
International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011 

DOI : 10.5121/ijcsit.2011.3109                                                                                                                 118 

Adaptive Fuzzy Filtering for Artifact Reduction in 
Compressed images and videos  

 

P.Ramakrishna Rao
1
, Dr.B.Addai

2
, G.Ramakrishna

3
 and T.PanduRanga Vital

4
 

1,3
Faculty in Department of Computer Science 

2
Head of the Department 

1,2,3
Dr.B.R.Ambedkar University, Srikakulam Etcherla – 532 410, Andhra Pradesh, 

India. 

4
Associate Professor, Dept.Of Computer Science, Gayathri College of Science and 

Management, Munasab Peta, Srikakulam. 
1ponnada_ramakrishnarao@yahoo.com , 2 addai_66@yahoo.com , 

3Ramakrishna.g20@gmail.com and 4 pandu_rv@yahoo.com 

ABSTRACT 

     In this paper, spatial neighboring pixels are used to deal with blocking and ringing artifacts while 

temporal neighboring pixels are utilized to remove mosquito and flickering artifacts. To avoid the 

blurring effect of linear filters, a fuzzy filter is implemented. Fuzzy filter is a specific case of bilateral 

filters [15], [16]. Fuzzy filters help denoising the artifacts while retaining the sharpness of real edges. In 

image and video compression, the artifacts such as blocking or ringing artifacts are spatially directional 

and flickering artifacts are temporally directional. For compressed video sequences, the motion 

compensated spatiotemporal filter (MCSTF) is applied to intraframe and interframe pixels to deal with 

both spatial and temporal artifacts. In this work, a novel fuzzy filter is proposed to adapt to the pixel’s 

activity and directions between the pixel of interest and its surrounding pixels. 

 

Key words—Artifact reduction, flickering metric, fuzzy filter, MCSTF 
 

1. INTRODUCTION 

     Block based compressed signals suffer from blocking, ringing, mosquito, and flickering artifacts, 

especially at low-bit-rate coding. Compressing block edges the correlation between pixels at the border 

of neighboring blocks and causes blocking artifacts individual. Due to the loss of high frequencies the 

ringing artifacts (similar to the Gibbs phenomenon [1]) occur when quantizing the DCT coefficients with 

a coarse quantization. On the other hand, mosquito artifacts come from ringing artifacts of compressed 

frames when displayed in a sequence. For intercoded frames, mosquito artifacts become more annoying 

for blocks on the boundary of moving object and background which have significant interframe 

prediction errors in the residual signal [2]. Flickering artifacts [3], [4] happen due to the inconsistency in 

quality over frames at the same spatial position. This inconsistency is from the temporal distortion over 

compressed frames caused by quantizing the residual signal. These flickering artifacts, which are 

perceived more in the flat areas, also come from different quantization levels for rate-distortion 

optimization.  

 

     Many filter-based denoising methods have been proposed to reduce these artifacts, most of which are 

frame-based enhancement. For blocking artifact reduction, a linear low-pass filter was used in 

[5] to remove the high frequencies caused by blocky edges at borders, but excessive blur was 

introduced since the high frequencies components of the image were also removed. In [6]–[8], 

low-pass filters were applied to the DCT coefficients of shifted blocks. In particular, the 
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adaptive linear filters in [7] and [8] were proposed to overcome the problem of over-blurring 

the images, but these methods require high computational complexity. In [9], a projections onto 

convex set-based method was proposed with multiframe constraint sets to reduce the blocking 

artifacts. This method required to extract the motion between frames and quantization 

information from the video bit-stream.  

     To reduce ringing artifacts, the methods in [10] and [11] utilized the linear or nonlinear 

isotropic filters to the ringing areas. As an encoder-based approach, [12] proposed a noise 

shaping algorithm to find the optimal DCT coefficients which adapts to the noise variances in 

different areas. All of these methods can only reduce ringing artifacts in each frame. To deal 

with the temporal characteristic of mosquito artifacts, [13] applied the spatiotemporal median 

filter in transform domain for surrounding 8×8 blocks. The improvement in this case is limited 

by the small correlation between DCT coefficients of the spatial neighboring 8×8 blocks as well 

as the lack of motion compensation in the scheme.  

 

     For flickering artifact removal, most of the current methods focused on reducing flickering 

artifacts in all intraframe coding. In [3], the quantization error is considered to obtain the 

optimalintra prediction mode and to help reducing the flickering artifact. Also for intraframe 

coding, [4] included the flickering artifact term in the cost function to find the optimal 

prediction and block-size mode. A similar scheme is implemented in [14] for flickering 

reduction in Motion JPEG 2000. Note that all of these approaches are encoder-based.  

 

Figure1. Correlation between the current frame of compressed mobile sequence and its surrounding 

frame 

     In order to reduce the temporal artifacts such as mosquito and flickering artifacts more 

efficiently, not only the spatial correlation among pixels but also the temporal one need to be 

incorporated. Figure1 shows the correlation between the 5th frame of compressed Mobile 

sequence and its surrounding frames. Compared to the auto-correlation of the current frame, the 

cross-correlation in the plot between the center frame and its surrounding frames is still rather 

large when the frame distance is small. Using extra information from temporally neighboring 

samples, such as pixels of surrounding frames in video sequences, can further enhance the 

quality of compressed video sequences. One drawback of fuzzy filters for multidimensional 

signals is that the signal is converted to a vector that ignores the relative position of the pixels. 

This adaptive fuzzy filter is considered for both cases of compressed images and video 

sequences. To assess the filter performance in reducing the flickering artifact, a novel flickering 

metric based on the metric in [17] is proposed with the extension of flickering consideration for 

motion areas. The spatial adaptation and directional adaptation make the proposed adaptive 

fuzzy filter different from the conventional bilateral filters, which adapt to the distance between 

pixels. Another adaptation of bilateral filters in the offset and the width of the range filter was 

discussed in [18],[19] and [20]. These locally adaptive methods require complicated training 

based approach and are only used for image enhancement.  
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2. FUZZY FILTER 

     Fuzzy filters, such as those described in [11] and [21], improve on  rank condition, rank 

selection filters [22] by replacing the binary spatial-rank relation by a real-valued relation. The 

conventional way to define the fuzzy filters is by generalizing the binary spatial-rank relation. 

Assume that a filter h is applied to a set Ω of neighboring samples x[m+m',n+n'] around the 

input x[m,n] to form the output 

 

 

                 

(1) 
and its unbiased form with normalization 

 

 

                                                                                                                                   (2) 

 

 

 
In (1), h[m+m',n+n'], x[m,n]  controls the contribution of the input x[m+m',n+n'] to the output. 

For a linear filter, h is fixed and input-independent. In the case of a nonlinear filter, h is a 

function of the input, such as for median filter  

 

 

 

 

 
Where round(u) is the nearest integer of  u. 

 

     The filter coefficients are input independence, a low-pass filter which is designed to perform 

effectively in the flat areas may introduce blurring artifacts in detail areas. In artifact reduction, 

especially for low bit-rate compression, it is desirable to preserve the details while removing 

the artifacts. This can be achieved by imposing the constraint such that if x[ m+m', n+n' ] is far 

from x[m,n], its contribution to the output is small. In that case, the filter coefficients h[k,l] 

must follow the constraints 

 

         

(3)

                                   

                                                                                        (4)

                                    (4) 

and 

   

                  
                                           (5) 
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     The function  h[x[ m+m', n+n' ], x[m,n] ]is referred to as the membership function and there 

are many functions which fulfill these requirements. For a Gaussian membership function  

 

                                 

(6) 

 

 

 
Where σ represents the spread parameter of the input and controls the strength of the fuzzy 

filter. Note that the contribution of the input x[m,n] to the output is always highest compared to 

the contribution of other samples 

 

     (7) 

For the same  | x[ m+m', n+n' ] - x[m,n] |, the higher the σ value, the higher the contribution of 

x[ m+m', n+n' ] relatively compared to the contribution of x[m,n] to the output. This implies 

that x[m,n] will be more averaged to x[ m+m', n+n' ]. Smaller σ values will keep the signal 

x[m,n] more isolated from its neighboring samples. The spread parameter should be adaptive to 

smooth or detail areas, where as the conventional fuzzy filter assigns a fixed spread parameter 

for  multidimensional signals, every surrounding sample and ignores the relative position 

between them. In image and video compression, artifacts such as blocking, ringing or flickering 

artifacts are directional, and, thus, the fuzzy filter should consider the directions between x[n] 

and its surrounding samples x[ m+m', n+n' ]. This can be achieved by an adaptive spread 

parameter 

 

         (8)                    (8) 

 
where σm is a position-dependent amplitude of the spread parameter σ and K is the scaling 

function controlled by the direction of x[ m+m', n+n' ] to x[m,n].  

3. DIRECTIONAL FUZZY SPATIAL FILTER 

A. Directional Spread Parameter: When highly compressed, the ringing artifacts in JPEG 

images are prevalent along strong edges and the filter strength should adapt to the edge 

direction. For example, in Figure 2(b), the filter should ideally apply stronger smoothing in the 

horizontal direction, where the ringing artifacts are likely to have no relation with the  

 

 

 

 

 

 

 

 

 

 
Figure 2. Example of directional JPEG artifacts with scaling factor of 4 for the quantization step matrix. 

(a) Original image; (b) compressed. 
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original value, and a weaker filtering in the vertical direction, which is the edge direction of the 

image. One general form of cosine-based spread parameter which satisfies this requirement is 

 
                                                                                                                                        

                                                           (9) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Angle and spread parameter for directional fuzzy filter. (a) Angle θ (b) spread parameter. 

where θ is the direction between the pixel of interest I [m,n] and its surrounding pixels  

I [ m+m', n+n' ] as shown in Figure 3(a), σm is the amplitude of the spread parameter, α and β 

are positive scaling factors which control the maximum and minimum strength of the 

directional filter. In (9), σ(θ) attains the minimum value σmin = ασm in the vertical direction and 

the maximum value σmax = ( α + β )σm in the horizontal direction. An example of the directional 

spread parameter is plotted in Figure 3(b) with σm = 15, α = 0.5 and β=3.5.  

B. Edge-Based Directional Fuzzy Filter: For real images with more complicated edges, the 

strongest filtering is applied to the direction perpendicular to the edge. Based on the Sobel 

operator with horizontal and vertical derivative approximation of the gradient  

 

     -1 0 1 

    Gx =  -2 0 2      × I 

     -1 0 1 

  

and                                               

     

     -1 0 1 

    Gx =  -2 0 2      × I    

     -1 0 1   

 

the edges are detected by using the gradient magnitude . 

Its corresponding direction is determined by θ0 = atan( Gy / Gx ). The spread function in  
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Figure 4. Angles θ and θ0 of the edge based directional fuzzy filter. 

 

this case is determined by the angle ( θ – θ0) instead of θ in (9), where the angles θ and θ0  are 

defined as in Figure 4. To be adaptive for different areas having different activity levels, the 

standard deviation STD( I [m,n] ) of pixels in the window W centered on I [m,n] is used to 

control the amplitude of the spread parameter σm in (9) as 

 

                        (10) 
where STDmax and STDmin are, respectively, the maximum and minimum value of all STD( I 

[m,n] ) values in the current frame, σ0 is the maximum spread parameter value and γ is the 

scaling factor in [0,1]. σm is scaled to [ γσ0 , σ0 ] so that the fuzzy filter is still applied with σm = 

γσ0  to the lowest activity areas. By adjusting σ0 and γ, the balance between edge preservation 

and artifact removal can be achieved. The proposed algorithm for edge-based directional fuzzy 

filtering is shown in Figure 5. The pixels are first classified into edge pixels and nonedge pixels 

by comparing the gradient magnitude to an empirically determined threshold. Edge pixels are 

not be filtered because they are not  

 

 

 

 

 

 

 

 

 

 
Figure 5. Flow chart of the directional fuzzy filter. 

ringing pixels. For nonedge pixels, if there are no edge pixels in the same block, the ringing 

artifacts in this block are not considered to be oriented in any particular direction and are 

filtered with an isotropic fuzzy filter. The directional spread parameter control the nonedge 

pixels, for using the  tangent angle of their nearest edge pixels. 

4. ADAPTIVE FUZZY COMPENSATED SPATIOTEMPORAL 

FILTER 

     The directional fuzzy filter is extended for artifact reduction in compressed video sequences 

I . To increase the correlation between pixels, the surrounding frames are motion compensated 

before applying the MCSTF as shown in Figure 6. The chroma components are first up sampled 
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to the same size of the luma component. Before the motion estimation phase each frame is 

enhanced by an isotropic spatial fuzzy filter for obtain more accurate motion vectors. Next, the 

adaptive fuzzy filter is applied to the set Ω of spatiotemporal surrounding pixels centered by the 

pixel of interest I' [t,m,n] 

 

 

 

 

 

 

 

 

 
Figure 6. Block diagram of the adaptive fuzzy MCSTF 

 

                     

                     (11) 

 

Where 

            

(12) 

 

       

                                                                                                     
is the fuzzy filter coefficient for the surrounding pixel at the location I' [t,m,n] from the pixel of 

interest I' [t,m,n] and  

 

                        (13) 

is the spread parameter with the amplitude σm and scaling factor K as mentioned in (8). Similar 

to Section 3-B, the standard deviation of pixels in spatiotemporal cubic C centered on I' [t,m,n] 

is used to adaptively control the amplitude of the spread parameter as in (10). Furthermore, the 

fuzzy MCSTF filter should apply strongest filtering to the pixels in surrounding motion 

compensated frames at the same spatial position due to their strongest correlation to I' [t,m,n] 

and weaker in other positions. Based on the cross-correlation value of pixels in the windows of 

the current frame and its surrounding frames, the scaling factor of the spread parameter is 

determined by 

 

                                               (14) 

 

where 

  

                                                                     

(15) 
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(16) 

           

  

 

        

and 

(17) 

 

 
where V is a spatial window centered on the pixel of interest I' [t,m,n] of the current frame or I' 

[t+t',m+m',n+n'] of the surrounding frames. Higher correlation between the pixels in the 2 

windows leads to more contribution to the output of the pixel at [t',m',n']. This scaling factor 

also follows the constraint  

 

                                                                                                (18) 
which makes sure that the input I' [t,m,n] always has highest contribution to the output. 

5. MOTION COMPENSATED METRIC FOR FLICKERING 

ARTIFACT EVALUATION 

Previous flickering metrics focused on flickering artifacts of intra frame coding in H.264 [3] 

and Motion JPEG2000 [14]. In [3], the flickering of the [i,j]
th
 block was calculated by the sum 

of square difference (SSD) between the temporal flickering in the original frames and 

compressed frames O and compressed frames I 

                     (19) 

Where 

                       (20)                                                               

 
The metric S for the whole frame only took into account the blocks with small temporal SSD 

value in the original sequence 

                                                                  (21) 
where L was the number of blocks in frame t which satisfy SSDorg[t,i,j] ≤ ε SSDorg. was defined 

as the SSD over temporal direction between original frames at times t and t-1 

                            (22) 
In (19), the metric does not consider SSDorg, but the same SSDdif makes the flickering artifact 

less perceptible with high SSDorg than small SSDorg. A normalized metric should be considered 

to make it comparable for different blocks, different frames or different sequences. In [14], the 

metric applied the SSD operator to the metric proposed by [17]. These SSDs between the 

original and compressed blocks were calculated separately for the current and the previous 
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frames. For [i,j]
th
 block, the final metric was a fraction of the difference and the sum of these 

two SSDs. 

 

                               

(23) 

                 

                                                                                                                                                                                                

 

 
Because of the square function in (23), this metric ignores the signs of the differences between 

the allocated blocks before and after compression. As shown in the example in Figure 7 with 

the case of D[t-1,m,n] = 0.375 and D[t,m,n] = -0.375, the metric results in no flickering 

although there is flickering at pixel [t,m,n]. 

 

 

 

 

 

 

 

 

 
Figure 7. Example where the flickering metric in [14] has problem. (a) Original sequence; (b) 

compressed sequence. 

TABLE 1: COMPARISON OF PSNR IN UNITS OF dB FOR DIFFERENT METHODS 

 

Sequence 4Q Chem Liu Conventional 

Fuzzy 

Adaptive 

Fuzzy 

News 27.48 27.58 27.55 27.94 28.05 

Silent 27.84 28.37 28.33 28.33 28.58 

Foremen 28.06 28.46 28.41 28.78 28.87 

Mobile 21.22 20.96 21.13 21.50 21.55 

Mother 31.02 31.83 31.62 31.77 32.00 

Pairs 23.38 23.25 23.31 23.80 23.84 
Average gain    0.2433   0.2267   0.5200   0.6483 

 
     For interframe coding, the flickering also happens due to the coarse quantization or varied 

bit allocation for residual signals. Because of the tracking effect of human eyes, the motion 

compensation should be implemented before applying the metric. Therefore, the proposed 

normalized metric considers the motion of the moving object as well as the signs of these 

differences 

 

                                                                                   

                          (24) 

 



International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 1, Feb 2011 

127 
 

where [∆m,∆n] is the motion vector of block [i,j]
th
 which is estimated based on the original 

frames. The metric for the whole frame is determined similarly as in (21). The smaller the 

SSDdif value, the smaller the flickering artifacts. 

6. SIMULATION RESULTS 

A. Enhancement for Compressed Images Simulations are performed to demonstrate the 

effectiveness of the directional fuzzy filtering scheme. The qualities of the different approaches 

are compared in terms of visual quality and PSNR. For comparison, the denoising methods 

proposed by Chen [7], Liu [8], and Kong [11] are implemented. In the experiments, a 1-D fuzzy 

deblocking filter as in [11] is applied prior to the proposed directional fuzzy deringing-filter to 

reduce the blocking artifacts. Only the nonedge pixels that have G > 210 are filtered to avoid 

destroying the real edges of the image. All parameters in Section 1II are chosen experimentally 

over a wide range of sequences to achieve the best visual quality. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of filtered results. (a) Original frame; (b) compressed; (c) Chen’s method; (d) Liu’s 

method; (e) conventional fuzzy filter; (f) directional fuzzy filter. 
 

σ0 is chosen to effectively remove the overall artifacts. γ Controls the balance between 

removing the artifacts in flat areas and keeping the details in high activity areas. α and β are 

used to adjust relative filtering strength between the gradient and tangent directions of edges. 

These parameters are experimentally chosen with σ0 = 15, α = 0.5, β = 3.5 and γ = 0.5. The set 

Ω of neighboring pixels and the spatial window W size are set to 5×5. Several CIF resolution 

video sequences are compressed using motion JPEG with a scaling factor of 4 for the 

quantization step matrix. The test images are the frames taken from Silent, Foreman, Mobile, 

Paris, News, and Mother sequences.  

     In the case of the JPEG image in Figure 2(b) with only vertical edges, Figure 10 shows the 

enhanced images using the isotropic fuzzy filter and the directional fuzzy filter. For this 

simulation, the spread parameter of the isotropic fuzzy filter is fixed with σ = 15. Compared to 

the compressed image in Figure 2(b) (39.77 dB), the enhanced image using the isotropic fuzzy 

filter in Figure 10(a) (45.53 dB) and the enhanced image using the directional fuzzy filter in 

Figure 10(b) (47.82 dB) achieve significant improvement in visual quality and PSNR. This 

shows the effectiveness of fuzzy filter in reducing both blocking and ringing artifacts. It also 

demonstrates the basic merit of the directional fuzzy filter to more substantially reduce the 

ringing artifacts compared to isotropic fuzzy filtering.  
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     For images with more complicated edges, the simulation is performed on the 4th frame of 

the Mobile sequence. The Sobel operator as described in Section 1II-B is used to estimate the 

gradient of the edges. As shown in Figure 11(a) for one part of the deblocked image and in 

Figure 11(b) for its gradient, the Sobel operation is robust in estimating the gradient of the 

edges having ringing artifacts. Figure 12 shows the deblocked image and its classification map 

for directional deringing. In this map, the cyan pixels are edge-pixels, magenta pixels are 

nonedge pixels which are directionally filtered and blue pixels are nonedge pixels which are 

isotropic filtered as with edge-pixels. Table I summarizes the PSNR results for one frame of all 

sequences when different enhancement techniques are applied. Each row shows the PSNR in 

dB of one frame of each video sequence when using different methods for quality 

enhancement. The last row indicates the average gain in PSNR of the enhanced image over its 

compressed image. These numerical results show that the directional fuzzy filter provides 

higher PSNR improvement over existing techniques including Chen’s method, Liu’s method 

and the conventional fuzzy filtering method that employs isotropic fuzzy spatial filtering. The 

average gains for Chen’s method, Liu’s method, the conventional fuzzy filtering method and 

the proposed method are 0.2433, 0.2267, 0.5200, 0.6483 dB, respectively.  

     To evaluate the visual quality, results with different denoising techniques on compressed 4th 

frame of the Mobile sequence are shown in Figure 8 for full frame views and Figure 9 for 

zoomed views. The results show that the DCT-based low-pass filtering techniques proposed by 

Chen is able to suppress some of the ringing artifacts, but introduces a substantial amount of 

blur in the processed image. Liu’s method is able to retain some of the sharpness, but is not able 

to reduce the ringing artifacts. The conventional fuzzy filter shows much less ringing around 

the edges, especially within the calendar area. It is clear from these visual results that the 

directional fuzzy filter has the best quality as it is able to further reduce ringing over the 

conventional fuzzy filtering approach and outperforms other existing denoising techniques.  

     To see the individual contributions of the spatial and directional adaptations respectively, 

another simulation was performed for the cases of using only the spatial adaptation (without 

directional adaptation), using only the directional adaptation (without spatial adaptation) and 

using both the spatial and directional adaptations. The results are shown in Figure 13 for the 

whole filtered frames and in Figure 14 for one zoomed in part. Figs. 13(b) and 14(b) show that 

only using the directional adaptation reduces effectively the ringing artifacts but blurs the 

filtered frame. The blurriness is caused by using the fixed amplitude of the spread parameter for 

all pixels. 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 9. Zoomed images for comparison of filtered results. (a) Original frame; (b) compressed; (c) 

Chen’s method; (d) Liu’s method; (e) conventional fuzzy filter; (f) directional fuzzy filter. 
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Figure 10. Result of using a fuzzy filter. (a) Isotropic (45.53 dB); (d) directional (47.82 dB). 
 

 

 

 

 

 

 

 

 

 
Figure 11. Gradient of the deblocked image. (a) One part of the deblocked image;(b) gradient of 

 

 

 

 

 

 

 

 

 
Figure 12. Pixel classification for directional filtering. (a) Deblocked image (b) pixel classification of 

 

Using only the spatial adaptation preserves the details but cannot effectively reduce the ringing 

artifact, as shown in Figs. 13(c) and 14(c). Combining spatial and directional adaptation can 

both reduce the ringing artifacts and still keep the details of the enhanced frames, as shown in 

Figs. 13(a) and 14(a). Spatial adaptation helps removing the overall ringing artifacts and 

avoiding blurring the frame while directional adaptation helps further removing the ringing 

artifacts around 

 
 

 

 

 

 

 

 
Figure 13. Comparison on the contribution of spatial and directional adaptations. (a) Spatial-directionally 

adaptive; (b) directionally adaptive; (c) spatially adaptive. 
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Figure 14. Zoomed images for comparison on the contribution of spatial and directional adaptations. (a) 

Spatial-directionally adaptive; (b) directionally adaptive; (c) spatially adaptive. 
 

TABLE 2:  COMPARISON OF PSNR IN UNITS OF dB OF DIFFERENT CLASSIFIED 

PIXELS AND OF SPATIAL AND DIRECTIONAL ADAPTATIONS 

 
 

 

Sequences 

Percentage of Classified Pixels 

(%) 

Non-edge Pixels  

Total Directional 

Filtering 

Isotropic Filtering 

Edge Non-edge  

JPE

G 

(dB) 

 

Propose

d (dB) 

 

JPE

G 

(dB) 

 

Propose

d (dB) 

 

JPE

G 

(dB) 

 

Propose

d (dB) 

 

Directionally 

Adaptive(dB

) 

 

Spatially  

Adaptive(dB

) 

Directiona

l 

Isotropi

c 

News 7.11 21.45 71.44 24.92 25.78 30.39 31.08 27.48 28.05 27.58 28.08 

Silent 2.72 14.19 83.09 25.61 26.75 28.56 29.24 27.84 28.58 28.45 28.59 

Foremen 6.40 22.78 70.82 25.86 27.25 30.72 31.53 28.06 28.87 28.71 28.95 

Mobile 25.7

3 

53.02 21.25 21.54 22.16 25.73 26.08 21.22 21.55 21.20 21.50 

Mother 1.49 8.06 90.45 27.52 29.41 31.64 32.48 31.02 32.00 31.65 32.03 

Pairs 18.8

4 

38.37 42.79 22.59 23.43 28.27 28.96 23.38 23.84 23.45 23.75 

Avg.gain     1.1234  0.6767  0.6483 0..3400 0.6500 

 
the edges to achieve better visual quality. The PSNR values of the enhanced frames are listed in 

the last four columns of Table II for all sequences. The average PSNR improvement of using 

spatial-directional adaptation, using only directional adaptation and using only spatial 

adaptation are 0.6483, 0.3400, and 0.6500 dB, respectively. Although having slightly smaller 

PSNR improvement than using only spatial adaptation, the combined spatial-directional 

adaptation has the best visual quality.  

     An additional simulation was also performed to justify the contribution of directional 

filtering and isotropic filtering of the nonedge pixels in Figure 5. The percentage and PSNR of 

the classified pixels for all sequences are shown in Table II. The average PSNR improvements 

of directional filtering and isotropic filtering of the nonedge pixels are 1.1234 and 0.6767 dB,  

respectively. These results validate the effectiveness of the edgebased directional fuzzy filter 

discussed in Section 1II-B. The overall average PSNR improvement of the proposed adaptive 

fuzzy filter is 0.6483 dB. This improvement is smaller than the averaged PSNR improvement of 

filtering the nonedge pixels with directional filtering or isotropic filtering. That is because the 

edge pixels are not filtered and there is no improvement from these pixels.  

     Compared to Chen’s method and Liu’s method which are DCT-based methods, the proposed 

directional fuzzy filtering method is performed in the pixel domain and has less computational 

complexity. On the other hand, the proposed filter requires an edge detection phase, which 

increases the complexity of the proposed method slightly compared to the conventional fuzzy 

filter. However, with the merit of the directional fuzzy filter in further removing the ringing 

artifacts around the edges, this extra complexity seems well-justifiable in many applications. 
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Figure 15. Comparison of filter results for MJPEG sequences. (a) Compressed (21.22 dB); (b) fuzzy 

spatial filter (21.50 dB); (c) proposed fuzzy spatiotemporalfilter (21.89 dB). 
 

 

Figure 16. Zoomed views for images in Figure 

 
B. Enhancement For Compressed Video Sequences 
i) Enhancement For MJPEG Video Sequences: To demonstrate the advantage of using 

temporal correlation, the simulation in this section 1s performed on MJPEG sequences. In this 

codec, each frame is compressed separately using the JPEG standard and the temporal 

redundancies between frames are not utilized for coding as in other codecs. Therefore, it is 

expected that the use of such temporal redundancies (i.e., correlation among frames) for 

postfiltering could lead to more pronounced quality improvement in this case. For the purposes 

of practical implementation and focusing on demonstrating the advantage of using extra 

information from surrounding frames, the motion compensation stage in Figure 6 is omitted to 

reduce running time and the scaling factor of the spread parameter is chosen K = 1. To be 

consistent with the method of using fuzzy spatial filter in [11], the same 1-D deblocking fuzzy 

filter and the same algorithm for choosing amplitude of spread parameter σm are used in the 

adaptive fuzzy spatiotemporal filter. The sizes of the set Ω and the spatiotemporal cubic C are 

5×5×5 pixels while that of the spatial window V is 5×5 pixels.  

     Figure 15 compares the enhanced images obtained by the fuzzy spatial and proposed fuzzy 

spatiotemporal filters. The enhanced image obtained by the proposed fuzzy spatiotemporal 

filter [Figure 15(c)] shows significantly reduced ringing artifacts and better color quality than 

the spatial counterpart [Figure 15(b)]. The drastic improvement in visual quality is more readily 

observable in the enlarged portion of the picture as shown in Figure 16. In the conventional 

fuzzy case, the deringing filter was applied only to the luminance component as there were not 

enough chroma samples to gain any benefits from the clustering property of the fuzzy filter for 

deringing. However, with the current spatiotemporal extension, more chroma samples are 

available from the neighboring frames and the use of deranging filter for chroma components 

helps to improve the color quality significantly, as shown in Figs. 15 and 16.  

     Next, Figure 18 compares the PSNRs of all the tested methods for the Mobile sequence. The 

plots clearly demonstrate that the proposed fuzzy spatiotemporal filter achieves consistent 

PSNR gains of about 0.67, 0.91, 0.72, and 0.40 dB on average relative to the compressed 

images, those by Chen’s method, Liu’s method, and the conventional fuzzy spatial filter, 
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respectively. The effectiveness of the proposed scheme was much more noticeable when the 

processed frames were played back as a sequence, as the proposed spatiotemporal result 

produces a smoother video with significantly reduced mosquito and flickering artifacts.  

     To validate the effectiveness of the proposed flickering metric, the metrics in [3] and [14] 

and the proposed metric is applied to the compressed and enhance Mobile sequences. These 

results are shown in Figure 17. The subjective tests show that the compressed sequence has the 

most flickering artifacts while the enhanced sequence using the proposed spatiotemporal has 

the least flickering artifacts. The metric in [14] is not correlated to the flickering artifacts as 

shown in Figure 17(b). The metric in [3] gives the similar flickering evaluation for both the 

compressed sequence and enhanced sequence of 

Liu’s method as shown in Figure 17(a), but the enhanced sequences of Liu’s method has less 

flickering than the compressed sequence when played back. In contrast, the proposed metric 

was well-correlated with the subjective flickering evaluation of the Mobile as shown in Figure 

17(c) as well as with those of other video sequences consistently. Furthermore, the resulted 

metric is comparable when the flickering evaluation for different frames or different sequences 

is needed. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Comparison on flickering artifacts of simulated methods for mobile sequence. 
 

ii) Enhancement For H.264 Video Sequences: In order to demonstrate that the proposed fuzzy 

filter is beneficial even for interframe-coded videos, which tend to have less flickering artifacts 

compared with the intracoded MJPEG sequences in the previous subsection, further 
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experiments are performed with H.264-coded videos. The Foreman sequence was compressed 

with the prediction structure of IBBBPBBBP at bit-rate 132 Kbps. The in-loop deblocking filter 

was enabled. The spread parameter was set to σ0 = 20 and the offset γ in (10) was set to 0.5. 

These parameters were chosen experimentally to get the best visual quality for a wide range of 

enhanced sequences. The motion vectors were estimated by full-search motion estimation with 

a search range 24×24. Figure 19 shows the compressed image using the in-loop deblocking 

filter [Figure 19(b)], enhanced images obtained by Chen’s method [Figure 19(c)], Liu’s method 

[Figure 19(d)], fuzzy spatial filter [Figure 19(e)] and adaptive fuzzy MCSTF [Figure 19(f)]. 

Chen’s method effectively removes artifacts but the resulting images tend to look blurry. Both 

Liu’s method and fuzzy spatial filter only slightly remove the blocking artifact. Recall from (5) 

that the difference in the pixel intensity values determines the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Comparison on PSNR of simulated methods for mobile sequence. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 19. Comparison of filter results for H.264 sequences. (a) Original frame; (b) compressed (30.77 

dB); (c) Chen’s method (30.37 dB); (d) Liu’s (30.51 dB); (e) fuzzy spatial filter (30.90 dB); (f) adaptive 

fuzzy MCSTF (31.09 dB). 
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relative contribution of each input sample to the filter output. Because of the large difference in 

the intensity values of the pixel of interest and its spatiotemporally neighboring pixels having 

blocking artifacts, blocking artifacts in the surrounding motion-compensated frames have small 

contribution to the output when using the proposed adaptive fuzzy MCSTF. The proposed 

method significantly reduces the artifacts and yields better color quality than other methods. It 

also has the highest PSNR improvement (0.32dB), comparing to the PSNR improvement of 

Chen’s method (-0.40 dB), Liu’s method (-0.26dB) and fuzzy spatial filter (0.13dB). This 

improvement is consistent for the Foreman sequence which is verified by the PSNR curves in 

Figure 20. Additional simulation shows that the spatial adaptation and directional adaptation 

contribute 0.26dB and 0.06dB to the total PSNR improvement, respectively. Spatial adaptation 

removes the overall artifacts and preserves the details while directional adaptation further 

reduces the ringing and flickering artifacts. Further simulation using the proposed directional 

fuzzy spatial filter in Section 1II shows that the single frame-based enhanced image (30.97dB) 

has less blocking and ringing artifacts than the compressed image [Figure 19(b)] but has more 

flickering artifacts than the enhanced image using the directional fuzzy spatiotemporal filter 

[Figure 19(f)].  

     The flickering artifacts are evaluated by the proposed flickering metric and these results are 

shown in Figure 21. This metric shows that the flickering artifacts are reduced when using the 

directional MCSTF. The subjective tests also validate this conclusion. The enhanced video 

sequence using the proposed method has less blocking, mosquito and flickering than the 

compressed sequence using the in-loop deblocking filter and other enhanced sequences using 

Chen’s method, Liu’s method and fuzzy spatial filter. The PSNR improvement of the proposed 

method for different bit-rates of the Foreman sequence is shown in Figure 22. The adaptive 

fuzzy MCSTF yields more than 0.2dB PSNR improvement for bit-rates from 70Kbps to 

170Kbps. The enhanced sequences using the adaptive fuzzy MCSTF also have better visual 

quality with less artifacts than other methods for the bit-rates in this range. Please note that the 

proposed method requires the motion compensation stage and the spatiotemporal filter, so its 

computational complexity is higher compared to those of Chen’s method, Liu’s method or 

fuzzy spatial filtering method. However, the motion compensation step is necessary to better 

align matching pixels and increase the correlation of the surrounding pixels to the pixel of 

interest. Running time to enhance one frame of the fuzzy spatial filtering method is comparable 

to the running time of Chen’s method and Liu’s method. The running time of the 

spatiotemporal filtering method usingfive frames is 1.5 and 8 times longer than the fuzzy 

spatial filtering method for the versions without and with motion compensation, respectively. 

All image and video results can be found at 

http://www.videoprocessing.ucsd.edu/~dungvo/MCSTF.html. 
 

 

 

 

 

 

 

 

 

 

 
Figure 20. Comparison of PSNR for all frames in the Foreman sequence 
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Figure 21. Comparison of flickering metric for all frames in the Foreman sequence 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22. Comparison of PSNR with different bit-rates of the Foreman sequence. 

 

7. CONCLUSION 

     An effective algorithm for image and video denoising using an adaptive fuzzy filter is 

proposed. This novel method overcomes the limitations of conventional nonlinear filters by 

accounting for pixel’s activity and the direction between pixels. It is shown that the proposed 

adaptive fuzzy filter improves both visual quality and PSNR of compressed images and videos 

compared to existing approaches. The flickering artifact reduction is evaluated by the proposed 

flickering metric. The proposed adaptive scheme can be applied to bilateral filters which do not 

use the directional information between pixels. A future adaptive MCSTF can be considered for 

segmented moving objects over frames. Human visual system (HVS) should be incorporated to 

evaluate the flicking artifacts based on artifact perception for different areas. 
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