
International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

DOI : 10.5121/ijcsit.2010.2611 113

SOME OBSERVATIONS ON OPEN SOURCE

SOFTWARE DEVELOPMENT ON SOFTWARE

ENGINEERING PERSPECTIVES

Vinay Tiwari

University Institute of Computer Science and Applications, R.D. University, Jabalpur

(MP) (INDIA)
vinaytiwari999@gmail.com

ABSTRACT:

Several argument has been made that open source software development process some times also

referred as free and open source software development (FOSSD) violates the traditional software

engineering principles and researches advocates to rethink and re-evaluate the studies and concepts of

software engineering. The aim of this paper is to investigate the software development process models of

Open source software on the software engineering perspectives. In this paper a discussion on some of

development models of OSS and their comparison with the traditional development models is made and

the software engineering practices followed in open source development environment is also been

discussed. Principle difference and similarities of these development models with the conventional models

are also discussed. The ultimate goal is to understand how open source software development processes

are similar to or different from software engineering processes and to bring better understanding to the

development process of Open Source Software.

KEYWORDS:

Open Source Software development, Software Development Process Model, Software Requirements, OSS

development model.

1. INTRODUCTION:

Open Source software during the last ten years has gained wide spread popularity. Software like

GNU Linux, MYSQL, Apache web server, Mozilla web browser, Open office, Perl

programming language etc. getting the phenomenal success among the software users. The

amount of free and open source software increasing exponentially with the expansion of internet

and currently there are at least hundreds of thousands of such software projects. People

everywhere are adopting various open source distributions or participating in the general

movement by contributing their own modifications. Open source software has gained a

reputation for reliability, efficiency, functionality that has surprised many people in the software

engineering world. It is a relatively a new approach for the development of software, where a

multitude of people work on the software without apparent central plan or traditional

mechanisms of coordination[01]. Free and open source software development is an alternative

to traditional software engineering as an approach to the development of software systems and

gaining significant importance specially in the production of complex software products. Open

Source Software developers have produced systems with a functionality that is competitive with

similar proprietary software developed by commercial software organizations. Software

development is undergoing a major change from being a fully closed software development

process towards a more community driven open source software development process[02].

With the huge success of the open source software, the computer software can now be broadly

split into two development models [03] -

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

114

• Proprietary, or closed software owned by a company or individual. Copies of the

‘binary’ are made public; the source code is not usually made public.

• Open Source software (OSS), where the source code is released with the binary. Users

and developers can be licensed to use and modify the code and to distribute any

improvement they make.

Open source software development method is aggressive and progressive software development

method and starts with problem discovery/ idea from one pupil (mostly software developer) and

completed with the help of many software volunteers. Open source software development

strategies are quite distinct from that of traditional software development methods. Open source

has violated many of the theories of software engineering like limited team size, decentralized

project management etc.[04]. FOSSD is a way for building deploying and sustaining large

software systems on a global basis and differs in many interesting ways from the principles and

practices traditionally advocated for software engineering [05]. In this paper we study the
Nature and characteristics of open source software and strive to clarify some of the main

principles followed in open source development. In the beginning, some important aspects of

the entire OSSD approach are introduced. Important characteristics of Open source software

development are explained and typical roles, processes and an overall lifecycle model of typical

OSSD projects is also discussed. Subsequently paper examines and compares practices,

patterns, and processes of OSSD with the traditional software development models.

2. WHAT IS OPEN SOURCE SOFTWARE?

Open source software is computer software that is available in source code form that permits

users to study the software, to use software freely, change and improves software as per his

requirements. Generally open source refers to a program in which the source code is available to
the general public for use and/or modification from its original design free of charge. OSS as

defined by the open source Initiative [06] is “software that must be distributed under a license

that guarantees the right to read, redistribute, modify and use the software freely”. Feller and

Fitzgerald [07] have outlined the following key conditions to define OSS:

1. The source code must be available to user.

2. The software must be redistributable.

3. The software must be modifiable and the creation of derivative works must be permitted.

4. The license must not discriminate against any user, group of users, or field of endeavor.

5. The license must apply to all parties to whom the software is distributed.

6. The license cannot restrict aggregations software.

Open source software generally developed in voluntarily basis by the global network of

developers and available free on the internet. OSS is often described as ‘free’ software, which
reflects the liberty not the price of the software[08]. The OSS license give users to following

four essential ‘freedoms’[09]:

• to run the program for any purpose,

• to study the working of the program, and modify the program to suit specific need,

• to redistribute copies of the program at no charge or for a free, and

• to improve the program, and release the improved modified version

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

115

3. OSS DEVELOPMENT PROCESS:

Generally, an OOS project begins with a personal need of a single developer who has a vision

and tries to devise solutions for his unmet need calls this “scratching an itch” [10]. Then he or

she starts and discussion with his friends and colleagues about the possible solution and making

the code base. He makes this code available to others which attract the attention of other user-

developers and inspire them to contribute to the project in this way the initial project community

is formed and the development proceeds. Typically, anyone may contribute towards the

development of the system and built Open Source Community to provide administration for the

project. This initial community of interested persons start to exchange their knowledge on the

topic and start working on the issue until they achieve some satisfactory result. They make

their work publicly available at a place where many people are able to access it. They may

announce their project at places like mailing lists, newsgroups or online news services. Other

persons recognize some of their own concerns in the project and are interested in a convenient

solution, too. Therefore, they review the projects result (e.g. by using it). As they look at the

issue from a different perspective, they suggest improvements and even might join the project.

These users now known as co-developer, helps in rapid code improvement and effective

debugging. As the project grows more and more people get attached and a lot of feedback helps

to get a better understanding of the issue, and possible strategies to solve it. New information

and resources are integrated into the research process. The solution grows, and addresses the

issue in ever better ways. The project’s community is established and will react to future

changes the same way it emerged originally.

Figure 1. OSS Development Process

Gregor J. Rothfuss [11] in his research classified the various stages of an OSP is Planning, Pre-

Alpha, Alpha, Beta, Stable, Mature as follows:

Planning

No code has been written, the scope of the project is still in flux. The project is but an idea. As

soon as tangible results in the form of source code appear, the project enters the next stage.

Pre-Alpha

Very preliminary source code has been released. The code is not expected to compile, or even

run. Outside observers may have a hard time to figure out the meaning of the source code. As

soon as a coherent intent is visible in the code that indicates the eventual direction, the project

enters the next stage.

Mature

Stable

Beta

Alpha

Pre Alpha

Planning

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

116

Alpha

The released code works at least some of the time, and begins to take shape. Preliminary

development notes may show up. Active work to expand the feature set of the application

continues. As the amount of new features slows down, the project enters the next stage.

Beta

The code is feature-complete, but retains faults. These are gradually weeded out, leading to

software that is ever more reliable. If the number of faults is deemed low enough, the project

releases a stable version, and enters the next stage.

Stable

The software is useful and reliable enough for daily use. Changes are applied very carefully, and

the intent of changes is to increase stability, not new functionality. If no significant changes

happen over a long time, and only minor issues remain, the project enters the next stage.

Mature

There is little or no new development occurring, as the software fulfills its purpose very reliably.

Changes are applied with extreme caution, if at all. A project may remain in this final stage for

many years before it slowly fades into the background because it has become obsolete, or

replaced by better software. The source code for mature projects remains available indefinitely,

however, and may serve educational purposes.

4. CATHEDRAL AND BAZAAR

The Book “The Cathedral & the Bazaar” written by Eric S. Raymond, president of the Open

Source Initiatives (http://www.opensource.org), is the most frequently cited description of the

open source development methodology. It can be said that the research on OSSD was started by

this book. In this book Raymond explains the major differences between the two types of

software creation. He summarized his OSSD experiences into 19 lessons for software

programmers, which have become the recommended practices of this paradigm.

According to Raymond conventional closed source development is like the building like a

cathedral; central planning, tight organization and one process from start to finish. The

progressive open source development is more like a “a great babbling bazaar of differing

agendas and approaches out of which a coherent and stable system could seemingly emerge

only by a succession of miracles”. In his view, open source represents the bazaar, a place where

people freely trade their wares and skills, and the proprietary movement is represented by the

cathedral, a bricks-and-mortar institution with little flexibility for change.

The Cathedral model represents the traditional commercial software development style, using

small teams, tight management control, and long release intervals. The Bazaar model represents

the style of releasing early often involving a large number of pool of developers working on the

product. It challenges the traditional software engineering models of using a large team of

developers and testers Some of the most important ideas in Cathedral & the Bazaar include:

• Brooks' Law does not apply to Internet-based distributed development;

• "Given enough eyeballs, all bugs are shallow";

• Linux belongs to the Bazaar development model;

• The OSP model automatically yields the best results;

• The Bazaar development model is a new and revolutionary model of software

 development.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

117

All these ideas are vulnerable to varying degrees. Understanding the weak points of Cathedral

& the Bazaar helps to develop stronger, more comprehensive theories later.

5. TRADITIONAL LIFE CYCLE MODELS:

A software development process or life cycle is a structure imposed on the development of a

software product. In this section an overview of some life cycles models for traditional software

development is briefly discussed which will be later useful in the present study. The first
published model of the software development process was Waterfall model. It begins at the

system level and progress through analysis, design, coding, testing and support. Still it is well

suited to projects which have a well defined architecture and established user interface and

performance requirements.

When the requirements and user's needs are unclear or poorly specified a Prototyping model is

used. It was advocated by Brooks. The approach is to construct a quick and dirty partial

implementation of the system during or before the requirements phase. This quick design or

prototype is evaluated by customer/user and used to refine requirement for the software to be

developed.

A better model, the "spiral model" was suggested by Boehm in 1985. The spiral model is a

variant of "dialectical spiral" and as such provides useful insights into the life cycle of the

system. This model can be considered as a generalization of the prototyping model. That why it

is usually implemented as a variant of prototyping model with the first iteration being a

prototype[12].

Agile represent new approaches in the spectrum of software development methods. The aim of
these practitioner-oriented software development methods is to make a software development

unit more responsive to changes. These changes are imposed by rapidly evolving technology,

changing business and product needs. Agile software development uses iterative development as

a basis but advocates a lighter and more people-centric viewpoint than traditional approaches.

Agile processes use feedback, rather than planning, as their primary control mechanism. The

feedback is driven by regular tests and releases of the evolving software.

The variation of agile process is Extreme programming (XP) in which the phases are carried

out in extremely small (or “continuous”) steps compared to the older, batch process. It is the

latest incarnation of Waterfall model and is the most recent software fad. XP try improve classic

waterfall model by trying to start coding as early as possible but without creating a full-fledged

prototype as the first stage.

6. RELEATED WORK AND EXISTING OSS DEVELOPMENT MODELS:

There are many theoretical approaches that try to explain the phenomenon of open source. But

still no generally agreed well defined standard development model for open source software

exists. Open source processes can vary from project to project. There is no single universal

approach to FOSSD. Projects differ a lot from each other, and there are differences even in the

workings and organizational approach of a single project over time. Classifications of different

development styles have been made, but there is no general consensus on taxonomy of
projects[01]. The understanding towards the development process begin with the suggested

model of Eric S. Raymond known as Bazaar model in which he described OSS development as

“a great babbling bazaar of differing agendas and approaches”.

Daniel Blaney et al.[13] described the Open Source Model as parallel software development on

an unprecedented and wholly innovative scale. In this model, a handful of project leaders offer

up a novel software idea over the Internet and the best and brightest minds appear in droves to

attack the problem, often without compensation. Amazingly, these contributors are often

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

118

scattered all over the globe and almost never meet face-to-face. The basic idea upon which

most writers and techno-historians agree upon is that people, not practices and tools, drive this

model and make it work. Before the Internet came about, the power of a “collective mind,” so
to speak, had never been realized.

Open Source Software Development is an orthogonal approach to the development of software

systems where much of the development activity is openly visible, development artifacts are

publicly available over the Web, and generally there is no formal project management regime,

budget or schedule [14]. Open Source Software Development is oriented towards the joint

development of community of developers and users concomitant with the software system of

interest as compared with traditional software development and maintenance [15]. Sharma et al
[16] suggested that typically in an OSS project, developers iterate through a common series of

actions while working on the software source. The development process of an OSS project

consists of the following visible phases:

1. Problem discovery

2. Finding volunteers

3. Solution identification

4. Code development and testing

5. Code change review

6. Code commit and documentation

7. Release management

Life cycle starts with the problem discovery by discussing with active developers. An agenda

file with a list of high priority problems, open issues and release plans is stored in each

product’s repository to keep track of project status. Once the problem is discovered, volunteers

are found to work on the problem. Volunteers prefer to work on problems that are related to the

areas they are familiar with and have been working on. After having found volunteers to work

on a problem, the next step is to identify the solution. Usually, many alternative solutions are

available. Developers choose solutions for their generality and portability. The chosen

alternative is posted to the developer mailing list for feedback before it is implemented. Once

the solution has been identified, code is developed. The developer makes changes to a local

copy of the source code, and tests the changes in his or her own environment. The tested

solution is posted to the developer mailing list for review. Individual developers on the list

further test this solution. If they find any problems with the solution, they suggest improvements

to the originator. After a careful review, the originator makes changes to the code and again

tests the solution and posts the improved solution on to the list. The process is repeated until it is
approved. Once the tested solution is approved by the list, it can be committed to the source by

any of the developers, although it is preferred that the originator of the change performs the

commit. Each commit results in a summary of changes being automatically posted to the

Concurrent Version Control System (CVS) mailing list. All the members of the core group

review the changes to ensure that changes are appropriate. Changes are also reviewed by

developers outside the core group. A core group member volunteers to serve as the release

manager as the project nears a product release. The release manager identifies outstanding
problems and their solutions and makes suggested changes. The role of release manager is

rotated among the members of the core group.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

119

Figure 2. OSS Development Process (source wikipedia)

Ming-Wei Wu and Ying-Dar Lin [17] proposed a development model for open source by

incorporating the open source licensing and version control as shown in figure 3.

Figure 3. Open source system development cycle Source: (Wu and Lin, 2001, p.34)

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

120

The open source software development cycle, allows literally any-one to participate in the

process, but having multiple participants means a massive coordination effort. Participants or

co-developer scattered across the globe must agree on a version control system to avoid
development chaos. Before the official release a licensing model must be decided from the three

general categories i.e. free- the program can be freely modified and redistributed; copyleft the

owner gives up intellectual property and private licensing finally GPL compatible where

licenses are legally linked to the GPL licensing structure.

Schweik and Semenov [18] propose an OSSD project life cycle comprising three phases: 1.

project initiation 2. Going ‘open’, and 3. Project growth, stability or decline. Each phase

is characterised by a distinct set of activities. Requirements for a new project are often based on
what open source developers themselves want or need. During project initiation, the project

core is developed upon which others build. Going ‘open’ involves a choice on the part of

the project founders to follow OSS licensing principles. It also ensures that the project

enjoys the support of a core group of dedicated developers, shows technical promise and

is of interest to future developers, and that a sufficient amount of the original

requirements have been solved to create a framework in which future development can take

place. In this phase appropriate technologies and web sites need to be chosen to act as a vehicle

for sharing code and recruiting developers. The final phase, growth, stability or decline,

poses an element of risk for open source projects: will the project generate enough interest to

attract developers and users globally to use the product and participate in further

programming, testing or documentation.

Mockus et al [19] describe a life cycle that combines a decision-making framework with task-

related project phases. The model comprises six phases:

1. Roles and responsibilities,

2. Identifying work to be done,

3. Assigning and performing development work,

4. Pre-release testing,

5. Inspections, and

6. Managing releases.

The model has a strong managerial focus emphasizing developer management and the work to

be done, rather than on product-related activities. The model proposed by Mockus et al

adequately caters for the planning phase of the SDLC but is less explicit regarding other phases.

Furthermore, Mockus et al assume that some sort of prototype already exists, failing to explain

where design and analysis phases occur within their model.

Jorgensen [20] provides a more detailed description of specific product related activities

that underpin the OSSD process. His model is shown in figure 4.

Figure 4: Jorgensen life-cycle

Code

Pre-commit

test

Review

Development

Release
Parallel

Debugging
Production

Release

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

121

stages or sets of activities proposed are:

Code: Code is submitted by talented developers for review and improvement by

respected peers.

Review: Most (if not all) code contributions are reviewed. Truly independent peer review

is a central strength of this process.

Pre-commit test: Review is followed by an unplanned, yet thorough, testing of all

contributions for a particular code change. While informal, this phase is taken very seriously as

negative implications of permitting a faulty contribution can be considerable.

Development release: If the code segment is deemed release-ready it may be added into the

development release.

Parallel debugging: Development releases of software undergo a rigorous debugging phase

where any number of developers is able to scrutinize the code in search of flaws.

Production release: Where development versions are deemed stable, they are released as
production versions.

The process is repeated incrementally for new modules – reinforcing the cyclical nature of all

open source projects where there is no real end point - unlike many commercial projects.

Jorgensen’s model is widely accepted as a framework for the OSSD process.

Rinette Roets et al [09] expands on Jorgensen’s life cycle model and incorporates aspects of

previous models. Their model attempts to encapsulate the phases of the traditional SDLC as

shown in figure 5.

Figure 5: Model of Rinette Roets et al [09] and its comparison with SDLC

The OSS development life cycle is very different to the traditional one of planning, analysis,
design and implementation. Planning, analysis and design phases are largely undertaken by the

initial project founder and thus may not be part of the OSS development cycle. The OSS

development life cycle is located primarily within the implementation phase.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

122

Although many existing OSS projects have successfully developed individual practices and

specific processes, it is possible to define some common characteristics that can be identified in

most of the OSS Development projects [21].

• Collaborative development

• Globally distributed actors

• Voluntariness of participation

• High diversity of capabilities and qualifications of all actors

• Interaction exclusively through web-based technologies

• Individual development activities executed in parallel

• Dynamic publication of new software releases

• No central management authority

• Truly independent, community-based peer review

• ‘Bug driven’ development

7. OSS VS TRADITIONAL DEVELOPMENT MODELS:

From the previous discussion it is clear that open source software development is a relatively

new approach for the development of software, where a multitude of people work on the

software without apparent central plan or traditional mechanisms of coordination and without

any clear model. Whereas traditional development methods which follows a software

engineering principals is essentially a science about how software should be made not how it is

made. We have seen that the model of OSS development differs significantly from the

traditional software engineering models as described in text books. Therefore the comparison

between the two is like a comparison between reality and idealized model of development.
Comparison between the two can not tell us which one is better than the other. So the best way

is to find out where the Open source software development following the software engineering

principles and at which point it is not following the guidance of software engineering.

In a open source development it is hard to provide a strict schedule for the whole project and

provide a precise process model for it because it does not have formal document for

Requirement, Design, Testing, and so on[14]. OSS project generally begins with a single

developer who has a personal goal or vision whereas in traditional software development,
software companies first try to find the needs of their customers, and then use some process

models for their development. The development process consist some strict phases, such as

Requirement Engineering, Testing etc. Although the requirement engineering as per the

software engineering principles is not done in OSS project but on OSS the developers are users

of the software, they understand the requirements in a deep way. As a result, the ambiguity that

often characterizes the identification of user needs or requests for improvement in the traditional

software development process is eliminated as programmers know their own needs[22].

The traditional in-house software developments rely on employees in one or several companies

generally situated in same country. The open source development is totally different. It has

contributors living all over the world. They speak different languages; have different culture and

education backgrounds. Therefore, it is impossible for design a unify standard for code,

documents. Besides, the OSS development teams are not as stable as corporation-dominated

development during the whole life cycle of the software. More people leave, and even more

people engage. This directly causes the unstable code quality. On the other side the OSS is
supported by people all over the world, therefore, the efficiency of bug finding and fixing may

be higher as Compared with traditional software.

The Evolution and Maintenance of software is another important point to compare. Traditional

in house development have systematic plan for system testing and maintenance. Whereas in

Open source development Code quality is maintained largely by “massively parallel debugging”

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

123

(i.e., many developers each using each other’s code) rather than by systematic testing or other

planned, prescriptive approaches. Although Open Software development encourages active

participation of potential users but not pay enough attention on reflection and reorganization

It is hard to run an open source project following a more traditional software development

method like the waterfall model, because in these traditional methods it is not allowed to go

back to a previous phase. But Open source development is not software engineering done

poorly. The various software engineering processes are at the center of OSP activity, and are

heavily dependent on each other and processes from other areas. Ultimately, the degree of

quality with which these processes are performed determines the resulting quality for the

products of an OSP[11]. Requirements analysis, prototyping, testing, version and release
management, bug triaging, deployment, and documentation make up software engineering in

open source project. Alfonso Fuggetta [23] mentions that “rapid prototyping, incremental and

evolutionary development, spiral lifecycle, rapid application development, and, recently,

extreme programming and the agile software process can be equally applied to proprietary and

open source software”. Firstly if we find the analogy of OSS development with prototype we

find that the requirements artifacts are not clearly defined in OSS project and typical OSSD

processes start after the release of a software prototype as OSS and are just aimed to improve

and maintain this prototype. Thus, an already existing software prototype seems to be a

prerequisite for the requirements definition processes which typically occur in OSSD projects.

The spiral model originally proposed by Boehm is an evolutionary software process model that

couples the iterative nature of prototyping with the control and systematic aspects of the linear

sequential model. In this model software is developed in a series of incremental releases. The

OSS development process starts with early and frequent releases. Over time, both the Spiral

Model and the Open Source Development Model continue to refine their respective projects by

an iterative process[13]; however, the open source development also seems to adopt some parts

of the incremental approach, in which essential features are grown methodically and are not

released until they are properly finished.

Agile –methods represent new approaches in the spectrum of software development methods.

The aim of these practitioner-oriented software development methods is to make a software

development unit more responsive to changes. Juhani Warstaa and Pekka Abrahamsson [04]

show that OSS and agile development methods have many similarities. An agile software

development method has been defined with the following characteristics: incremental (small

software releases, with rapid cycles), cooperative (customer and developers working constantly

together with close communication), straightforward (the method itself is easy to learn and to

modify, well documented), and adaptive (able to make last moment changes). It has been find

by various researchers that the OSS development method is rather close to the definition of an

agile software development method. Fuggetta[23] has mentioned one more open source

development method that is the Agile method Extreme programming (XP). XP try improve
classic waterfall model by trying to start coding as early as possible but without creating a full-

fledged prototype as the first stage. Open source development is also starts with the

development of source code by developer’s personal itch. All the Agile methods are in essence

applicable to open source software development, because of their iterative and incremental

character. XP & Open Source Development share the same root. Both XP and most open source

are rooted in minimization of planning, organization, testing, etc. rather, both tend to focus on

maximizing time spent programming. Another Agile method, internet speed development, is
also suitable for open source software development in particular because of the distributed

development principle it adopts. Internet-Speed Development used geographically distributed

teams to ‘work around the clock’.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

124

8. CONCLUSION:

Despite the fact that no standard development life cycle exists in open source development,

OSSD is getting success as development methodology. Open source software progress has

modified the method of software development, updating, and maintenance. OSS is becoming

famous in the field of software development and million of people are getting the benefit from

this type of development. Different views on development model of open source software are
suggested by the various researchers. This paper has analyzed the nature and characteristics of

the OSS development life cycle model and different views of researchers. It has been argued

that OSS development violating the principles of software engineering. A theoretical study has

also been made to find out the validity of this argument by comparing OSS development model

with the software engineering development models as portrayed in the software engineering

books. It can not be said that Open source is completely violating the software engineering

principles. Consciously or unconsciously some principles of conventional development is

followed in OSS development. This is particularly true in case of large OSS projects. To make

the team work possible large successful projects do define and enforce some rules. In small OSS

development projects with fewer developers, development process may not be well defined. But

it can not be said that in OSS development projects software engineering is done poorly. It is

instead a different approach to the development of software systems.

9. REFERENCES:

 [01] Otso Kivekas, (2008), Free/Open Source Software Development: Results and Research

Methods, Master’s Thesis, University of Helsinki.

[02] Amit Deshpande, Dirk Richle, (2008), The total growth of Open source, Proceedings of the

fourth conference on Open Source Systems (OSS 2008), Springer Verlag.

[03] Postnote on Open Source Software, Parliamentary office of Science and Technology, No. 242,

June 2005 source internet, www.parliament.uk/parilamentary_office/post/pubs2005.cfm

[04] Juhani Warsta and Pekka Abrahamsson, Is open source software development essentially an

Agile method?, Third workshop on open source software engineering, Portland, Oregon, USA.

[05] Sommerville, I., Software Engineering, 7
th

 edition, Addison Wesley, New York 2004.

[06] Open source Initiatives, http://www.opensource.org/docs/osd.

[07] Feller J. and Fitzgerald B. (2000), A framework analysis of the open source software

development paradigm. In Proceedings of the twenty first international conference on

Information systems‘, International Conference on Information Systems, pages 58–69, Brisbane,

Queens-land, Australia.

[08] Morten Sieker Andreasen, Henrik Villemann Nielsen, Simon Ormholt Schrøder, Jan Stage,

(2006), Usability in Open Source Software Development: Opinions and Practice, Information

Technology and Control, Vol. 35, No. 3 A

[09] Rinette Roets, Marylou Minnaar, and Kerry Wright, (2007) Open source: Towards Successful

Systems Development Projects in Developing Countries, Proceedings of the 9
th

 International

Conference on Social implications of computers in developing countries, Sao Paulo, Brazil, May

2007.

[10] Eric S. Raymond, (1999), The Cathedral and the Bazaar: Musingson Linux and Open Source by

an Accidental Revolutionary, O’Reilly & Associates.

[11] Gregor J. Rothfuss, (2002), A Framework for Open Source Projects, Master Thesis, University

of Zurich, November.

[12] Roger S. Pressman, (1997), Software Engineering A Practitioner’s Approach, McGraw Hill, 4
th

Edition.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 2, No 6, December 2010

125

[13] Daniel Blaney, Diana Lenceviciene, Ben Peterson, And Zijiang Yang, Open Source Software

Development Model, source internet (scholar.google.com).

[14] Yi Wang, Defeng Guo EMOS/1: An Evolution Metrics Model for Open Source Software, source

internet.

[15] Walt Scacchi, Joseph Feller et al, (2006), Understanding Free/Open Source Software

Development Process., Software Process Improvement and Practic;11:95-105

[16] S. Sharma, V. Sugumaran, and B. Rajgopalan, (2002), A Framework for creating hybrid-open

source software communities, Information Systems Journal, vol. 12, pp.7-25.

[17] Ming-Wei Wu and Ying-Dar Lin., (2001), Open source software development: an overview.

Computer, 34(6):33–38.

[18] Schweik, C. M., & Semenov, A., (2003), The institutional design of open source

programming: Implications for addressing complex public policy and management

Problems, source internet.

[19] Mockus, A., Fielding, R. T., & Herbsleb, J. D., (2000), Two case studies of open source

software development: Apache and Mozilla. ACM Transactions on Software Engineering and

Methodology,11(3), 309-346.

[20] Jorgensen, N., (2001), Putting it all in the trunk: Incremental software development in the

Free BSD open source project. Information Systems Journal, 11(4), 321-336

[21] Stefan Dietze, (2005), Agile Requirements Definition for Software Improvement and

Maintenance in Open Source Software Development , Proceedings of SREP’05, Paris, France,

August 29–30, 2005.

[22] Kevin Crowston, Barbara Scozzi, (2002), Exploring the Strengths and Limits of Open Source

Software Engineering Processes: A Research Agenda, 2nd Workshop on Open Source

Software engineering, May 25, 2002, Orlando, Florida

[23] Fuggetta, A., (2003), Open Source Software- An Evaluation, Journal of System and Software,

66,77-90.

Authors’ Short Biography: http://www.rdunijbpin.org/ufaculty.htm

 Mr. Vinay Tiwari is qualified Computer professional having done

PGDCA with distinction (1989) and MCA (2000). He has more than 19

years professional experience, 15 years of teaching experience at UG

level and 09 years at P.G. level. He is a regular teaching counselor of

Indira Gandhi National Open University for BCA/MCA courses from

last 15 years and R.D. University Distance Education for last 5 years. He

is a permanent resource person of Computer Refresher Courses

organized by Academic Staff college for college teachers. His Area of

interests are Computer Programming, Web Designing and Software

Engineering. In the last 5 years he has attended 3 International and 5

National conferences organized at different places and presented research

papers. His two books has already been published on computers

