
International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

DOI : 10.5121/ijcsit.2010.2501 1

PERFORMANCE ANALYSIS OF MULTIMEDIA

COMPRESSION ALGORITHMS

Eman Abdelfattah
1
 and Asif Mohiuddin

2

Department of Computer Science and Engineering, University of Bridgeport,

Bridgeport, Connecticut, USA
1
eman@bridgeport.edu

2
 asifm@bridgeport.edu

ABSTRACT

In this paper, we are evaluating the performance of Huffman and Run Length Encoding compression

algorithms with multimedia data. We have used different types of multimedia formats such as images and

text. Extensive experimentation with different file sizes was used to compare both algorithms evaluating

the compression ratio and compression time. Huffman algorithm showed consistent performance

compared to Run Length encoding.

KEYWORDS

Huffman algorithm, Run Length Encoding algorithm

1. INTRODUCTION

Multimedia is a technology used to process textual data, audios and videos, images and

animations. Multimedia applications are used in different fields of life like entertainment, video

conferencing, application sharing, distance learning, remote working and online games. An

example of multimedia applications is WebEx [1] video conferencing. WebEx is an application

used across Internet to share data, images and voice. In WebEx, an invitation is sent to all

attendees so that all participants can click WebEx link, enter username, password as

authentication and start watching presenter’s slides. At the same time, all participants will be

dialling a common phone number provided during the invitation to hear the presenter’s voice.

The challenge in multimedia applications is the transport services to both discrete media such as

text and digital images and continuous media such as audio and video with limited bandwidth

and huge data size. Unlike text media, multimedia applications are loss tolerant but delay

sensitive [2]. Today’s multimedia networks strive for “(I) seamless connection management

between the network and multimedia devices, (II) multimedia abstractions with QoS guarantees

and (III) the integration of service, traffic control and network management architectures” [3].

With the huge demand for bandwidth due to the large data transmitted in multimedia

applications, it becomes necessary to apply compression algorithms on transmitted data. The

topic of compression algorithms is one of the issues that Multimedia researchers and product

developers have worked on to deliver low-bandwidth high-quality audio coding and high-

quality video coding. Thus, audio coding with these characteristics can support telephony

systems. Moreover, high-quality video coding supports entertainment and broadcasting

applications [4].

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

2

Huffman coder is popular in modern multimedia compression standards because of its low

computational cost [5]. In [6], a technique based on variation of Huffman coding is presented to

offer better compression. Run Length Encoding is a simple data compression algorithm and is

based on replacing a long sequence of the same symbol by a shorter sequence [7]. Although,

Huffman and run-length coding were introduced years ago, they are utilized recently to develop

a technique that achieves superior JPEG compression results with efficient computation [8].

In this paper we evaluate both Huffman compression algorithm and Run Length Encoding

(RLE) algorithm used with multimedia applications and inspect their effect on the quality of the

transmitted data.

2. MULTIMEDIA COMPRESSION

General JPEG transformation would transform an image to get discrete cosine. Then it

quantizes the discrete cosines to differential quantization. Finally, the run length encoding is

used to get compressed output with lossy data.

The algorithm works as follows (Figure 1) [9]:

1. Block Preparation: From RGB to Y, CR, CB planes.

2. Transform: Two-dimensional Discrete Cosine Transform (DCT) on 8x8 blocks.

3. Quantization: Compute Quantized DCT Coefficients.

4. Encoding of Quantized Coefficients using Zigzag Scan.

For decompression, the order of the previous steps is reversed.

Figure 1. JPEG Overview [4]

2.1. Huffman Algorithm

This algorithm is used to compress data. An example of Huffman encoding is given in [10]. In

this technique a tree is constructed to represent the data based on the frequency of characters or

numerals. At the end of the procedure the tree is traversed to the character or numeral we want,

outputting a 0 every time we take a left branch, and a 1 every time we take a right branch to

produce the Huffman code which is compressed compared to original data.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

3

2.2. Run Length Encoding Algorithm (RLE)

The code in RLE is constructed by giving the number of repetitions of a value then followed by

the value to be repeated. Thus, as an example the sequence “bbbbbDDDDDDDDDDDDDD”

when compressed yields “5b14D”. Thus, the compression gain is (19-5) /19 which equals

73.7%. On contrast, the sequence “efficient” when compressed yields “1e2f1i1c1i1e1n1t”. In

this case, a negative compression gain of (9-16)/9 which equals -78% can be calculated and the

reason of this large negative gain is that the sequence contains little character repetition [11].

2.3. Transmission technology

There are many ways of sending and receiving multimedia data in the Internet, but they depend

on type of data being sent and received over the Internet. If many clients are requesting data

over the Internet simultaneously, efficient allocation of bandwidth to every client and satisfying

the QoS requirements of every application is a challenging task. The type of transmission

techniques chosen can make difference in the outcome of whole network architecture [12].

3. DATA AND IMAGE COMPRESSION SERVICE USING HTTP-SOAP

The Image Web Service provides clients to receive compressed data and images via Simple

Object Access Protocol (SOAP) request and response model. The Web Services Description

Language (WSDL) offers three methods or services in SOAP to retrieve data and images:

• Image and Data with no compression

• Using Huffman compression

• Using RLE (Run Length Encoding) compression

3.1. Architecture Diagram

The architecture presented in this paper is built on J2EE framework with Apache AXIS for Web

Services and compression algorithm logic implemented on the Web Service Server side and

decompression algorithm implemented on the client.

The client in this implementation can be a browser or any application that can communicate

with HTTP SOAP using the published ImageServiceWSDL. The API returns static map image

or text files.

The architecture contains the following core elements that trigger the image/data file exchange

between the client and the server that take part in a transaction as shown in Figure 2.

• WSDL (ImageService) Server Side

• Server side code implementation of the Web Service

• Implementation of Huffman Compression Algorithm

• Implementation of RLE Algorithm

• Implementation of Huffman decompressing utility

3.2. Development Environment

The development is based on distributed n-tier architecture with two Enterprise Archive (EAR)

files where the first file is deployed at the server side and the second file at the client side. A full

development cycle has been followed from designing the classes using IBM Rational XDE to

developing code for Web Services, Huffman and RLE Algorithms.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

4

BrowserBrowserBrowser

J2EE Web J2EE Web

Application EARApplication EAR

(Client)(Client)

J2EE Web J2EE Web

Application EARApplication EAR

(Client)(Client)

AIX- UNIX

J2EE Web Service
Application EAR

(Server)

J2EE Web Service J2EE Web Service

Application EARApplication EAR

(Server)(Server)

Apache AXISApache AXIS

FrameWorkFrameWork
Apache AXISApache AXIS

FrameWorkFrameWork

AIX- UNIX

Apache AXIS
FrameWork

Apache AXISApache AXIS

FrameWorkFrameWork

WSDL
ImageService

WSDLWSDL
ImageService

ImagesImagesImages

EnterFileName.html Image / Text

Rendered

SOAP

Request

SOAP

Response

Text FilesText FilesText Files

Huffman

Compressor

HuffmanHuffman

CompressorCompressor
RLE

Compressor

RLERLE

CompressorCompressor

Huffman Huffman

DecompressorDecompressor
Huffman Huffman

DecompressorDecompressor
RLE RLE

DecompressorDecompressor
RLE RLE

DecompressorDecompressor

Figure 2. Image / Data Service J2EE Architecture

3.2.1. Development details

The following is a list of the different components used in the development:

• IBM Development Environment (RAD 7.x)

• IBM WebSphere Application Server Version 6.x

• JDK version 5.x

• Full code has been written on server side and client side for the following

o WebSerivce WSDL

o WebService Server side implementation

o WebService Server side Huffman Compressor

o WebService Server side RLE Compressor

o Client Side Implementation

� WebService Client

� WebService Huffman DeCompressor

� WebService RLE DeCompressor

3.3. Challenges in Implementing the Algorithms in J2EE Web Services

Various challenges are encountered dealing with compression algorithms in J2EE web services.

These challenges include challenges implementing Huffman Algorithm, limitation of RLE

algorithm, and overhead of Web Service.

3.3.1. Huffman Algorithm

The following challenges were encountered while implementing Huffman Algorithm:

1. Block Preparation: From RGB to Y, CR, CB planes.

2. Transform: Two-dimensional Discrete Cosine Transform (DCT) on 8x8 blocks.

3. Quantization: Compute Quantized DCT Coefficients.

3.3.2. RLE algorithm

RLE uses simple compression of repeated characters in sequence. Such a pattern rarely happens

in an image.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

5

3.3.3. Web Service

Each algorithm requires extra parameters to be able to decode the compressed image. All these

parameters are transmitted in bytes.

3.4. Class Diagram for the Server Side

Figure 3 shows the class diagram for the server side.

3.5. Class Diagram for the Client Side

Figure 4 shows the class diagram for the client side.

Figure 3. Class diagram for the server side

Figure 4. Class diagram for the client side

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

6

3.6. Application

The web application can be accessed using any web browser. Figure 5 shows the web page that

will be displayed to the client.

Any of the options can be selected to view the file. In our example, we will choose a text file

and have Huffman compression applied. The following is the sequence of steps that are

triggered to complete Round Trip Time (RTT):

1. User request is submitted to the client application.

2. Client application creates a SOAP request with type of compression and chooses

appropriate method call in the WSDL.

3. Request is sent to the server.

4. Server receives the SOAP request and processes the input parameters.

5. Requested file is read and compressed using either Huffman or RLE based on the

compression method selected by the client.

6. SOAP response is created.

7. SOAP response is sent to the client.

8. Client receives the request.

9. Client applies decompression algorithm.

10. Client sets the content on the browser and flushes the data.

11. User sees the data.

Figure 5. Web page displayed when the application is accessed

4. RESULTS

The following sub-sections summarize the results obtained.

4.1. Huffman Compression on Images

We have tested the Huffman algorithm with ten small size image files. The size of the image

files varies from 750 K bytes to about 5.7 M bytes. Table 1 shows the test results for Huffman

compression algorithm.

Figure 6 shows the compression ratios between the original and the compressed files. Figure 6

shows higher compression ratio with large files. There are two exception though (Test Run 4

and 6) as these samples have more colors and more patterns. There is not much advantage of

using color vs. monochrome images, the compression is very much consistent with the notion of

higher compression is achieved with larger image files.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

7

Table 1. Test results for Huffman compression algorithm

Figure 6. Compression ratios between the original and the compressed files

Figure 7 shows the RTT time comparison between the original file and the compressed file

using Huffman encoding.

Figure 7. RTT time comparison between the original file and the compressed file using

Huffman encoding.

In the RTT comparison, we see a common theme in response time from the server to the client.

The uncompressed images have a consistent response time of 0.02 seconds through out the

Original File Size vs. Compressed

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

Run

1

Run

2

Run

3

Run

4

Run

5

Run

6

Run

7

Run

8

Run

9

Run

10

F
il

e
 S

iz
e
 i

n
 K

B

Original File Size

Compressed File Size

RTT Huffman Compression vs. RTT

0.00

0.30

0.60

0.90

1.20

1.50

1.80

2.10

2.40

R
T

T
 i

n
 S

e
c
o

n
d

s RTT with Compression

RTT

Linear (RTT with

Compression)

RTT with

Compression

1.021.021.011.021.011.011.011.012.022.02

RTT 0.020.020.020.020.020.020.020.020.020.02

Ru

n 1

Ru

n 2

Ru

n 3

Ru

n 4

Ru

n 5

Ru

n 6

Ru

n 7

Ru

n 8

Ru

n 9

Ru

n

10

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

8

sample data regardless of size. This may be due to the case the client and the server is running

on the same machine, however when compression is applied, it remains in a consistent pattern

and changes from 1.02 seconds to 2.02 seconds when the file size’s change from about 4 Mb to

5 Mb.

4.2. Huffman Compression vs. RLE on Data Files

We have tested both Huffman and RLE on small text files. Table 2 shows the results of testing

using these two algorithms.

To compare Huffman with RLE in text data, various samples have been chosen as RLE is

known for its best performance when repeatable sequenced characters are given. We tested

Huffman and RLE with sample data representation from News articles, Google search result and

stream of sequential characters and combination. Figure 8 shows the original file size and the

compressed file size using both Huffman and RLE.

According to the test runs with Huffman and RLE, it’s worth noting that based on the content of

data, RLE Algorithm can work against compression as RLE is primarily based upon

consecutive occurrences. When the data is unique, i.e. (not in a repeatable sequence of

characters) RLE will work the opposite in case of Run 1, 2, 3, 5 and 9. The best performance

can be observed in RLE is in Run 4, 6, 7, 8 and 10 as the data sample has multiple occurrences

of the same character.

Table 2. Huffman and RLE test results on small text files

Figure 8. Original file size and the compressed file size using both Huffman and RLE.

Huffman Compression vs. RLE

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

R
un

 1

R
un

 2

R
un

 3

R
un

 4

R
un

 5

R
un

 6

R
un

 7

R
un

 8

R
un

 9

R
un

 1
0

F
il
e

 S
iz

e
 i
n

 K
B

Original File Size

Huffman Compression

RLE Compression

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

9

Huffman algorithm for text compression can be seen as a consistent compression regardless of

the text data. As in our sample test data, we have text from NEWS, Google search result and

repeatable sequence of characters. In Figure 8, we compare compression ratio between Huffman

and RLE.

Three unique patterns can be identified in comparison of Huffman and RLE.

1. RLE performs better when repeatable sequences of patterns are found in data.

2. RLE performs opposite and increases the file size to around double its original size

when it does not encounter repeatable pattern.

3. Huffman on the other hand is very consistent in compression ratio and can compress the

file up to 200% regardless of data sample.

4.3. Impact on Images and Data based on error rate

In this paper we are dealing with compression at the application layer. The data link layer is

responsible to verify and fix any error that can result in transmission. To study the effect of

transmission errors on the quality of images we are introducing error(s) in the range of 5% to

50%. Figure 9 shows the resulted images at different error rates.

5. CONCLUSION

Currently web services are becoming a de facto standard in the corporate world. The idea of

reusability and write once and use any where, fits the ideology by adapting to Service Oriented

Architecture. With images and large sets of data being used in the corporate world, it’s worthy

to mention when proper data compression techniques are applied, it can support not only larger

data transmission but also efficient usage of bandwidth and response time.

Figure 9. Original image versus corrupted image at 5% and 50% error rates.

Both Huffman and RLE algorithm’s have their advantages and limitations. Due to the recursive

nature to create the Huffman frequency, large amount of image manipulation can result in

delayed transactions and complex coding procedures.

We have also seen how RTT can be affected with the introduction of compression; in most

cases of our sample data an introduction of about 1 second has been seen. In real world

scenarios, one second can make a big difference as real time applications in many Claims

Adjudication and Banking systems need response time less than one second. However,

compression can be effectively utilized in batch processing systems in similar banking or

healthcare industries, where large amount of data can be reduced up to 200% when effective

compression techniques are applied e.g. Huffman Algorithm, thus saving large network traffic

and effective utilization of resources.

International journal of computer science & information Technology (IJCSIT) Vol.2, No.5, October 2010

10

On the other hand, the implementation of RLE compression algorithm is not difficult. However,

it is inefficient except for data with many consecutive repeated elements such as in case of

images with large uniform areas.

REFERENCES

[1] Webex Video Conferencing: http://www.webex.com/.

[2] Kuros, J. F. & Ross, K. W., (2004) “Computer Networking: A Top-Down Approach Featuring

the Internet”, 3rd Edition.

[3] Lazar, A. A., (1994) “Challenges in Multimedia Networking,” Retrieved from -

www.ee.columbia.edu/~aurel/papers/programmable_networks/high_tech_forum_osaka94.pdf

[4] Rowe, Lawrence A. & Jain , Ramesh, (2005) “ACM SIGMM retreat report on future directions

in multimedia research,” ACM Transactions on Multimedia Computing, Communications, and

Applications TOMCCAP) Vol. 1 , No. 1, pp 3 – 13.

[5] Wu, Chung-Ping & Kuo, C.-C.J.,(2005) “Design of integrated multimedia compression and

encryption systems,” IEEE Transactions on Multimedia, Vol. 7, No. 5, pp828 – 839.

[6] Kavousianos, X.; Kalligeros, E.& Nikolos, D ., (2007) ”Optimal Selective Huffman Coding for

Test-Data Compression,” IEEE Transactions on Computers, Vol. 56 ,No. 8, pp. 1146-1152.

[7] “The Data Compression Resource on the Internet “Retrieved from - http://www.data-

compression.info/Algorithms/RLE/index.htm

 [8] Yang, En-hui & Wang, Longji, (2009) “Joint Optimization of Run-Length Coding, Huffman

Coding, and Quantization Table With Complete Baseline JPEG Decoder Compatibility,” IEEE

Transactions on Image Processing, Vol. 18, No. 1, pp 63 – 74.

 [9] Shaaban, E., (2000) “Data Compression Basics,” Retrieved from -

http://meseec.ce.rit.edu/eecc694-spring2000/694-5-9-2000.pdf

 [10] Wiseman, J., “A quick tutorial on generating a Huffman tree,” Retrieved from -

http://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutoria

l.html

[11] “RLE Compression” Retrieved from - http://en.kioskea.net/contents/video/compimg.php3

[12] Shyu, M. L., Chen, S. C., Luo, H., (2002) “Self-Adjusted Network Transmission for Multimedia

Data,” Retrieved from - http://www.eng.miami.edu/~shyu/Paper/2002/ITCC02.pdf

Authors

Eman Abdelfattah had received the MS Degree in Computer Science from the

University of Bridgeport in 2002. She worked as a programmer and computer

teacher in several places in the period from 1983 to 2000. She worked as a

C++ and Java instructor in the Continuing Education Department, Housatonic

Community College, Bridgeport, Connecticut. Currently, she is working as an

adjunct instructor at the University of Bridgeport.

She has research interests in the areas of networking and communications. Her

research results were published in prestigious international conferences in

circuits and VLSI design. She actively participated as a committee member of

the International Conferences on Engineering Education, Instructional

Technology, Assessment, and E-learning EIAE 05, EIAE 06, EIAE 07, EIAE

08, and EIAE 09.

