions are guaranteed with the following implementation rules:
[IR1] Clock Ci is incremented between any two successive events in process Pi as
follows:
 Ci := Ci + d, where d > 0.
[IR2] If event a is the sending of message m in process Pi, then message m is assigned a

timestamp tm = Ci (a). On receiving the same message m by process Pj, Cj is first
set using [IR1], then set to a value greater than or equal to the new Cj and greater
than tm, i.e., Cj := max (Cj, tm + d), where d > 0.

With these two implementation rules, two causally related events a and b such that a →
b will have C(a) < C(b), and two successive events a and b in process Pi will yield Ci(b)
= Ci(a) + d. (See Figure 5.3 for an example of Lamport’s logical clocks) [3].
Lamport’s system of logical clocks implements an approximation to global/physical
time that is referred to as virtual time. The virtual time advances along with the
progression of events and is therefore discrete. The virtual time is defined based on an
irreflexive partial order “→”, and can be used to totally order events in a distributed
system (hence produces a total order relation “�”) as follows:
If a is any event at process Pi and b is any event at process Pj, then a � b if and only if
either

Ci (a) < Cj (b), or
Ci (a) = Cj (b) and Pi p Pj

where p is any arbitrary relation that totally orders the processes to break ties (e.g.,
process id i < j implies Pi p Pj).
It should be noted that a � b does not necessarily imply a → b. And this is known to
be a major limitation of Lamport’s [15] logical clocks: If a → b then C(a) < C(b), but
the converse is not necessarily true. Figure 5.4 illustrates this limitation.

3.3. Vector Clock
Each process Pi in a distributed system with n processes is equipped with a vector clock
Ci. The clock Ci consists of an integer vector of length n, and can be viewed as a
function that assigns a vector Ci (a) to any event a at Pi as the event’s timestamp. Ci [i],
the ith entry of Ci, corresponds to Pi’s own logical time. Ci [j], j ≠ i, indicates the time
of occurrence of the last event at Pj that “happened before” the current point in time at
Pi [12]. It therefore represents Pi’s best guess of the logical time at Pj, and must satisfy
the assertion of Ci [j] ≤ Cj [j].
The vector clocks can be implemented with the following implementation rules:
[IR1] Clock Ci is incremented between any two successive events in process Pi as
follows:
 Ci [i] := Ci [i] + d, where d > 0.
[IR2] If event a is the sending of message m in process Pi, then message m is assigned a

timestamp tm = Ci (a). On receiving the same message m by process Pj, Cj [j] is
first incremented as in [IR1], then Cj is updated as follows:

 ∀k, Cj [k] := max (Cj [k], tm [k]).
Figure 5.5 shows examples of how vector clocks advance as events occur.
With vector clocks, a → b iff ta < tb, where ta and tb denote the vector timestamps of
events a and b, respectively. In other words, vector clocks allow us to order events in a
distributed system and decide whether two events are causally related based simply on
the timestamps of the events. The next section shows an application of vector clocks in
causal ordering of messages.

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

154

4. EVENT ORDERING SEMANTICS
Under the two major categories of event ordering schemes, namely: total and partial
event ordering in DS, there are six famous ordering schemes as following; FIFO, causal
ordering, total ordering, ∆-causal ordering, causal total ordering, fuzzy causal ordering
and partial ordering.

4.1. First In First Out (FIFO)
This is the simplest ordering scheme which requires no mathematical overhead. Its rule
is quite simple; if process sent event m before event n then no process send n before m.
However, such scheme could cause a problem if the computer node desperately
demands for a specific order for a potential reason.

4.2. Causal Ordering (CO)
Causal ordering of messages refers to the preservation of causal relationship that holds
among “message send” events in the corresponding “message receive” events. That is,
Send(M1) → Send(M2) implies Receive(M1) → Receive(M2), where Send(M) and
Receive(M) represent the event of sending and receiving message M, respectively.
Causal ordering of messages is important in some applications, e.g., replicated database
systems, where every process in charge of updating a replica receives the updates in the
same order to maintain the consistency of the database. Causal ordering of messages is
not automatically guaranteed in distributed systems, hence will require implementation
where necessary [5].
This scheme could be simplified as following; if sending message m causally precedes
sending message m’ then no process delivers m’ before delivering m. However, the
implementation of such scheme is not that simple. There are many proposed
implementation in the area of causal ordering and research in this area is active [5].
In a causally ordered network, when a node receives a message, before the node can
respond to the message it must be certain that it will not receive any other message from
any other node that causally precede that message. Therefore, the node must utilize
some type of ordering scheme to signify when it can respond [14].
CO is at the communication level, but consistency requirements are typically expressed
in terms of the application's state. CO is not adequate in itself to ensure application-level
consistency, and providing additional mechanism at the state level to remedy this
deficiency eliminates the need for CO, or it is expensive. CO provides atomicity by
buffering messages but fail to provide durability to message delivery [4].
Causal relationships can arise between messages at the semantic level that are not
recognizable by the happens-before relationship on messages. Causal Ordering can be
preserved at shared resource level but not at communication level [11]. Furthermore,
CO cannot ensure serializable ordering between operations that correspond to groups of
messages. Many semantic ordering constraints are not expressible in the happens-before
relationship, and hence not enforceable by CO. Such ordering constraints, include
causal memory, linearizability and serializability.

4.3. Total ordering
Total ordering semantic implies that all messages are reliably delivered in sequence to
all members of a group. Also, total ordered semantic guarantees that all group members
see the same order of messages. All messages arriving at al workstations are ordered
[15]. Total ordering is the most stringent ordering as all message transfers between all
members of the group are in order. This implies that all processes within the group

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

155

perceive the same total ordering of messages. In causal ordering we are concerned with
the relationship of two messages while in total ordering we are concerned with seeing
the same order of messages for all group member processes [7].
Total ordering insures that each correct member delivers all messages in the same
relative order. Of course, the total ordering must not violate the causal ordering, since
the property of total ordering is stronger than causal ordering.
To simplify this scheme, a simple argument is provided. If correct processes p and q
delivers m and m’ then p delivers m before m’ only if q delivers m before m’.
To place a total ordering on the set of all system events, systems of clocks could be used
to satisfy the clock condition. Imply all events are ordered according to which they
occur. Firstly, and y arbitrary total ordering used. And the following relationship is
defined: if z is an event in process Pi and b is an event in process Pj, then a b if and only
if either (i) Ci(a) or (ii) Ci(b) an Pi →Pj. In other words the total ordering is a way of
completing the happened before [13].
The total ordering of requests leads to ineffeciency due to more data movement and
synchronization requirements than what a program may really call for.

4.4. ∆∆∆∆-Causal Ordering
The main purpose for developing Delta causality order is for some distributed
applications which have to be delivered according to casual ordering and have a limited
lifetime after which their data can no longer be used by the application. The first
development of such scheme is by Fidge [12]. In delta scheme, the system strives to
deliver as many messages as possible before their deadlines in such a way that these
deliveries respect causal order [2].
The implementation of this semantic suffers from several drawbacks. It suffers from the
typical pitfall of the time stamping (logical or physical) technique; to ensure causal
order, in the context of broadcasting, messages have to carry a vector of integers whose
dimension is given by the number of process which eventually, introduce an extra over
head and complexity [4].

4.5. Causal Total
This semantic is applicable if the messages satisfy the causal and the total constrain. For
example, if event a occurred before event b and a is the cause for event b it partially
satisfied the causal scheme. Furthermore, if both messages could be delivered to all
nodes in the same order this will satisfy the total order constrains. Therefore, this
message could be causal total [4].

4.6. Fuzzy causal order (FCO)
The fuzzy causal relationship could be defines as following; A causally increases B”
means that if A increases then B increases and if A decreases then B decreases. On the
other hand if ‘A causally increases B” means that if A increases then B decreases and if
A decreases then B increases [1].
In the concepts that constitute causal relationship, there must exist a quantitative
element that can increase or decrease.
FCM fuzzy relations mean fuzzy causality. Causality can have a negative sign. The
negative fuzzy relation between two concept nodes is the degree of relation with
“negation” of a concept node. For example, if the concept node Ci is noted as Cj the
R(Ci,Cj)=-0.6 which means that R(Ci,~Cj)=0.6 conversely R(Ci,Cj)=0.6 the
R(Ci,~Cj)=-0.6.

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

156

There are some principles for the FCO [1]. Firstly, If two causal relationships support
the same conclusion, then the addition of those 2 causality value is > each causality
value. Secondly, If a causal relationship is connected consecutively to a causal
relationship, then the absolute value of its additive value of the 2 causality values is <=
the least of absolute value of the 2 causality. Thirdly, The final additive value remains
same irrespective of the order of addition of causality values of interest. Finally, The
final causality value lies in the interval [-1,1]. However, all these principles and ties
provide additional complexity and hence inefficiency to the scheme.

4.7. Partially ordering
The definition of partially ordering concurred with the happened before which presented
earlier. In the absence of real clock it hard to define which message is occur first. Even
with the presence of real clock it is hard to accurately adjust the clock particularly with
micro seconds. Therefore, the delivery of the messages in the semantic is partially
ordered.
Partially ordering begins with a precise definition of the system. The assumption of a
system with a collection of processes is put forward. Each process consists of sequence
of events. The execution of the event should be one event [8].
From this point on, the entire system is considered as a sequence of processes [12].
For example, if a and b are events in the same process and a comes before b, then a →
b. Also, if a is the sending of messages by on process and b is the receipt of the same
message by another process, then a →b. Finally, if a → b and b → c then a → c. Two
distinct events a and b are said to concurrent then a →b and b →a.

5. CONCLUSION
In this paper seven ordering semantic has been presented. Some of the benefit and
drawbacks of using these schemes is demonstrated. This paper is a comprehensive
investigation in the event ordering schemes in the distributed system. It appears that
most of the semantics are concurred in several properties with a slight difference. The
obvious issue is the light and simple implementation of some efficient event ordering
scheme such as FCO.

Acknowledgements

Author would like to thank his wife Ashwag for her support.

REFERENCES
[1] L. A. M. Rosales, S. E. P. Hernandez, and G. R. Gomez, "Fuzzy Causal Ordering of

Events in Distributed Systems," Journal of Applied Sciences, vol. 9, pp. 1441-1449,
2009.

[2] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems: concepts and
design: Addison-Wesley Longman, 2005.

[3] X. Defago, A. Schiper, and P. Urban, "Total order broadcast and multicast
algorithms: Taxonomy and survey," ACM Computing Surveys, vol. 36, pp. 372-
421, 2004.

[4] A. S. Tanenbaum and M. Van Steen, Distributed systems: Citeseer, 2002.
[5] J. Wu, Distributed system design: CRC, 1998.

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

157

[6] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal, "Efficient -causal
broadcasting," International Journal of Computer Systems Science and Engineering,
vol. 13, pp. 263-269, 1998.

[7] S. Landis and S. Maffeis, "Building reliable distributed systems with CORBA,"
Theory and Practice of Object Systems, vol. 3, pp. 31-43, 1997.

[8] M. Raynal and M. Singhal, "Logical time: Capturing causality in distributed
systems," Computer, vol. 29, pp. 49-56, 1996.

[9] M. Sloman, Network and distributed systems management: Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 1994.

[10] R. Yavatkar, "MCP: A protocol for coordination and temporal synchronization in
multimedia collaborative applications," 1992.

[11] A. Acharya and B. R. Badrinath, "Recording distributed snapshots based on causal
order of message delivery," Information Processing Letters, vol. 44, pp. 317-321,
1992.

[12] C. Fidge, "Logical time in distributed computing systems," IEEE Computer, vol. 24,
pp. 28-33, 1991.

[13] A. Schiper, J. Eggli, and A. Sandoz, "A new algorithm to implement causal
ordering," 1989.

[14] K. P. Birman and T. A. Joseph, "Reliable communication in the presence of
failures," ACM Transactions on Computer Systems, vol. 5, pp. 47-76, 1987.

[15] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states of
distributed systems," ACM Transactions on Computer Systems (TOCS), vol. 3, pp.
63-75, 1985.

[16] L. Lamport, "Time, clocks, and the ordering of events in a distributed system,"
1978.

Authors

Eng. Yaser Miaji

Doctoral researcher in Information Technology

College of Arts and Sciences,
University Utara Malaysia

Master in Telecommunication Engineering
University of New South Wales,
Australia, 2007

Bachelor in Electrical Engineering, Technical
College in Riyadh, Saudi Arabia, 1996

Lecturer in College Of Telecommunication and
Electronics in Jeddah,

Member of IEEE and ACM

Dr. Osman Ghazali

Senior lecturer graduate department of

computer science, college of arts and
sciences

Phd of information technology (computer
network), University Utara Malaysia,
2008.

Master science of information technology,
University Utara Malaysia, 1996.

Bachelor of information technology, University
Utara Malaysia, 1994

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

158

Dr. Suhaidi Hassan

Associate Professor & Assistant Vice

Chancellor at University Utara
Malaysia

PhD degree in Computing (specializing in
Networks Performance
Engineering) from the University of
Leeds in the United Kingdom.

MS degree in Information Science (with
concentration in
Telecommunications and
Networks) from the university of
Pittshugh, USA.

BSc degree in Computer Science from
Binghamton University, USA.

Senior Member of IEEE

