
International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

10.5121/ijcsit.2010.2301 1

Efficient Resource Matching in Heterogeneous
Grid Using Resource Vector

Srirangam V Addepallil1, Per Andersen 2 and George L Barnes3

1High Performance Computing Centre, Texas Tech University, Lubbock, Texas
mailto:srirangam.v.addepalli@ttu.edu

2Department of Computer Science, Texas Tech University, Lubbock, Texas
mailto:per.andersen@ttu.edu

3Department of Chemistry, University of Oregon, Eugen, Oregon
mailto:gbarnes@uoregon.edu

ABSTRACT
In this paper, a method for efficient scheduling to obtain optimum job throughput in a distributed campus
grid environment is presented; Traditional job schedulers determine job scheduling using user and job
resource attributes. User attributes are related to current usage, historical usage, user priority and
project access. Job resource attributes mainly comprise of soft requirements (compilers, libraries) and
hard requirements like memory, storage and interconnect. A job scheduler dispatches jobs to a resource
if a job’s hard and soft requirements are met by a resource. In current scenario during execution of a job,
if a resource becomes unavailable, schedulers are presented with limited options, namely re-queuing job
or migrating job to a different resource. Both options are expensive in terms of data and compute time.
These situations can be avoided, if the often ignored factor, availability time of a resource in a grid
environment is considered. We propose resource rank approach, in which jobs are dispatched to a
resource which has the highest rank among all resources that match the job’s requirement. The results
show that our approach can increase throughput of many serial / monolithic jobs.

.

KEYWORDS
SGE, LSF, Venus, ENDyne, Condor.

1. INTRODUCTION
A grid computing environment exhibits three broad characteristics.

1. Resource Co-ordination

2. Resource integration

3. Nontrivial QoS [10]

 In a Grid computing environment all computation resources are managed by resource
managers such as PBS (Portable Batch Scheduler) [15] [16], Load Sharing Facility (LSF) [14],
Sun Grid Engine [18] and Load Leveller [17]. These are local resource managers that interface
with a Global scheduler, referred to as a Metascheduler. A metascheduler identifies resources
and dispatches a job to candidate resource. Current metaschedulers are unable to overcome
resource availability factor in grid environment. Thus, new scheduling paths/mechanisms are
needed that will take into account resource availability; and schedule user jobs in an efficient
manner.

Applications dispatched to a grid environment have their own resource requirements;
these requirements are not uniform for all applications. Hence the performance and throughput
of the application differs greatly from application to application (and the manner in which
resources are allocated to these jobs). Data input file values and number of input parameters that

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

2

are being provided to the same type of application specific job also have a significant effect on
the job completion time. In grid computing the wide variety of resources in terms of machines,
storage, interconnects, software licensing and libraries make the job matching task even more
complicated. Clearly there is a need for efficient resource matching that takes into account a
large variety of resources available. In this paper resource vector based approach is presented
that aims at identifying the best resource for a job dispatched.

The metascheduler dispatches jobs to resource using a Grid Resource Vector (GRV) for
matching resource. The GRV is updated constantly depending on the resource usage, work
done, and length of availability. We evaluate this mechanism through extensive simulation
using real work traces, real time user job submission and observe how the Meta scheduler
manages several jobs.

2. RELATED WORK
Grid Computing has evolved from individual systems to clusters and pool of

systems/clusters using several techniques including cycle scavenging to provision resources all
working in conjunction that are transparent to end user. Resource reliability, Job completion,
and local scheduling are some external facts that have been overlooked in classical scheduling
approaches. These factors pay a major role in job completion and directly effect through put.
Moab [20] an advanced Meta scheduler that allows distributed work load to be run across
independent clusters. Grid way [21] is a light-weight meta-scheduler that follows greedy
approach to schedule user jobs in a First come first server (FIFO) manner.
Condor and Condor-G [23] are specialized workload management systems for compute-
intensive jobs. How ever none of the above scheduling mechanisms support scheduling based
on a QoS/Feedback/ Reliability mechanism. gLite[24] workload management system is used to
manage large computing installation. gLite uses eager and lazy scheduling policies for
scheduling jobs to individual resources for execution. In eager scheduling a job is bound to a
resource as soon as possible and the decision has taken. Lazy scheduling waits for a resource to
become available before it is matched to a submitted job. There are other schedulers like
Community scheduler frame work which co-ordinates communications among multiple
heterogeneous schedulers that operate at cluster level. It interfaces with LSF, open PBS and Sun
Grid Engine

 Many resource allocation approaches have been proposed for Distributed systems and
Grids. Auction based resource allocation uses a bid price for user jobs and allocates resource to
the highest bidder. [1]. Ontology-based resource matching techniques [3] use a rank based
approach, where rank is obtained by the hierarchical access to the resource by users. Here a
resource belonging to a priority group will get a higher rank than a normal resource, local users
get higher priory over remote users. Agent based resource allocation [2] uses agents to identify
appropriate resources. Other user centric techniques like resource allocation Hierarchy [4].In all
the above approaches jobs are matched to resources according to requirements and attributes.
Availability (Reliability) of the resource has always been ignored. Unlike earlier approaches
where jobs are matched to resource, our approach matches both jobs to resources and resource
to jobs. Our work is different from other resource matching mechanisms as the GRV is
transparent to enduser and resources. This mechanism computes GRV for resources based on
dynamic conditions such as number of success full job completion and continuous availability.

3. SCHEDULING SCHEME
In this section we present a metascheduler that is typically found in educational

institutions. In this model, we have cycle scavenging resources, and dedicated compute nodes.
In this model each resource is manager by different administration entities or departments.
Resource manger (Condor) is organized as a set of resources that can be accessed using a job
submission queue. Access to these resources is controlled by predetermined attributes, in

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

3

addition to these; cycle scavenging systems have additional flags about job migration when an
interactive session is initiated by a user. Condor, SGE and LSF provide configurable options
(preempt-evict, checkpoint-migrate) to address these situations. Discussing all these interactions
will be out of scope for this paper.

 Figure 1: Schema of Metascheduler using Grid Resource Vector

 Metascheduler maintains a record for each resource in the compute grid GRV. All
resources start with same initial priority and are listed as possible candidates for job execution.
When users submit jobs to Metascheduler along with dependencies for execution,
Metascheduler identifies a set of candidate machines satisfying resource requirements. Resource
with the highest GRV value is identified as a candidate machine and jobs is dispatched to
candidate machine. In traditional closely integrated cluster reliability and job success ratio do
not play a significant role in resource selection, but in a grid environment where resources are
typically available for a few hours or when dynamic provisioning of CPU cycles is in effect
they become the deciding factor. In the current system we assume that a user jobs are
independent of each other and can be run on grid resources. Information is communicated back
to Meta scheduler, when the job is completed, evicted or exit. Metascheduler, update’s GRV of
specific resources based on the job’s exit status. As new jobs come in the priority of resource
change. Figure 1 shows the mechanism for calculating and maintaining GRV on Meta
scheduler.

4. GENERATING GRID RESOURCE VECTOR: GRV

A GRV employs three main attributes: Resource Availability (RAm), Job success (JSm)
and custom attribute (CAm) for each resource. These three attributes are combined together can
be used to implement several resource matching paths and a range of scheduling concepts. After
an initial configuration, the Metascheduler controls resource matching using GRV without
further administrative intervention.

Rm

 Jobs

 Job J1
 Job J2
 .
 .
 .
 Job Jn-2
 Job Jn-1

 Job Jn

Meta Scheduler

GRV[R1]
GRV[R1]
 .
 .
 .
 GRV[Rm-1]
 GRV[Rm]

 Resource Pool

 .
 .
 .

R2

R1

R
m

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

4

GRV[m] = RAm+ JSm+ CAm

 The three attributes and our approach for combining these three attributes to derive a
final resource priority are described in this section. Resource Availability (RAm), of a resource
is determined based on the length of time it is continuously available for job execution. Here a
resource that has just showed up on compute grid will just have base priority, which is lower
than a resource that has been available previously, A resource that has been available over a
period of time will have priority that is less than or equal to a defined maximum resource
priority. To avoid assigning infinite priority to a resource that has been available for a long time,
we use the above approach.

Job success (JSm) accounts for the application execution part of the job. A successful
completion of job J1 on resource M will result in incrementing JSm of attribute of resource M,
any other situation like evict, requeue or checkpoint operations result in a Penalty and JSm is
decremented. Hence resources that have successfully completed execution many jobs have a
higher (JSm).

Custom Attribute (CAm) is used to match a job to the resource with higher system
performance. (CAm) of machine m can be determined using CPU clock speed, no of cores.
These two attributes gives us the number of floating point operations that can be performed on a
resource. (CAm) can be fine tuned to include other resource attributes Memory, SWAP, Storage.
It will again be out of scope of this paper to enumerate on these. For simplicity we consider
(CAm) to be influenced only by floating point operations.

CAm = nflopsm * ncm
Where nflopsm is the number of floating point operations that can performed on

machine m and ncm is number of cores on the resource. In closely coupled clusters, all resources
are homogenous, so (CAm) does not pay a huge factor. In a grid, because of heterogeneous
system Custom Attribute (CAm) carries significant weight. Hence depending on scenario the
three attributes Resource Availability (RAm), Job success (JSm) and Custom Attribute (CAm)
have varying degrees of influence.

To address this issue we assign a weight to each attribute. Equation 4 will take the form
GRV[M] = W1*RAm+ W2 * JSm+ W3 * CAm Choice of weight factors determines the final
value of GRV[M] and indentifying candidate machine.

Implementation Algorithm 1: Code for GRV

1 Initialize GRV[Mn]=0

2 Obtainresource(Scan)

3 If initial-setup; /* For initial setup of vector */

4 Then

5 While m from 1,n ;do

6 CAi = nflopsm * ncm

7 JSm = intialval

8 RAm = rbase

9 end while

10 else /* update resource vector */

11 while m from 1, n ;do

12 update (GRV[MI])

13 end while

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

5

14 end if

15 List jobs All_queued_jobs.
16 For j in list jobs do

17 PossibleCandidates AllUNoccupiedMatchingResources[M]

18 For p in PossibleCandidates

19 CandidiateMachine Max [GRV[PossibeCandidates]]

20 JobDispatch (Candidate Machine)

21 End for

22 End for

23 JobDispatch(Candidate machine)

24 If Complete then

25 Update(JSM=JSM+Reward)

26 Else

27 Update(JSM=JSM-Penanlty)

28 End if

5. EXPERIMENTAL SETUP
 We use condor pools to implement our Grid resource vector based mechanism, for
matching user jobs with Grid resources. Our implementations use observations gathered in real
time. For this setup two computational chemistry applications CSTechG [11] and VENUS [12]
were identified. 17300 individual jobs form different users have been recorded that requested
VENUS or CSTechG, and were dispatched to resources. Run time, exit status and host machine
attributes re recorded for each user job j.
 Grid computing infrastructure comprised of 546 heterogeneous distributed resources
spread across 8 different departments, connected via network. Resources were broadly classified
into three categories. Following is a snap shot of resource in real time which shows matched
resources and claimed resources.

Table 1 Campus grid resources

 For the purpose of this test case, it is assumed that resource in certain classification have
similar performance Custom Attribute (CAm) and does not vary hugely in between resources.
Hence the GRV priority between different machines is directly proportional to the weights
assigned to Resource Availability (RAm), and Job success (JSm). In the following test cases
equal weights have been assigned to W1 and W2. Dedicated compute cluster It has total of
2312 CPUs, 210 dual-slot quad-core nodes with Intel E5405 processors for a total of 1680 3.0
GHz cores, connected with DDR Infiniband, access is controlled using queues and job run time
with in queues. Each queue had a varying run length; certain queues let jobs runs for up to 48
hours, some for 120 hours. Upon reaching the runtime limit jobs are check pointed terminated
and returned to top of the wait queue. Queues with lower run time limit have higher priority and

TOTAL Owner Claimed Unclaimed Matched
INTEL/LINUX 4 0 0 4
INTEL/WINNT5 538 97 0 441
X86_64/LINUX 4 0 0 4
Total 546 97 0 449

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

6

queues with higher run time limit have lower priority. If a job with lower run time requirements
is submitted to lower priority queue the time it waits in the queue determines the total turn
around time. Hence queue selection is important in the case of homogeneous closely coupled
clusters. We compare the results of jobs submitted in a dedicated compute cluster and in
distributed heterogeneous grid system using GRV and FCFS approaches.

Application 1: CSTechG
In General simulation of one single chemical reaction requires myriads of trajectories in the CS
quantum phase space [11]. These dynamics can be naturally implemented for simultaneous
trajectory runs on a compute grid. Current application CSTechG developed for several operating
systems (Microsoft Windows®, Red Hat Linux®) from the ENDyne 2.7 and 2.8 codes [13].
From deployment point of view, a CSTechG is capable of performing the following tasks: (1)
define the reaction initial conditions from any grid node, (2) submit all the t trajectory jobs from
those initial conditions and run all trajectories in parallel on any of the available grid nodes; All
the monolithic jobs run in parallel and contribute to final outcome of the runs. Hence the
completion time of the slowest job determines the final outcome of the set of jobs; hence
effective resource matching for this job(s) will ensure higher levels of through put. Here
Throughput is the percentage of total number of job submissions to percentage of jobs
completed successfully without resubmission In this test case we assign equal weights to all
three attributes W1,W2,W3=0.33

Figure 2: H++H2 reactants initial conditions.

Balls represent nuclear wave packets for the atoms with projectile impact parameter b and target
orientation [a, b]. [19]

Table 2 CSTechG job submission information

 Case 1 Case 2

Job Type Total Jobs Jobs
Completed

Restarted Throughput Total Jobs Jobs Completed Restarted Throughput

GRV 6004 5491 509 91.5 1010 769 231 70

NonGRV 6004 4917 512 81.9 1010 590 420 59.0

Cluster 6004 5845 159 97.3 1010 1001 9 99.9

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

7

Figure 3: CSTechG using GRV,NonGRVand Cluster Scheduling Case 1

Figure 4 CSTechG using GRV,NonGRVand Cluster Scheduling Case 2

From the above set’s of run’s it is observed that using GRV for resource matching,
helps us achieve higher throughput than conventional resource matching. Throughput for
dedicated cluster is closer to 100. This emphasizes that resource reliability is also a major factor
in determining through put.

Application 2: VENUS/VENUS-MOPAC
At a zero order level much of chemistry and chemical reactivity can be described through use of
classical mechanics if an accurate potential energy surface (PES) is used in the propagation of
Newton’s equations of motion. This is actually a big IF as the dimensionality of a PES scales as
~3N where N is the number of atoms. If only 2 points (an absurdly small number, 10 or 20 is
more reasonable) are required to accurately evaluate and fit the PES then 23N calculations would
be required. For system sizes much larger that 5 or 6 atoms it becomes computationally
prohibitive to evaluate the PES in advance. ``Direct Dynamics” solves this problem by
calculating the necessary PES information during the propagation of Newton’s equations.
Venus Mopac consists of a well developed molecular dynamics code (Venus), which allows for
many different methods of selection of initial conditions as well as various integrators, coupled

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

8

to a semi-empirical quantum mechanical package (Mopac) which provides PES information for
a given configuration of atoms. The computational time required mostly depends on the
evaluation of the PES, though the number of integration cycles and the integration method are
also factors. Trajectories with the same integration method and number of cycles will take
roughly the same amount of time to calculate, though differences are possible since some
atomic configurations require more computational expense to obtain the PES.

 Table 2 CSTechG job submission information

Type Total
Jobs

Jobs
Completed

Restarted Throughput Total
Jobs

Jobs
Completed

Restarted Throughput

GRV 1237 1073 164 86.7 5873 3969 1904 67.58

NonGRV 1237 883 354 71.38 5873 4790 1083 81.55

Cluster 1237 1221 16 99.9 5873 5631 242 96.5

Figure 5 VENUS using GRV,NonGRVand Cluster Scheduling Case 1

Figure 6 VENUS using GRV,NonGRVand Cluster Scheduling Case 2

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

9

6 Conclusions

In this paper a Grid Resource Vector based approach has been presented. The meta
scheduler uses GRV with different weights to match resource to user applications in an efficient
manner to increase over all through put. The GRV is dynamic in nature and changes according
to resource reliability and job completion. We compare our approach to traditional approach
FCFS that is employed currently. Our results clearly show that our mechanism will result in
increased throughput for monolithic/serial applications and indirectly increasing throughput of
other user applications. When compared to results to a homogeneous compute cluster (e.g.: A
rocks compute cluster), where through put is in higher 90’s GRV approach gives better results
than non GRV approach.

It is highly unlikely that we might achieve throughput of the order achieved in a
dedicated homogenous compute cluster, how ever in future we would like to develop a
mechanism in obtaining a approximate time / task execution and use in conjunction with GRV
to more efficiently match jobs to resource and increase throughput further.

ACKNOWLEDGMENTS
The Authors would like to thank Jerry Perez, Grid Administrator at high performance
computing centre for his assistance in setting up the testing system, Dr. Buddha Maiti
for using job submission log information.

REFERENCES
[1] Saurabh Kumar Garg, Srikumar Venugopal, Rajkumar Buyya, "A Meta-scheduler with Auction Based Resource

Allocation for Global Grids," icpads, pp.187-194, 2008 14th IEEE International Conference on Parallel and
Distributed Systems, 2008.

[2] S. S. Manvi, M. N. Birje, Bhanu Prasad, "An Agent-based Resource Allocation Model for Grid Computing,"
scc, vol. 1, pp.311-314, 2005 IEEE International Conference on Services Computing (SCC'05) Vol-1, 2005.

[3] Ontology-based Resource Matching in the Grid - The Grid Meets the Semantic Web (2003), Hongsuda
Tangmunarunkit , Stefan Decker , Carl Kesselman In Proceedings of the Second International Semantic Web
Conference, Sanibel-Captiva Islands

[4] Shaofeng Liu, "User-Centric Resource Allocation Hierarchy in Grid Computing," gcc, pp.228-235, Sixth
International Conference on Grid and Cooperative Computing (GCC 2007), 2007 .

[5] Sannella, M. J. 1994 Constraint Satisfaction and Debugging for Interactive User Interfaces. Doctoral Thesis.
UMI Order Number: UMI Order No. GAX95-09398., University of Washington.

[6] Forman, G. 2003. An extensive empirical study of feature selection metrics for text classification. J. Mach.
Learn. Res. 3 (Mar. 2003), 1289-1305.

[7] Brown, L. D., Hua, H., and Gao, C. 2003. A widget framework for augmented interaction in SCAPE. In
Proceedings of the 16th Annual ACM Symposium on User interface Software and Technology (Vancouver,
Canada, November 02 - 05, 2003). UIST '03. ACM Press, New York, NY, 1-10. DOI=
http://doi.acm.org/10.1145/964696.964697

[8] Y.T. Yu, M.F. Lau, "A comparison of MC/DC, MUMCUT and several other coverage criteria for logical
decisions", Journal of Systems and Software, 2005, in press.

[9] Spector, A. Z. 1989. Achieving application requirements. In Distributed Systems, S. Mullender, Ed. Acm Press
Frontier Series. ACM Press, New York, NY, 19-33. DOI= http://doi.acm.org/10.1145/90417.90738

[10] I. Foster, What is the Grid? A Three Point Checklist. GRIDToday, July 20,2002.

[11] K. Tsereteli, S. Addepalli, J. Perez and J.A. Morales, Grid Implementation of electon nuclear dynamics.
Concurrent Engineering Research and Applications: Next Generation Concurrent Engineering (2005), p. 469.

[12] Venus, Hase, W. L.; Duchovic, R. J.; Hu, X.; Komornicki, A.; Lim, K. F.; Lu, D. H.; Peslherbe, G. H.; Swamy,
K. N.; Vande Linde, S. R.; Varandas, A.; Wang, H.; Wolf, R. J. QCPE 1996, 16, 671.

International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010

10

[13] Deumens, E. 1997.ENDyne: Electron Nuclear Dynamics Simulations, Version 2 Release 8, Quantum Theory
Project: University of Florida, Gainesville, FL. 32611-8435

[14] Platform Computing. Platform Load Sharing Facility (LSF). http://www.platform.com/products/LSF/.

[15] Altair Grid Technologies. OpenPBS: Open Portable Batch System. http://www.openpbs.org.

[16] Altair Grid Technologies. PBS Pro: Portable Batch System Professional Edition. http://www.pbspro.com

[17] International Business Machines Corporation. IBM LoadLeveler. http://publib.boulder.
ibm.com/clresctr/windows/public/llbooks.html.

[18] Sun Microsystems. Sun Grid Engine. http://gridengine.sunsource.net/

[19] Coherent states/density functional theory approach to molecular dynamics, Chemical Physics Letters 420 (2006)
54–59

[20] Moab Workload Manager Manual http://www.clusterresources.com/products/mwm/docs/moabusers.shtml

[21] The Grid Way Metascheduler. http://www.gridway.org/

[22] Condor, <http://www.cs.wisc.edu/condor/>.

[23] J. Frey, T. Tannenbaum, M. Livny, I. Foster and S. Tuecke, Condor-g: a computation management agent for
multi-institutional grids, HPDC ’01: Proceedings of the 10th IEEE International Symposium on High
Performance Distributed Computing, IEEE Computer Society, Washington, DC, USA (2001).

[24] The gLite workload management system, P Andreetto et al 2008 J. Phys.: Conf. Ser. 119 062007

