
International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

DOI : 10.5121/ijcsit.2010.2513 170

A CLUSTERING HEURISTIC FOR MULTIPROCESSOR

ENVIRONMENTS USING COMPUTATION AND

COMMUNICATION LOADS OF MODULES

Pramod Kumar Mishra
1
, Kamal Sheel Mishra

2
, and Abhishek Mishra

3

1Department of Computer Science, Banaras Hindu University, Varanasi, India
mishra@bhu.ac.in

2Department of Computer Science, School of Management Sciences, Varanasi, India
ks_mishra@yahoo.com

3Department of Computer Engineering, Institute of Technology, Banaras Hindu University,

Varanasi, India
abhishek.rs.cse@itbhu.ac.in

ABSTRACT

In this paper, we have developed a heuristic for the task allocation problem on a fully connected

homogeneous multiprocessor environment. Our heuristic is based on a value associated with the modules

called the Computation-Communication-Load (CCLoad). This value is dependent on the computation and

the communication times associated with the module. Using the concept of CCLoad, we propose a

clustering algorithm of complexity O(|V|
2
(|V|+|E|)log(|V|+|E|)), and demonstrate its superiority over a

generic version of Sarkar's algorithm.

KEYWORDS

 Clustering, Distributed Computing, Homogeneous Systems, Task Allocation

1. INTRODUCTION

A multiprocessor environment consists of a number of processors that are connected through a

communication network [1]. The processors are generally identical and are fully connected with

identical links. Multiprocessor environments are used to solve large-scale software applications.

The availability of multiple processors helps in concurrent execution of processes.

Task allocation algorithms try to exploit parallelism by dividing the software into modules, and

allocating them to processors, so that the parallel execution time can be minimized. Modules

may have data dependencies between them. Interdependencies between modules are represented

as a weighted directed acyclic graph (DAG) called the task graph. Vertices represent the

modules having weight as the running time. Edges represent the dependency between modules

having weight as the communication time.

Let the two modules Mi and Mj be connected by a directed edge from Mi to Mj, having weight as

wij. Then this means that the module Mj can start its execution after getting some data from the

module Mi. Let the module Mi be allocated to the processor Pk, and the module Mj be allocated

to the processor Pl. Let the time taken for communication between the module Mi and the

module Mj be denoted by cij. The time for communication of data is given by:

 cij = wij, (1)

when the two modules are allocated to different processors (k ≠ l), otherwise (k = l) it is given

by:

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

171

 cij = 0. (2)

We are using the same computational model as used by Kadamuddi and Tsai [2].

The parallel execution time of a software system may depend on the way in which its modules

are allocated to the processors. Task allocation algorithms try to minimize this time. When the

multiprocessor environment is homogeneous and fully connected and having an unlimited

supply of processors (as in our case), the task allocation problem is also called the clustering

problem [2]. A cluster is a set of modules allocated to a processor. In this paper we are trying to

solve a clustering problem for a homogeneous and fully connected multiprocessor environment,

having an unlimited supply of processors. For a heterogeneous multiprocessor environment that

may not be fully connected, and having a limited supply of processors (the real case), we may

solve the task allocation problem as a two-step process. In the first step, we solve the clustering

problem for the given task graph assuming a homogeneous and fully connected multiprocessor

environment, having an unlimited supply of processors. In the second step, we can use some

heuristic to allocate the clusters generated in the first step to the given heterogeneous

multiprocessor environment that can reduce the parallel execution time.

Given a task graph of modules, the problem of finding an optimal clustering of modules is an

NP-Complete problem (Sarkar [3], Papadimitriou [4]). Therefore, heuristics are used for solving

the clustering problem in polynomial time.

In our heuristic, we use a value associated with the modules called the CCLoad (Computation-

Communication-Load). CCLoad tries to measure whether a module is computation intensive, or

communication intensive. Using the concept of CCLoad, we have proposed a clustering

algorithm of complexity O(|V|
2
(|V|+|E|)log(|V|+|E|)).

The remainder of this paper is organized in the following manner. Section 2 discusses some

heuristics for solving the clustering problem. Section 3 explains the concept of CCLoad. Section

4 presents the CCLoadClustering algorithm. In section 5, this algorithm is explained with the

help of a simple example. Some experimental results are presented in section 6. And finally in

section 7, we conclude our work.

2. CURRENT APPROACHES

The Two modules M1 and M2 are called independent if they do not have any data dependency

between them. A clustering in which independent modules are kept on separate clusters is called

a linear clustering. Whereas a clustering in which independent modules can be clustered

together is called a nonlinear clustering [5].

Edge zeroing is a concept in which the two clusters that are connected by a large weight edge

are clustered together to avoid the large communication time between them [5]. Sarkar's

algorithm [3] uses the concept of edge zeroing. This algorithm first sorts the edges of the task

graph in decreasing order of edge costs. It then merges the clusters connected by the highest

cost edge, if on doing so the parallel execution time does not increase. This step is repeated until

all the edges are examined. Sarkar's algorithm [3] uses level information to determine the

parallel execution time, and these levels are computed for each step. The complexity of Sarkar's

algorithm [3] is O(|E|(|V|+|E|)). The clusters generated are nonlinear.

The Dominant Sequence Clustering (DSC) algorithm of Yang and Gerasoulis [6] finds the

critical path of the graph. The critical path is called the Dominant Sequence (DS). An edge from

the DS is used to merge its adjacent nodes, provided the parallel execution time reduces. After

merging, a new DS is computed and the clustering is tried again until all the modules are

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

172

scheduled. Yang and Gerasoulis [6] have shown the complexity of DSC algorithm as O((|V| +

|E|)log(|V|)). The Greedy Dominant Sequence (GDS) algorithm, of Dikaiakos et al. [7] is a

greedy version of DSC algorithm of Yang and Gerasoulis [6]. In GDS, an edge from DS that

reduces the parallel execution time the most is selected and the nodes belonging to the edge are

merged. The algorithm stops when there is no edge in DS that is able to decrease the parallel

execution time. The complexity of GDS algorithm is O(|V|(|V| + |E|)) [7].

The Clustering Algorithm for Synchronous Communication (CASC) by Kadamuddi and Tsai

[2] is a four-stage algorithm. Its four stages are Initialize, Forward-Merge, Backward-Merge,

and Early-Receive. In addition to achieving the traditional clustering objective of reducing the

parallel execution time, the CASC algorithm also reduces the performance degradation caused

by synchronizations, and avoids deadlocks during clustering. The complexity of CASC

algorithm is O(|V|(|E|
2
 + log(|V|))) [2].

3. COMPUTATION-COMMUNICATION-LOAD OF A MODULE

3.1. Notation

Let there be n modules Mi (1 ≤ i ≤ n). Let Mi be in cluster Ci (1 ≤ i ≤ n). Let the set of modules

be given by:

 M = {Mi | 1 ≤ i ≤ n}. (3)

Then the clusters Ci (M (1 ≤ i ≤ n) are such that for i ≠ j (1 ≤ i ≤ n, 1 ≤ j ≤ n)

 Ci ∩ Cj = Φ, (4)

and

 U
n

i = 1Ci = M. (5)

Let the label of the cluster Ci be denoted as an integer cluster[i] (1 ≤ i ≤ n, 1 ≤ cluster[i] ≤ n).

Let the set of vertices of the task graph be denoted as:

 V = {i | 1 ≤ i ≤ n}. (6)

Let the set of edges of the task graph be denoted as:

 E = {(i, j) | i є V, j є V, Э an edge from Mi to Mj}. (7)

Let mi be the execution time of module Mi. If (i, j) є E, then let wij be the weight of the directed

edge from Mi to Mj. If (i, j) !є E, or if i = j, then let wij be 0. Let T be the adjacency list

representation of the task graph.

3.2. CCLoad of a Module

A module is computation intensive, if it spends more time in computation as compared to its

time spent in communication. Similarly, a module is communication intensive, if it spends more

time in communication as compared to its time spent in computation. To measure the relative

Computation-Communication-Load of a module, we define a value called CCLoad of a module

as follows:

 CCLoadi = mi − max_ini − max_outi, (8)

where

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

173

 max_ini = MAX({wji | 1 ≤ j ≤ n}), (9)

and

 max_outi = MAX({wik | 1 ≤ k ≤ n}). (10)

Computation-Communication-Load of a module Mi (CCLoadi) is defined as its execution time

(mi) subtracted by maximum weight of incoming edge (max_ini) subtracted by maximum weight

of outgoing edge (max_outi).

3.3. An Example of CCLoad

In Fig. 1, CCLoad of modules are calculated. As an example, for module M2, m2 = 4, maximum

weight of incoming edge is w12 = 4, maximum weight of outgoing edge is w25 = 6. Therefore

we have:

 CCLoad2 = m2 − w12 − w25 = 4 − 4 − 6 = −6. (11)

Figure 1. An example task graph for showing the calculation of CCLoad. (CCLoadi)1 ≤ i ≤ 7 =

(-1, -6, -3, 0, -3, 0, 3).

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

174

4. THE CCLOAD-CLUSTERING ALGORITHM

4.1. Evaluate-Load

Evaluate-Load (T)

01 for i ← 1 to |V|

02 do max_in[i] ← 0

03 max_out[i] ← 0

04 for i ← 1 to |V|

05 do load[i].index ← i

06 for each (i, j) є E

07 do if wij > max_out[i]

08 then max_out[i] ← wij

09 if wij > max_in[j]

10 then max_in[j] ← wij

11 for i ← 1 to |V|

12 do load[i].value ← mi − max_in[i] − max_out[i]

13 return load

Given a task graph T, the algorithm Evaluate-Load calculates the CCLoad for each module in

the array load. For (1 ≤ j ≤ |V|), if the CCLoad of module Mj is lj, and if it is stored in load[i],

then we have:

 load[i].value = lj, (12)

and

 load[i].index = j. (13)

In lines 01 to 03, maximum weight of incoming edge (max_in[i]), and maximum weight of

outgoing edge (max_out[i]) are initialized to 0. In lines 04 to 10, we consider each edge (i, j) є

E, and update the values of max_out[i] and max_in[j] accordingly. Finally, in lines 11 to 12,

we store the CCLoad of module Mi in load[i] for (1 ≤ i ≤ |V|). Line 13 returns the load array.

Lines 01 to 03, and lines 11 to 12 each have complexity O(|V|). Lines 04 to 10 have complexity

O(|E|). Line 13 has complexity O(1). Therefore, the algorithm Evaluate-Load has complexity

O(|V| + |E|).

4.2. Evaluate-Time

Given a task graph T, and a clustering cluster, the algorithm Evaluate-Time calculates the

parallel execution time of the clustering. It is based on the event queue model. There are two

types of events: computation completion event, and communication completion event. Events

are denoted as 3-tuples (i, j, t). For example, a computation completion event of module Mi, that

finishes its computation at time ti will be denoted as (i, i, ti), and a communication completion

event of a communication from Mi to Mj, that is completed at time tij will be denoted as (i, j, tij).

Evaluate-Time (T, cluster)

Step 0: Let E be the event queue. It is an ascending priority queue based on the value of t. Each

processor can be in two states: IDLE when it is not executing any module. Initially all

processors will be in IDLE state. A processor is in BUSY state, when it is executing a module.

For a given allocation, we also maintain a ready queue of ready to run modules for each

processor. A module Mi is ready to run, if it is not having any incoming edges or if all of its

incoming edges have finished their communication. Initially at least one module is ready to run

for which there is no incoming edge. For each processor, one ready to run module will be added

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

175

to the event queue (if one exists), setting the t value as the time for execution. Corresponding

processor states will be set to BUSY.

Step 1: One node is deleted from the event queue E. There is a TIME variable initialized to 0.

TIME denotes the current time. Whenever any node is deleted from E, TIME is updated to its

timestamp. If the deleted node is a computation completion event, then go to Step 2. If the

deleted node is a communication completion event, then go to Step 5.

Step 2: When a module finishes its execution, the corresponding processor's state is changed to

IDLE.

Step 3: If there is any other ready to run module on that processor, then its t value is set to TIME

+ computation time of module, and will be added to E. That processor state is again changed

from IDLE to BUSY.

Step 4: For each outgoing edge from the module, a communication completion event is added to

E. For setting the value of t, we have two possibilities (for a communication from Mi to Mj):

Step 4A: Mi and Mj are on the same processor. Then t is set to TIME, since there will not be any

communication delay.

Step 4B: Mi and Mj are on different processors. Then t is set to TIME + edge weight.

Step 5: Let (i, j, t) be the deleted event. Check for Mj if all of its incoming edges have completed

their communication. If this is so, add Mj to the ready queue of its allocated processor. If that

processor is currently IDLE, then change its state to BUSY, and add a computation completion

Event of Mj to E.

Step 6: Repeat Step 1 to Step 6 until a total of |V| + |E| events are added to, and deleted from E.

Step 7: Return TIME.

There are a total of (|V| + |E|) events out of which |V| events are computation completion events

corresponding to each module, and |E| events are communication completion events

corresponding to each edge.

Step 1 to Step 6 are repeated a total of (|V| + |E|) times. In each repetition, the complexity is

dominated by the addition and deletion from the event queue E that has a complexity of

O(log(|V| + |E|)) (Tenenbaum [8], Cormen and Rivest [9]) if the priority queue is implemented

as a min-heap. Therefore the complexity of the Evaluate-Time algorithm is O((|V| + |E|)log(|V|

+ |E|)).

4.3. CCLoad-Clustering

CCLoad-Clustering (T)

01 load ← Evaluate-Load (T)

02 Sort-Load (load)

03 cmax ← 2

04 for j ← 1 to |V|

05 do cluster[j] ← 1

06 for j ← 1 to |V|

07 do i ← 1

08 tmin ← Evaluate-Time (T, cluster)

09 for k ← 2 to cmax

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

176

10 do cluster[load[j].index] ← k

11 time ← Evaluate-Time (T, cluster)

12 if time < tmin

13 then tmin ← time

14 i ← k

15 cluster[load[j].index] ← i

16 if i = cmax

17 then cmax ← cmax + 1

18 return (tmin, cluster)

Our heuristic is based on the following two observations:

(1) Computational intensive tasks can be kept on separate clusters because they mainly involve

computation. These tasks will heavily load the cluster. By keeping these tasks separated, we can

evenly balance the computational load.

(2) Communication intensive tasks can be kept on same clusters because they mainly involve

communication. By keeping these tasks on the same cluster, we may reduce the communication

delays through edge zeroing.

The CCLoad-Clustering algorithm implements this heuristic. Given a task graph T, line 01

evaluates the CCLoad of modules. Line 02 sorts the load array in decreasing order. Initially all

modules are kept in the same cluster (cluster 1, also called the initial cluster, lines 04 to 05). cmax

(line 03) is the number of possible clusters that can result, if one module is removed from the

initial cluster, and put on a different cluster (including the initial cluster).

Modules are taken out from the initial cluster one-by-one (line 06) in decreasing order of

CCLoad (line 10). We calculate the parallel execution time, when it is put on all possible

different clusters (lines 09 to 11). tmin records the minimum parallel execution time, and i

records the corresponding cluster (lines 12 to 14). We put the module on the cluster that gives

the minimum parallel execution time (line 15).

It may happen that the parallel execution time was minimum when the module was put alone on

a new cluster. In this case we have to increment cmax by 1 (lines 16 to 17). Line 18 returns the

parallel execution time, and the corresponding clustering.

Line 01 has complexity O(|V| + |E|). Line 02 has complexity O(|V|
2
) if bubble sort is used

(Tenenbaum [8]). Lines 03 and 18 each have complexity O(1). Lines 04 to 05 have complexity

O(|V|). Lines 08 and 11 have complexity O((|V| + |E|)log(|V| + |E|)). For each iteration of the

for loop in line 06, Evaluate-Time (lines 08 and 11) is called a maximum of |V| times (cmax can

have a maximum value of |V|, when all the modules are on separate clusters). The complexity of

the for loop of lines 06 to 17 is dominated by Evaluate-Time that is called a maximum of |V|
2

times. Therefore, the for loop has complexity O(|V|
2
(|V| + |E|)log(|V| + |E|)) that is also the

complexity of CCLoad-Clustering algorithm.

5. A SIMPLE EXAMPLE

Consider the task graph in Fig. 2. Initially all modules are clustered in the initial cluster as

(cluster[i])1 ≤ i ≤ 4 = (1, 1, 1, 1). Parallel execution time is 8. Modules are sorted according to

CCLoad in decreasing order as (M1, M2, M3, M4).

Initially module M1 is taken out to form the clustering (2, 1, 1, 1). Parallel execution time for

this clustering comes out to be 9. This is not less than 8. Therefore, module M1 is kept back in

the initial cluster as (1, 1, 1, 1).

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

177

The next module to be taken out is M2 to form the clustering (1, 2, 1, 1). Parallel execution time

for this clustering comes out to be 8. This is not less than 8. Therefore, module M2 is kept back

in the initial cluster as (1, 1, 1, 1).

The next module to be taken out is M3 to form the clustering (1, 1, 2, 1). Parallel execution time

for this clustering comes out to be 7. This is less than 8. Therefore, module M3 is kept in a

separate cluster as (1, 1, 2, 1).

Figure 2. An example task graph for explaining the CCLoad-Clustering algorithm. (CCLoadi)1 ≤

i ≤ 4 = (2, 0, 0, 0). The CCLoad-Clustering algorithm clusters the modules as (M1, M2)(M3)(M4),

giving a parallel execution time of 6.

The next module to be taken out is M4. The two possible clustering are (1, 1, 2, 2), and (1, 1, 2,

3). Parallel execution time for the clustering (1, 1, 2, 2) comes out to be 7. Parallel execution

time for the clustering (1, 1, 2, 3) comes out to be 6. The minimum parallel execution time is 6

for the clustering (1, 1, 2, 3) that is also less than 7. Therefore, module M4 is also kept in a

separate cluster as (1, 1, 2, 3).

This gives a clustering of modules as (M1, M2)(M3)(M4) in which the modules M1 and M2 are

clustered together, while the modules M3 and M4 are put on separate clusters. This clustering

gives a parallel execution time of 6.

6. EXPERIMENTAL RESULTS

The CCLoad-Clustering algorithm is compared with a generic version of Sarkar's algorithm [3].

It is the algorithm 17 in Sinnen [5]. We will call it the Generic-Sarkar algorithm. In this

algorithm, we set the priority of each edge as its weight (greater weight means higher priority)

and Evaluate-Time is used for evaluating the parallel execution time of clusterings. This

implementation of the Generic-Sarkar algorithm has a complexity of O(|E|(|V| + |E|)log(|V| +

|E|)).

We have tested the two algorithms on the benchmark task graphs of Tatjana and Gabriel [10],

[11]. 120 task graphs having number of nodes as 50, 100, 200, and 300 respectively are selected

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

178

for testing. Each task graph is labelled as tn_i_j.td, where n is the number of nodes. The variable

i is a parameter depending on the edge density having possible values as 20, 40, 50, 60, and 80

respectively. The variable j can have 6 possible values ranging from 1 to 6 for each combination

of n and i, representing 6 task graphs each. This makes a total of 30 task graphs for each n.

Figures from Fig. 3 to Fig. 6 show a comparison of parallel execution times between the

CCLoad-Clustering and the Generic-Sarkar algorithms for n having values 50, 100, 200, and

300 respectively. From the figures it is clear that the average improvement of CCLoad-

Clustering over Generic-Sarkar ranges from 6.18% (Fig. 3) to 7.69% (Fig. 6). We also observed

that the CCLoad-Clustering algorithm was practically very fast as compared to the Generic-

Sarkar algorithm. This was due to the fact that our algorithm was not taking its worst-case time,

since the number of clusters generated was small. We define the Speedup Ratio (SR) as the ratio

between the running time of Generic-Sarkar (TGenericSarkar) and the running time of CCLoad-

Clustering (TCCLoadClustering):

 SR = TGenericSarkar / TCCLoadClustering. (14)

Figure 3. Parallel execution times for t50_i_j.td. Average improvement = 6.18%.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

179

Figure 4. Parallel execution times for t100_i_j.td. Average improvement = 6.72%.

Figure 5. Parallel execution times for t200_i_j.td. Average improvement = 6.52%.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

180

Figure 6. Parallel execution times for t300_i_j.td. Average improvement = 7.69%.

From Fig. 7 it is clear that the CCLoad-Clustering algorithm is up to 6.87 times faster than the

Generic-Sarkar algorithm.

Figure 7. Average Speedup Ratios.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

181

7. CONCLUSION

We developed the idea of CCLoad (Computation-Communication-Load) of a module that is

dependent on the computation and communication requirements of the modules. We used a

heuristic based on it to develop the CCLoad-Clustering algorithm to solve the task allocation

problem on a fully connected homogeneous multiprocessor environment. We proved the time

complexity of the algorithm to be O(|V|
2

(|V| + |E|) log(|V| + |E|)). We compared our algorithm

with a generic version of Sarkar’s algorithm [3] called the Generic-Sarkar algorithm (Sinnen

[5]). We demonstrated its superiority over the Generic-Sarkar algorithm in terms of

performance as well as speed.

A possible future work is to decrease the complexity of the CCLoad-Clustering algorithm. We

have used the event queue model to calculate the parallel execution time of the clusterings. The

resulting time complexity was O((|V| + |E|) log (|V| + |E|)) that resulted in a time complexity of

the CCLoad-Clustering algorithm to be O(|V|
2
(|V| + |E|) log(|V| + |E|)). However if we use the

concept of scheduled DAG’s (Sarkar [3], Sinnen [5], Yang and Gerasoulis [6]) the resulting

time complexity for determining the parallel execution time of clusterings will decrease to

O((|V| + |E|)) reducing the time complexity of the CCLoad-Clustering algorithm to be O(|V|
2

(|V| + |E|)).

Another possible future work is to use the concept of Dynamic Computation Communication

Load of a module. The CCLoad that we defined in this paper is a static quantity that only

depends on the computation and communication requirements of the modules. It is independent

of the current allocation of the modules. We can extend this idea and can include other

parameters that are dynamically dependent on the current allocation of the modules. It will be

interesting to compare the dynamic version of the CCLoad-Clustering algorithm with the static

version of the CCLoad-Clustering algorithm that we developed in this paper.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referee for providing helpful suggestions for

improving the quality of the paper.

REFERENCES

[1] K. Hwang (1992) Advanced Computer Architecture: Parallelism, Scalability, Programmability,

First Edition, McGraw-Hill, ISBN: 978-0070316225.

[2] D. Kadamuddi, & J.J.P. Tsai, (2000) “Clustering Algorithm for Parallelizing Software Systems

in Multiprocessors Environment”, IEEE Transactions on Software Engineering, Vol. 26, No. 4,

pp. 340-361.

[3] V. Sarkar (1989) Partitioning and Scheduling Parallel Programs for Multiprocessors,

Research Monographs in Parallel and Distributed Computing, MIT Press.

[4] C. Papadimitriou, & M. Yannakakis, (1990) “Towards an Architecture Independent Analysis of

Parallel Algorithms”, SIAM Journal on Computing, Vol. 19, pp. 322-328.

[5] O. Sinnen (2007) Task Scheduling for Parallel Systems, Wiley Interscience. ISBN: 978-0-471-

73576-2.

[6] T. Yang and A. Gerasoulis, (1991) “A Fast Static Scheduling Algorithm for DAGs on an

Unbounded Number of Processors”, Proc. Fifth Int'l Conf. Supercomputing, pp. 633-642.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

182

[7] M.D. Dikaiakos, A. Rogers, & K. Steiglitz (1994) A Comparison of Techniques Used for

Mapping Parallel Algorithms to Message-Passing Multiprocessors, Technical Report, Princeton

Univ.

[8] Y. Langsam, M.J. Augenstein, & A.M. Tenenbaum (1996) Data Structures Using C and C++,

2nd edition, 1996, Prentice Hall, ISBN: 9780130369970.

[9] T. H. Cormen, C.E. Leiserson, R.L. Rivest, & C. Stein (2001) Introduction to Algorithms,

Second Edition, MIT Press, ISBN: 978-0-262-03293-3.

[10] T. Davidovic, & T.G. Crainic, (2006) “Benchmark-problem instances for static scheduling of

task graphs with communication delays on homogeneous multiprocessor systems”, Computers &

Operations Research, Vol. 33, No. 8, pp. 2155-2177.

[11] Benchmark task graphs DOI: http://www.mi.sanu.ac.rs/~tanjad/sched_results.htm.

Authors

Pramod Kumar Mishra is Associate Professor in Banaras Hindu University,

Varanasi. His research interests include Parallel and Distributed Computation,

Computational Complexity, Parallel and Clustered Data Mining, High

Performance Computing, and VLSI Algorithms.

Kamal Sheel Mishra is Reader of Computer Science at the School of

Management Sciences, Varanasi. He is the Head of the Department of

Computer Science. His research interests include Parallel and Distributed

Computing, and Software Engineering.

Abhishek Mishra is pursuing his Ph.D. degree in Computer Engineering at

Institute of Technology, Banaras Hindu University, Varanasi. He received his

Bachelor degree in Computer Engineering from the same institute in 2003. His

current research interests include Approximation Algorithms, and Combinatorial

Optimization.

