
International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

DOI : 10.5121/ijcsit.2011.3215 204

ENERGY EFFICIENT TASK SCHEDULING OF SEND-

RECEIVE TASK GRAPHS ON DISTRIBUTED MULTI-

CORE PROCESSORS WITH SOFTWARE

CONTROLLED DYNAMIC VOLTAGE SCALING

Abhishek Mishra and Anil Kumar Tripathi

Department of Computer Engineering, Institute of Technology, Banaras Hindu

University, Varanasi, India 221 005

{abhishek.rs, aktripathi}.cse@itbhu.ac.in

ABSTRACT

In this paper we propose a model of distributed multi-core processors with software controlled dynamic

voltage scaling. We consider the problem of energy efficient task scheduling with a given deadline on this

model. We consider send-receive task graphs in which the initial task sends data to multiple intermediate

tasks, and the final task collects the data from these intermediate tasks with the restriction that the initial

and final tasks should be assigned on the same core.

KEYWORDS

Distributed System, Dynamic Voltage Scaling, Energy Efficient Scheduling, Multi-Core Processors

1. Introduction

Multi-core processors are designed to meet the growing challenges of high performance

computing applications (Fruehe [11], Schauer [20]). A multi-core processor has more than one

core on a single chip. The result is that this greatly reduces the hardware size without

compromising on the performance. The communication delay between cores is negligible as

compared to multiprocessors. This results in improvement of computational performance with

minimal hardware.

By using dynamic voltage scaling (DVS) we can vary the supply voltage that results in

changing the speed of cores (Pillai and Shin [19]). By using DVS we can reduce the energy

consumption when the computational load is low by reducing the speed of cores. On the other

hand when the computational requirement is high we can increase the speed of cores at the cost

of increased energy consumption. This gives rise to the voltage scheduling problem (Ishihara

and Yasuura [17]) for multi-core processors when a deadline is given.

Our motivation for this work comes from systems that use more than one multi-core processor.

For example the SPARC ENTERPRISE T5440 servers (Fujitsu [12]) use four UltraSPARC T2

Plus (Fujitsu [12]) processors that have up to 8 cores. This gives rise to newer problems for

energy efficient task scheduling.

We propose a model of distributed multi-core processors with software controlled DVS that has

a finite set of discretely available core speeds. We consider the problem of energy efficient task

scheduling with a given deadline on this model. We consider send-receive task graphs in which

the initial task sends data to multiple intermediate tasks, and the final task collects the data from

these intermediate tasks with the restriction that the initial and final tasks should be assigned on

the same core.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

205

The rest of the paper is organized as follows: section 2 presents existing work from the literature

about DVS enabled scheduling. In section 3 we propose a model for distributed multi-core

processors with software controlled DVS that has a finite set of discretely available core speeds.

In section 4 we consider the properties of the send-receive task graph that has to be allocated on

the distributed multi-core processor model. In section 5 we consider the Energy Efficient Task

Scheduling on Distributed Multi-Core Processors Problem (EETSD) on the proposed processor

model. We conclude in section 6.

2. Existing Work

There are some uniprocessor energy efficient scheduling algorithms proposed in the literature.

For example: Aydin et al. [4], Chen et al. [8, 9], Irani et al. [16], Ishihara and Yasuura [17],

Alvarez et al. [3], Yao et al. [24], Yun and Kim [25], Yang et al. [23].

Ishihara and Yasuura [17] solved the problem of voltage scheduling on a uniprocessor with

DVS that can use only a small number of discretely variable voltages. Chen, Kuo, and Yang [8]

solved the problem of profit-driven uniprocessor scheduling with energy and timing constraints.

Yao, Demers, and Shankar [24] solved the problem of minimum energy scheduling of

independent jobs with arrival times, deadlines, and a given amount of computation on a

uniprocessor with variable speeds under the assumption that the power function is a convex

function of the processor speed. Irani, Shukla, and Gupta [16] extended the previous problem

(Yao et al. [24]) to include the case in which a processor can go into a sleep state. Chen, Kuo,

and Lu [9] extended the problem of Yao et al. [24] for the case of jobs with precedence

constraints. They considered the case of weakly dynamic voltage scheduling in which speed

change is not allowed in the middle of processing a job.

There are also some multiprocessor energy efficient scheduling algorithms proposed in the

literature. For example: Anderson and Baruah [2], Chen et al. [7], Gruian [13], Gruian and

Kuchcinski [14], Mishra et al. [18], Zhang et al. [26], Zhu et al. [27], Yang et al. [22].

Yang, Chen, and Kuo [22] solved the problem of energy consumption minimization for a chip-

multiprocessor with DVS that can use continuously varying processor speeds with no upper

bound. Zhang, Hu, and Chen [26] solved the problem of energy efficient scheduling of real time

dependent tasks on a given number of variable voltage processors.

3. System Model

3.1. Multi-Core Processors with Software Controlled DVS

Enhanced Intel
(R)

 SpeedStep
(R)

 Technology [15], and AMD PowerNow!
(TM)

 Technology [1] are

some examples of software controlled DVS. Our model is suitable for multi-core processors that

are having a small number of cores with software controlled DVS and also having a small

number of discretely available core speeds. Some examples of this kind of processors are:

Enhanced Intel
(R)

 SpeedStep
(R)

 Technology [15] for the Intel(R) Pentium(R) M processor supports

processor speeds of 600 MHz to 1.6 GHz with a step of 200 MHz. AMD PowerNow!
(TM)

Technology [1] supports the complete frequency operating range of the processor in use

allowing steps of 33 or 50 MHz from an absolute low of 133 or 200 MHz.

3.2. Notation

Let N denote the set of natural numbers. Let R denote the set of real numbers. Let Z< : R X R →

{0, 1} be a function such that Z< (x, y) is 1 if x < y, otherwise it is 0. Let Z≤ : R X R → {0, 1} be a

function such that Z≤ (x, y) is 1 if x ≤ y, otherwise it is 0. Let Z= : N X N → {0, 1} be a function

such that Z= (m, n) is 1 if m = n, otherwise it is 0. Let Zv : {0, 1} X {0, 1} → {0, 1} be a function

such that Zv (m, n) is 0 for m = n = 0, otherwise it is 1. max() is the function used to return the

maximum of the input parameters.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

206

3.3. Distributed Multi-Core Processor Model

We take the power consumption function of a multi-core processor same as in Chandrakasan et

al. [6], Weiser et al. [21], and Yang et al. [22]:

 P(s) = αs
3
, (1)

where α is a constant.

The energy consumed by a core running at a speed of s during time t is assumed to be given by

P(s)t. The overheads in changing the supply voltages are assumed to be negligible. It is assumed

that any core can be taken into a sleep mode with s = 0, but all of non-sleeping cores must run

at the same speed (Yang et al. [22]). The computational work done c in cycles of a core running

at a speed of s during time t is assumed to be given by:

 c = st. (2)

Our distributed multi-core processor model has software controlled DVS. Frequent

speed/voltage switching may cause unnecessary overhead on the system. Fine-grained control

over power management can be achieved by setting periodic checkpoints of time period δt at

which the DVS software checks whether to switch the speed/voltage or not. As an example, the

Crusoe
TM

 LongRun
TM

 Power Management [10] for the CrusoeTM processor supports upto 200

speed/voltage changes per second. Azevedo et al. [5] proposed a profile-based dynamic voltage

scheduling heuristic using program checkpoints. Program checkpoints indicate places in the

code where the core speed/voltage should be recalculated and they are generated at compile

time. One of the advantages of using periodic checkpoints over program checkpoints is that the

periodic checkpoints can be set at the run time.

The DVS software is assumed to be implemented as a periodic process that wakes up

periodically to check if there is a need to change the voltage, and otherwise it sleeps. Therefore

after finishing its computation, a core cannot go into the sleep mode abruptly. The core has to

wait for the next periodic invocation of the DVS software. It will remain idle wasting the energy

for the remaining period of time.

In our distributed multi-core processor model there are r multi-core processors. Processors are

numbered from 1 to r. Each multi-core processor has p homogeneous cores. On each processor,

the cores are numbered from 1 to p. The DVS software is assumed to be a periodic process so

that the supply voltage can change only in steps of a certain amount of time δt. Without loss of

generality we take this time step as our unit of time (δt = 1). There are q possible core speeds

(non-zero) that are given by the set Q:

 Q = {si | (i [1, q] ∩ N) Λ (si N)}. (3)

4. Send-Receive Task Graphs

Let there be t+2 tasks given by the set T:

 T = {Ti | i [0, t+1] ∩ N}, (4)

where T0 is the initial task, Tt+1 is the final task, and the remaining tasks are the intermediate

tasks. For i [0, t+1] ∩ N, let ci cycles of a core (ci N) be the computational requirement of

task Ti, and let hi time units (hi N) be the migration overhead of task Ti. By migration

overhead of a task we mean the time taken to migrate the task from one processor to another

processor (inter-processor migration). Intra-processor (between different cores on the same

processor) migration overhead of tasks is assumed to be negligible. Let:

 C = {ci | (i [0, t+1] ∩ N) Λ (ci N)}, (5)

 H = {hi | (i [0, t+1] ∩ N Λ (hi N)}. (6)

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

207

For i [1, t] ∩ N, there is a communication requirement of ai time units (ai N) from T0 to Ti

(for inter-processor communications), and a communication requirement of bi time units (bi

N) from Ti to Tt+1 (for inter-processor communications). Intra-processor communication

overhead is assumed to be negligible. Let:

 A = {ai | (i [1, t] ∩ N Λ (ai N)}, (7)

 B = {bi | (i [1, t] ∩ N Λ (bi N)}. (8)

5. The Energy Efficient Task Scheduling on Distributed Multi-Core Processors Problem

(EETSD)

We assume non-preemptive scheduling. We also assume that a task starts as soon as possible

whenever it finds idle time on the (proc, core) to which it is allocated. The send-receive task set

T is given. The tasks are initially allocated on (proc 1, core 1). A deadline of D time units (D

N) is given. The Energy Efficient Task Scheduling on Distributed Multi-Core Processors

Problem (EETSD) is to find an allocation of tasks to (proc, core) and speed scheduling of

processors so as to minimize the energy consumed with all tasks finishing their computations

within the deadline and with the restriction that T0 and Tt+1 cannot be migrated.

For i [0, t+1] ∩ N, let (ni, mi) be the (proc, core) on which the task Ti is allocated. For the

initial and final tasks we have:

 n0 = 1, (9)

 ` m0 = 1, (10)

 nt+1 = 1, (11)

 mt+1 = 1. (12)

For i [1, t] ∩ N (intermediate tasks), we have:

 1 ≤ ni ≤ r, (13)

 1 ≤ mi ≤ p. (14)

Let:

 N = {ni | i [0, t+1] ∩ N}, (15)

 M = {mi | i [0, t+1] ∩ N}. (16)

For i [0, t+1] ∩ N, let gi be the start time, and let fi be the finish time of task Ti. We assume

that the initial task T0 starts at time 0:

 g0 = 0. (17)

Let:

 G = {gi | i [0, t+1] ∩ N}. (18)

Let S :([1, r] ∩ N) X [0, D] → Q U {0} be the speed profile of processors. For i [0, t+1] ∩ N,

S(ni, t) gives the speed of processor ni at time t.

For i [0, t+1] ∩ N, we have the following work constraints and the deadline constraints for

the task Ti:

 ∫figi S (ni, t) dt = ci, (19)

 fi ≤ D. (20)

For i [1, t] ∩ N, the intermediate tasks Ti can start their execution only after receiving the

communication from the initial task T0:

 max (hi Z< (1, ni), f0 + ai Z< (1, ni)) ≤ gi. (21)

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

208

For i [1, t] ∩ N, the final task Tt+1 can start its execution only after receiving the

communications from the intermediate tasks Ti:

 fi + bi Z< (1, ni) ≤ gt+1. (22)

For (i, j) ([0, t+1] ∩ N) X ([0, t+1] ∩ N), if the tasks Ti and Tj are allocated on the same

(proc, core) with the task Ti starting earlier, then it must also finish before the task Tj can start its

execution:

 fi Z= (ni, nj) Z= (mi, mj) Z< (gi, gj) ≤ gj Z= (ni, nj) Z= (mi, mj) Z< (gi, gj). (23)

Let Xr X p X D be the 3-dimensional binary matrix for busy time slots. For (u, v, w) ([1, r] ∩ N)

X ([1, p] ∩ N) X ([1, D] ∩ N), xuvw is 1 if the core v on processor u is running in the w
th
 time slot

([w-1, w)), otherwise it is 0. The energy consumed E is given by:

 E = α ∑D
w = 1 ∑

r
u = 1 (∑

p
v = 1 xuvw) S (u, w-1)3. (24)

If no task is running in the time slot [w-1, w) on (proc u, core v), then that core should be in the

sleep mode. Let:

 yuvw = ∑t+1
i = 0 (1 – Zv (Z< (fi, w-1), Z≤ (w, gi))) Z= (ni, u) Z= (mi, v), (25)

then we have:

 xuvw = Z< (0, yuvw). (26)

Definition 1. Given the input (A, B, C, D, H), the Energy Efficient Task Scheduling on

Distributed Multi-Core Processors Problem (EETSD) is to find (N, M, G, S) such that the

constraints (9), (10), (11), (12), (13), (14), (17), (19), (20), (21), (22), (23), (25), and (26) are

satisfied while also minimizing the energy consumed (24).

6. Conclusion

We proposed a model of distributed multi-core processors with software controlled DVS that

has a finite set of discretely available core speeds. We considered the problem of energy

efficient task scheduling with a given deadline on this model. We considered send-receive task

graphs in which the initial task sends data to multiple intermediate tasks, and the final task

collects the data from these intermediate tasks with the restriction that the initial and final tasks

should be assigned on the same core. We formulated the Energy Efficient Task Scheduling on

Distributed Multi-Core Processors Problem (EETSD).

There are many problems for future work. The first problem to consider is to find the

complexity of the EETSD problem. We have to find whether the EETSD problem is NP-

Complete or NP-Hard. If the EETSD problem is NP-Complete or NP-Hard, then the second

problem to consider is to look for some heuristics for solving the problem. The third problem to

consider is to look for approximation algorithms for the EETSD problem. If we are not able to

find the approximation algorithm, then the fourth problem to consider is to find whether the

EETSD problem is inapproximable or not.

Acknowledgements

The authors would like to thank the anonymous referee for providing helpful suggestions for

improving the quality of the paper.

References

[1] Advanced Micro Devices, Inc., (2000) AMD PowerNow!
TM

 Technology, Informational

White Paper.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

209

[2] J. H. Anderson, & S. K. Baruah, (2004) “Energy-efficient synthesis of periodic task

systems upon identical multiprocessor platforms”, In Proceedings of the 24th International

Conference on Distributed Computing Systems, pp. 428-435.

[3] P. Mejia-Alvarez, E. Levner, & D. Mosse, (2004) “Adaptive scheduling server for

power-aware real-time tasks”, ACM Transactions on Embedded Computing Systems, Vol. 3,

No. 2, pp. 284-306.

[4] H. Aydin, R. Melhem, D. Mosse, & P. Mejia-Alvarez, (2001) “Dynamic and aggressive

scheduling techniques for power-aware real-time systems”, In Proceedings of the 22
nd

 IEEE

Real-Time Systems Symposium, pp. 95-105.

[5] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, & A. Nicolau,

(2002) “Profile-based dynamic voltage scheduling using program checkpoints”, In Proceedings

of Design, Automation and Test in Europe Conference and Exhibition, pp. 168-175.

[6] A. Chandrakasan, S. Sheng, & R. Broderson, (1992) “Lower-power CMOS digital

design”, IEEE Journal of of Solid-State Circuit, Vol. 27, No. 4, pp. 473-484.

[7] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, & T.-W. Kuo, (2004)

“Multiprocessor energy-efficient scheduling with task migration considerations”, In

Proceedings of the 16
th
 Euromicro Conference on Real-Time Systems, pp. 101-108.

[8] J.-J. Chen, T.-W. Kuo, & C.-L. Yang, (2004) “Profit-driven uniprocessor scheduling

with energy and timing constraints”, In ACM Symposium on Applied Computing, ACM Press,

pp. 834-840.

[9] J.-J. Chen, T.-W. Kuo, & H.-I. Lu, (2005) “Power-Saving Scheduling for Weakly

Dynamic Voltage Scaling Devices”, In Algorithms and Data Structures, Lecture Notes in

Computer Science, Volume 3608/2005, Springer, pp. 338-349.

[10] M. Fleischmann, (2001) CrusoeTM LongRunTM Power Management: Dynamic Power

Management for Crusoe
TM

 Processors.

[11] J. Fruehe, (2005) “Planning Considerations for Multicore Processor Technology”, Dell

Power Solutions, May 2005, pp. 67-72.

[12] Fujitsu, (2009) SPARC ENTERPRISE T5440 SERVER ARCHITECTURE, White

Paper.

[13] F. Gruian, (2001) “System-Level Design Methods for Low-Energy Architectures

Containing Variable Voltage Processors”, In Power-Aware Computing Systems, Lecture Notes

in Computer Science, Volume 2008/2001, Springer, pp. 1-12.

[14] F. Gruian, & K. Kuchcinski, (2001) “Lenes: Task scheduling for low energy systems

using variable supply voltage processors”, In Proc. Asia South Pacific Design Automation

Conference, pp. 449-455.

[15] Intel(R) Corporation, (2004) Enhanced Intel(R) SpeedStep(R) Technology for the Intel(R)

Pentium
(R)

 M Processor, White Paper.

[16] S. Irani, S. Shukla, & R. Gupta, (2003) “Algorithms for power savings”, In Proceedings

of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for

Industrial and Applied Mathematics, pp. 37-46.

[17] T. Ishihara & H. Yasuura, (1998) “Voltage scheduling problems for dynamically

variable voltage processors”, In Proceedings of the 1998 international symposium on low power

electronics and design, pp. 197-202.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

210

[18] R. Mishra, N. Rastogi, D. Zhu, D. Mosse, & R. Melhem, (2003) “Energy aware

scheduling for distributed real-time systems”, In International Parallel and Distributed

Processing Symposium, pp. 21.2.

[19] P. Pillai, & K. G. Shin, (2001) “Real-time dynamic voltage scaling for low-power

embedded operating systems”, In ACM Symposium on Operating Systems Principles, pp. 89-

102.

[20] B. Schauer, (2008) “Multicore Processors - A Necessity”, ProQuest Discovery Guides,

September 2008, pp. 1-14.

[21] M. Weiser, B. Welch, A. Demers, & S. Shenker, (1994) “Scheduling for reduced CPU

energy”, In Proceedings of Symposium on Operating Systems Design and Implementation, pp.

13-23.

[22] C.-Y. Yang, J.-J. Chen, & T.-W. Kuo, (2005) “An approximation Algorithm for

Energy-Efficient Scheduling on A Chip Multiprocessor”, In the Eighth ACM/IEEE Conference

of Design, Automation, and Test in Europe (DATE), pp. 468-473.

[23] C.-Y. Yang, J.-J. Chen, L. Thiele, & T.-W. Kuo, (2010) “Energy-Efficient Real-Time

Task Scheduling with Temperature-Dependent Leakage”, In the ACM/IEEE Conference of

Design, Automation, and Test in Europe (DATE), pp. 9-14.

[24] F. Yao, A. Demers, & S. Shankar, (1995) “A scheduling model for reduced CPU

energy”, In Proceedings of the 36
th
 Annual Symposium on Foundations of Computer Science,

IEEE, pp. 374-382.

[25] H.-S. Yun, & J. Kim, (2003) “On energy-optimal voltage scheduling for fixed-priority

hard real-time systems”, ACM Transactions on Embedded Computing Systems, Vol. 2, No. 3,

pp. 393-430.

[26] Y. Zhang, X. Hu, & D. Z. Chen, (2002) “Task scheduling and voltage selection for

energy minimization”, In Annual ACM/IEEE Design Automation Conference, pp. 183-188.

[27] D. Zhu, R. Melhem, & B. Childers, (2001) “Scheduling with dynamic voltage/speed

adjustment using slack reclamation in multi-processor realtime systems”, In Proceedings of

IEEE 22
nd

Real-Time System Symposium, pp. 84-94.

Authors

Abhishek Mishra is pursuing his Ph.D. degree in Computer Engineering at

Institute of Technology, Banaras Hindu University. He received his

Bachelor degree in Computer Engineering from the same institute in

2003. His current research interests include approximation algorithms and

combinatorial optimization.

Anil Kumar Tripathi is Professor of Computer Engineering at Institute of

Technology, Banaras Hindu University. He received his Ph.D. degree in

Computer Engineering from the same institute; and M.Sc. Engg.

(Computer) degree from Odessa National Polytechnic University,

Ukraine. His research interests include parallel and distributing

computing, and software engineering. Photo

