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ABSTRACT 

Importance of Elliptic Curves in Cryptography was independently proposed by Neal Koblitz and Victor 

Miller in 1985.Since then, Elliptic curve cryptography or ECC has evolved as a vast field for public key 

cryptography (PKC) systems. In PKC system, we use separate keys to encode and decode the data. Since 

one of the keys is distributed publicly in PKC systems, the strength of security depends on large key size. 

The mathematical problems of prime factorization and discrete logarithm are previously used in PKC 

systems. ECC has proved to provide same level of security with relatively small key sizes. The research 

in the field of ECC is mostly focused on its implementation on application specific systems. Such systems 

have restricted resources like storage, processing speed and domain specific CPU architecture.  
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1. INTRODUCTION 

The changing global scenario shows an elegant merging of computing and communication in 
such a way that computers with wired communication are being rapidly replaced to smaller 
handheld embedded computers using wireless communication in almost every field. This has 
increased data privacy and security requirements. Data protection and authentication is now 
demanded for performing mobile banking on a cell phone, monitoring health of a patient 
through his wrist watch, remaining connected to office networks while travelling and so on. 
This has given a new thrust of what the technology guru Eddie Murphy has called the fourth 
wave – “Universal Connectivity” also termed as “Communication and Connectivity” by 
Embedded Market Forecasters. First three waves being defined as mainframe computers, PC 
revolution and Internet explosion respectively [1]. Data and information security is equally 
required along with other basic needs of reliable connectivity; high data transfer rate, optimised 
storage and processing etc.  

Another scenario to consider is that although we are defining embedded systems to be highly 
domain specific but, one the other side domains themselves are expanding for such systems. 
Consider the example of microwave oven- the only purpose of this device is to provide 
temperature and timing control. This can be achieved from a basic program which can be 
implemented directly using machine language on any micro-controller. And now, we have 
ovens in the market with pre-programmed temperature and time settings for common food 
items and recipes. Further, SB electronics systems, UK have launched an oven in their famous 
iWave range which can re-order the stock that is used in a restaurant [2]. It is equipped with a 
barcode reader to identify packed food, can be connected to the inventory database via GPRS, 
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modem or infrared connection for a laptop and even if that is not enough it can have its own 
identifier to recognize individual oven if they are in multiple. Thus, manufacturers are planning 
to connect to their devices to offer better service; every printer, elevator, air conditioner, 
vending machine, etc., can report its status, financial receipts and maintenance requirements as 
they occur. In short functional requirement of even such basic electronic gadgets are increasing, 
resulting into the requirement of more comprehensive software development platforms. This 
has resulted into the introduction of embedded operating systems and compilers of various high 
level languages for embedded systems. The progress is almost on the similar lines how 
computer systems have evolved into various layers of hardware, operating systems and 
application programs, which later got clubbed with communication networks. Similarly now 
embedded devices are also getting connected for information transfer and hence the need of 
network security is arising for these domain specific systems. As these systems are classified to 
be resource constrained, the small key size of ECC makes it effective to implement on such 
systems. Following table shows a comparison of elliptic curve keys with Diffie Hellman 
Keys[3]. 

Table 1. Strength of Diffie Hellman V/s Elliptic Curve Keys. 

Security Level 

(bits) 

Ratio of 

DH Security: EC Security 

80 3:1 

112 6:1 

128 10:1 

192 32:1 

256 64:1 

ECC is emerging as a most trusted solution for providing security on embedded systems. 

Section II of this review describes the fundamental concepts of modular arithmetic that forms 
the basis for today’s encryption systems. Section III defines elliptic curves from various aspects 
and explains its basic point addition and point doubling operations. Section IV is dedicated to 
the overview of ECC process as a whole while Section V gives some of the algorithms used for 
ECC performance optimisation. As finite field is the equally important aspect for designing 
cryptographic systems, Section VI explains various possible finite fields that can be considered 
while implementing ECC. Accordingly, this section also introduces ECC domain parameters 
and ECC protocol algorithms. Various design considerations available currently for ECC 
implementation are discussed in section VII along with available ECC standards, followed by 
conclusion in section VIII. 

2. MODULAR ARITHMETIC 

Before proceeding to a detailed description of Elliptic Curves, let us revise basics of Modular 
Arithmetic as this aspect of mathematics is very closely related to today’s cryptographic 
horizon and form the base for Elliptic Curve Cryptography. 

Modular arithmetic is a branch of number theory, which allows reformulation of the way 
addition, subtraction and multiplications are performed [4]. It is related to Number Theory that 
can be defined as, “The study of integers”. Number theory is one of the oldest and largest 
branches of pure mathematics. It is also called as Higher Arithmetic. It consists of study of the 
properties of whole numbers, primes, prime factorisation etc. basically number theory is full of 
questions that are easy to pose but difficult to answer. Computer scientists use this property for 
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their advantage. To sum up, Gauss called mathematics as the queen of sciences and considered 
number theory as the queen of mathematics. 

Modular arithmetic is arithmetic operations in the Finite Field or Galois field GF(n) named in 
the honour of Évariste Galois. It has several applications in coding theory, computer algebra, 
and cryptography. Efficient modular arithmetic algorithms play an important role in today’s 
cryptographic systems. Most practical public key systems exploit the properties of arithmetic in 
large finite groups. For methods such as Diffie−Hellman and Elliptic Curve cryptosystems, 
security depends on the contrast in difficulty between performing two group operations: 
exponentiation vs. discrete logarithm. The discrete log problem is believed to be hard compared 
to the exponentiation problem; and the elliptic curve discrete logarithm problem is even harder. 
This is because of its different algebraic structure, it’s complex arithmetic rules to “add” two 
points on an elliptic curve, and the lack of an index calculus method for the elliptic curve 
domain. 

2.1. Modular Multiplication 

Modular multiplication is simply the computation of the remainder of the product of two 
numbers with respect to a modulus. More formally, the modular multiplication problem is 
defined as the computation of R = A × B mod M given the integers A, B, M with 0 ≤ A, B < M. 
[5] 

2.2. Irreducible Polynomial 

Irreducible polynomial is an analogue to modulus p in modular arithmetic. Irreducible 
polynomial is a polynomial of degree m that cannot be expressed as the product of two 
polynomials of lesser degree. In many standard implementation of elliptic curve operation, for 
making polynomial reduction more efficient the irreducible polynomial is chosen to be 
trinomial or pentanomial. 

3. ELLIPTIC CURVE DEFINITION 

The generalized equation of elliptic curve E over a field K is given by 

2 3 2

1 3 2 4 6
: a xy a y x a x a x aE y + + = + + +  

This equation is called a Weierstrass equation. Where a1, a2, a3 ,a4, a6 ∈ K and ∆ ≠ 0. The ∆ is 
the discriminant of E and is defined as follows: 

2 3 2
2 8 4 6 2 4 68 27 9d d d d d d d∆ = − − − +

 
Where 

2
2 1 2

4 4 1 3

2
6 3 6

2 2 2
8 1 6 2 6 1 3 4 2 3 4

4

2

4

4

d a a

d a a a

d a a

d a a a a a a a a a a

= +

= +

= +

= + − + − ……… (1.2) 

E is defined over K because the coefficients 1 2 3 4 6, , , ,a a a a a of its defining equation are 
elements of K. E(K) emphasize that E is defined over K, and K is called the underlying field.  
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Elliptic curves are not like an ellipse or curve in shape. They look similar to doughnuts. 
Geometrically speaking they somehow resemble the shape of torus, which is the product of two 
circles when projected in three-dimensional coordinates[6].  

 

Figure 1. A Torus 

Elliptic curves can more generally be defined over any finite field. In particular, the 
characteristic two finite fields F(2m) and Fp are of special interest since they lead to the most 
efficient implementation of the elliptic curve arithmetic.  

The elements of Fp are integers in the range  [0, 1, 2, …p-1] wehre p is a prime. The simplified 
form of Weierstrass equation for Fp  is 

2 3 (mod )y x ax b p= + +   (1.3) 

For example, the points for P=29  in E (F29) are 

   ∞     (2,6)  (4,19)  (8,10)  (13,23) (16,2)   (19,16)  (27,2) 

(0,7)  (2,23)  (5,7)   (8,19)   (14,6)  (16,27)  (20,3)  (27,27) 

(0,22) (3,1)  (5,22)  (10,4)  (14,23) (17,10) (20,26)  

(1,5) (3,28) (6,12) (10,25)  (15,2)  (17,19)  (24,7)  

(1,24) (4,10) (6,17)  (13,6)  (15,27) (19,13) (24,22)  

Examples of elliptic curve addition are (5,22) + (16,27) = (13,6), and 2(5,22) =(14,6) Using 
point addition and point doubling rules of elliptic curve. The elements of F(2m) are simply 
binary numbers but  with (m-1) as highest power of 2, m being prime. But these numbers are 
considered as polynomials of the form 

1 2 2
1 2 2 1 0...m m

m ma z a z a z a z a
− −

− −
+ + + + +

 where a∈ {0,1}.These numbers 
are called as binary polynomials and arithmetic operations on them  are redefined 
accordingly.[7]  

3.1. Geometrical Definition of Point Addition and point Doubling 

For any two points P(x1,y1) ≠ Q(x2,y2) on an elliptic curve, EC group law point addition  can 
be defined geometrically as: “If we draw a line through P and Q, this line will intersect the 
elliptic curve at a third point(-R). The reflection of this point about x-axis, R(x3,y3) is the 
addition of P and Q.” 
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Figure 2.  Addition: R=P+Q 

It is calculated using following equations: 

2

3 1 2
x x xλ= − −  

3 1 3 1
( )y x x yλ= − −   

and 
2 1

2 1

y y

x x
λ

−
=

−
  if P ≠ Q 

For P=Q , point doubling, Geometrically if we draw a tangent line at point P, this line intersects 
elliptic curve at point a point (-R). Then, R is the reflection of this point about x-axis. 

 

 

Figure 3. Doubling: R=P+P 
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Point doubling is calculated using following equations: 

2P = (x3, y3), where 

2

3 12x xλ= −
 and  

3 1 3 1( )y x x yλ= − −
 

where  

2

1

1

3

2

x a

y
λ

+
=

  if P=Q  

4. ELLIPTIC CURVE CRYPTOGRAPHY 

The security of Elliptic Curve Cryptography relies on the difficulty of solving the Elliptic 
Curve Discrete Logarithm Problem ECDLP, which states that, “Given an elliptic curve E 
defined over a finite field Fq , a point P ∈ E(Fq ) of order n, and a point Q ∈ E(Fq ), find the 
integer k ∈ [0,n −1] such that Q = k P. The integer k is called the discrete logarithm of Q to the 
base P, denoted k = logP Q.” 

This point multiplication is performed by repeated point addition and point doubling for 
example 7P=(2((2P)+ P)+P. k is used as a private key and curve’s base point G is used as a 
public key. For ECC we only consider those points which lie in some finite field. Q=kP is 
called scalar point multiplication. This is most time consuming operation in ECC 
implementation. The hierarchy of EC arithmetic is given in Fig. 4 

 

 

Figure 4  EC Arithmetic Architecture 

The top level k.P algorithm is performed by repeated EC-Add and EC-Double operations. The 
EC operations in turn are composed of basic operations in the underlying finite field (FF) like 
FF-Addition/subtraction, FF-Multiplication. FF–square can be implemented using 
multiplication and as we are considering resource constrained devices this is generally 
preferred. The FF inversion is a very expensive operation, it is used to implement FF-Division 
Euclid’s method is a common choice to implement inversion in finite field. But, Using 

Scalar Point Multiplication 

Q=k.P 

EC- Point Double 
P=2P 

EC- Point Add 

R=P+Q 

FF-Multiplication FF-

Addition/subtraction 
FF-Square  FF-Division FF-Inversion 
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Montgomery’s method and a special case of Euclid’s inversion. FF- Division can be 
implemented directly [8]. The elliptic curve point multiplication Q=kP can be performed 
according to a variety of approaches. They are summarized in [9], as shown in Fig.5.The scalar 
k can have different representations. There is verity of algorithms to perform multiplication. 
Also there are various combinations of finite filed representation and coordinate system for 
curve points. A multitude of algorithms is available to be applied for each task. A proper 
combination of various algorithms can significantly affect the performance of EC point 
multiplication. In general, affine and projective coordinate systems are considered to perform 
calculations. 

 
Figure 5. Various methods of scalar point multiplication k.P 

Affine coordinates have the property that a set of n vectors forms the axes of this system and 
there is no clear definition of origin. To get an idea of the affine space, consider a bucket full of 
vectors. Each vector could be represented by an ordered pair of real numbers called the 
coordinates of the vectors. This could be represented as R2 .Now, consider an infinitely large 
square E2. So, the E2 will be affine space, consisting of any two non parallel vectors from R2 
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and a point from E2 as origin. Vectors in R2 are just floating around all the time, they have no 
fixed position. But points in E2 have fixed positions. [10][11][12] 

The ECC arithmetic operations explained previously are with reference to affine space. The 
equation of elliptic curve in projective space (an affine space with Z plane )is given by: 

2 2 3

4 6Y Z X a XZ a Z= + +
 

The point (X1 : Y1 : Z1) on E corresponds to the affine point (X1/Z1, Y1/Z1) when    Z1  ≠ 0 
and to the point at infinity P∞ = (0 : 1 : 0) otherwise. The opposite of (X1 : Y1 : Z1) is (X1 : 
−Y1 : Z1). Arithmetic operations in projective space can be referred from [11].  

5. ALGORITHMS FOR ECC PERFORMANCE OPTIMIZATION 

Various algorithms to optimise the performance of elliptic curve multiplication, squaring, point 
multiplication etc are in use today some of the famous algorithms are given below; 

5.1. Karatsuba Multiplication 

Using a method developed by Karatsuba and Ofman, the number of multiplications for a 
polynomial equation can be reduced in ex-change for an increased number of additions. As 
long as the time ratio for executing a multiplication vs. an addition is high, this tradeoff is more 
efficient. 

Consider the example of two degree-1 polynomials, 1 0
( )A x a x a= +

and 1 0
( )B x b x b= +

. 
For the traditional method, we must calculate the product of each possible pair of coefficients. 

0 0 0
D a b=

, 1 0 1
D a b=

, 2 1 0
D a b=

, 3 1 1
D a b=

. And then the  product :C(x) = A(x) . B(x) is: 
2

3 2 1 0
( ) ( )C x D x D D x D= + + +

 

The Karatsuba method begins by taking the same two polynomials, and calculating the three 
products 

   0 0 0
E a b=

, 1 1 1
E a b=

, 2 0 1 0 1
( )( )E a a b b= + +

 

These are then used to assemble the result  

C(x) = A(x) . B(x); 

2

1 2 1 2 0
( ) ( )C x E x E E E x E= + − − +

 

It is easy to verify that results are equal. 

The traditional method requires four multiplications and one addition, while the Karatsuba 
method requires three multiplications and four additions. Thus karatsuba method has a single 
multiplication for three additions. If the cost to multiply on the target platform is as least three 
times the cost to add, then the method is effective. While this basic form of Karatsuba was 
presented in the original paper, there are a number of ways this method may be expanded to 
handle larger degree polynomials. This is shown in [16], where the authors give an in-depth 
study of this method and its variations. 

5.2. Itoh-Tsujii Inversion 

Extension field inversion is normally a costly operation, but the nature of OEFs (Optimal 
Extension Fields, Explained below;)allow the reduction of the extension field inversion to a 
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subfield inversion. The Itoh-Tsujii algorithm which was originally developed for use with 

composite fields (2 )
m

n
GF in a normal basis representation can be applied to extension 

fields ( )
m

GF q  in polynomial representation. It is assumed that the subfield inverse can be 
calculated by efficient means, such as table-lookup or the Euclidean algorithm, given a small 
order of the subfield. To perform the OEF inversion, we use the following expression: 

1 1 1( )r r
A A A

− − −

= , Where 

1

1

m
q

r
q

−
=

− .This equation shows the general case for inversion.  

5.3. de Rooij Point Multiplication 

for Q=k.P,  well-studied techniques used for ordinary integer exponentiation can be 
advantageously adapted. The most basic of these algorithms is the binary-double-and-add 
algorithm It has a complexity of log2(k) + WH(k) group operations, where WH is the 
Hamming weight of the multiplier k. On average, we can expect this algorithm to require 1.5 
log2(k) group operations. Using a method devised by de Rooij in [15], we are able to reduce the 
number of group operations necessary by a factor of four over the binary-double-and-add 
algorithm.  

5.4. The Montgomery Modular Multiplication Algorithm 

This is a very famous algorithm for modular multiplication. Its multiple implementations are 
available both in hardware and software as it is capable to speed up the modular multiplication 
process by five times [16]. The basic idea behind Montgomery multiplication is the fact that 
one can add a multiple of the modulus M to the product A·B to yield a result that is at most 
2n+1 bits wide. Adding, instead of subtracting, a multiple of the modulus M does not affect the 
computation, since the result will be congruent to A·B modulo M. Two numbers are said to be 
congruent if their remainder when divided by the modulus is the same. Thus, A·B, A·B +M, 
A·B +2M ... A·B + kM are all congruent modulo M. This implies: A·B ≡ A·B +M ≡ A·B +2M 
≡ ... (A·B + kM) mod M. In the Montgomery algorithm, the multiple of the modulus M that is 
added to A·B is chosen in such a way that the lower n-bits of the 2n+1-bit result are all zeroes 
[17]. The least significant half of the 2n+1-bit result that are all zeroes is then discarded. This 
way, the result would have been reduced to at most n+ 1 bit in width. A single subtraction of 
the modulus M can then be performed to further reduce the result to at most n- bits and make it 
less than M if required. It has been shown by Walter [18] that the extra subtraction may not be 
necessary under certain conditions. 

It’s easy to explain in decimal, but Montgomery multiplication is easier to implement in binary 
[19].  The place of 10n is taken by some suitable power of 2, but the key simplification is that 
the adding of the multiple of the modulus becomes much easier.  The rule is this: if the number 
you are looking at is odd (a 1 in LSB), add R before you halve it; if it’s even(a 0 in LSB), just 
halve it. Halving a number in binary is simply discarding its lower significant bit. Eg: (1100 is 
binary 12 if we discard LSB zero, we get 110, which is binary 6). Binary shift and rotate 
instructions are available in every machine level instruction set and can be used for this 
purpose. A very simple form of hardware based Montgomery Modular Multiplication algorithm 
is given in [17]. 

6. CHOICE OF FINITE FIELDS 

For performing ECC we also need to select any one suitable finite field GF(). Various finite 
fields admit the use of different algorithms for arithmetic. This choice can have a dramatic 
impact on the performance of the ECC. In particular, there are generic algorithms for arithmetic 
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in an arbitrary finite field and there are specialized algorithms, which provide better 
performance in finite fields of a particular form. Below is the summary of field types proposed 
for ECC. 

6.1. Binary Fields 

Implementers designing custom hardware for an ECC often choose p = 2 and P(x) to be a 
trinomial or pentanomial. Such choices of irreducible polynomial lead to efficient methods for 
extension field modular reduction. This type of fields is called binary fields. The elements of 
the subfield GF(2) can be represented by the logical signals 0 and 1. In this way, it is possible 
to construct fast and area efficient hardware circuits to perform the finite field arithmetic. 
Binary fields are also popular for software implementations of ECC. 

6.2. Binary Composite Fields 

In software, the choice of parameters varies considerably with the wide array of available 
microprocessors. Many authors have suggested the use of p = 2 and m a composite number, e.g. 
[20], [21]. In this case, the field GF(2m) is isomorphic to GF((2s)r), for m = sr and we call this 
a “composite field." Then multiplication and inversion in the subfield GF(2s)can be efficiently 
performed by index table look-up if s is not too large. In turn, these operations in the extension 
field GF((2s)r)are computed using arithmetic in the subfield. As in the binary field case, the 
irreducible polynomials for both the subfield and the extension field are chosen to have 
minimal weight. This approach can provide superior performance when compared to the case 
of binary fields. However, a recent attack against ECCs over composite fields [22] makes their 
use in practice questionable. 

6.3. Prime Fields 

Prime fields are perhaps the most obvious finite fields to use. For ECC, a typical prime is 
chosen to be larger than 2160, and must be stored in multiple computer words. The problem 
with this representation is that during computation, the carries between words must be 
propagated, and the reduction modulo p must be performed over several words. There has been 
a large amount of research dealing with methods for doing long-number multiprecision 
arithmetic efficiently. The most popular method in this context is based on Montgomery 
reduction explained previously. 

6.4. Optimal Extension Fields 

An alternative construction is to use optimal extension fields (OEFs), defined as follows. 

Choose a prime p of the form 2n c± , for n, c arbitrary positive integers, where
2

1
log

2
c n≤
 
    In 

this case, one chooses p of appropriate size to use the multiply instructions available on the 

target microcontroller. In addition, m is chosen so that an irreducible binomial ( )
m

P x x ω= −  

exists, ( )GF pω ∈ . To generate “good" elliptic curves over OEFs there are two basic 
approaches. The first one is based on the use of a curve defined over GF(p). The second, more 
general, method uses Schoof's algorithm together with its improvements. The field is chosen 
with finitely large number of points suited for cryptographic operations.  

6.5. Elliptic Curve Domain Parameters 

Apart from the curve parameters a and b, there are other parameters that must be agreed by 
both parties involved in secured and trusted communication using ECC. These are domain 
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parameters. The domain parameters for prime fields and binary fields are described below. 
Generally the protocols implementing the ECC specify the domain parameters to be used.  

6.5.1. Domain Parameters for Elliptic Curve over Field F(p) 

The domain parameters for Elliptic curve over F(p) are p, a, b, G, n and h. p is the prime 
number defined for finite field Fp . a and b are the parameters defining the curve y2 = x3 + ax + 
b (mod p). G is the generator point   (xG, yG), a point on the elliptic curve chosen for 
cryptographic operations. n is the order of the elliptic curve. The scalar for point multiplication 
is chosen as a number between 0 and n-1. h is the cofactor where h = #E(Fp)/n. #E(Fp) is the 
number of points on an elliptic curve.  

6.5.2 Domain Parameters for Elliptic Curve over F(2m) 

 The domain parameters for elliptic curve over F(2m) are m, f(x), a, b, G, n and h. m is an 
integer defined for finite field F(2m). The elements of the finite field F(2m) are integers of 
length at most m bits. f(x) is the irreducible polynomial of degree m used for elliptic curve 
operations. a and b are the parameters defining the curve y2 + xy = x3 + ax2 + b. G is the 
generator point (xG, yG), is a point on the elliptic curve chosen for cryptographic operations. n 
is the order of the elliptic curve. The scalar for point multiplication is chosen as a number 
between 0 and n-1. h is the cofactor where h = #E(F2

m)/n. #E(F2
m) is the number of points on an 

elliptic curve. 

6.7. Basic ECC Protocol Algorithms 

A generalized overview of EC cryptographic algorithms for key agreement and digital 
signature are explained below.  

 6.7.1. Elliptic Curve Digital Signature Algorithm – ECDSA 

 Signature algorithm is used for authenticating a device or a message sent by the device. For 
example consider two devices A and B. To authenticate a message sent by A, the device A 
signs the message using its private key. The device A sends the message and the signature to 
the device B. This signature can be verified only by using the public key of device A. Since the 
device B knows A's public key, it can verify whether the message is indeed send by A or not. 
ECDSA is a variant of the Digital Signature Algorithm (DSA) that operates on elliptic curve 
groups. For sending a signed message from A to B, both have to agree up on Elliptic Curve 
domain parameters. The domain parameters are defined in section Elliptic Curve Domain 
parameters. Sender 'A' have a key pair consisting of a private key dA (a randomly selected 
integer less than n, where n is the order of the curve, an elliptic curve domain parameter) and a 
public key QA = dA * G (G is the generator point, an elliptic curve domain parameter). 

 6.7.2. Elliptic Curve Diffie Hellman Key Exchange – ECDH 

ECDH is a key agreement protocol that allows two parties to establish a shared secret key that 
can be used for private key algorithms. Both parties exchange some public information to each 
other. Using this public data and their own private data these parties calculates the shared 
secret. Any third party, who doesn't have access to the private details of each device, will not be 
able to calculate the shared secret from the available public information. For generating a 
shared secret between A and B using ECDH, both have to agree up on Elliptic Curve domain 
parameters. The domain parameters are defined in section Elliptic Curve Domain parameters. 
Both end have a key pair consisting of a private key d (a randomly selected integer less than n, 
where n is the order of the curve, an elliptic curve domain parameter) and a public key Q = d * 
G (G is the generator point, an elliptic curve domain parameter). Let (dA, QA) be the private 
key - public key pair of A and (dB, QB) be the private key - public key pair of B.  
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The end A computes K = (xK, yK) = dA * QB  

The end B computes L = (xL, yL) = dB * QA  

Since dAQB = dAdBG = dBdAG = dBQA.  

Therefore K = L and hence xK = xL  

Hence the shared secret is xK  

Since it is practically impossible to find the private key dA or dB from the public key K or L, 
it’s not possible to obtain the shared secret for a third party. 

7. VARIOUS IMPLEMENTATIONS OF ECC 

After selecting a suitable set of algorithms, ECC is implemented on either hardware or software 
platform. Hardware implementation is considered as the most suitable option looking into the 
large key sizes and slow speed of point multiplication, when come together with limited 
resources of embedded platform. However, for application specific systems, embedding a 
separate piece of hardware for cryptography increases the manufacturing cost drastically. Also, 
various recent researches show that a careful selection of efficient algorithms and proper ECC 
parameters, ECC can be successfully implemented on software platforms. But, software 
implementations cannot match up to the speed of hardware implementations. Therefore 
research in the field of Elliptic curve cryptography has been propagated into both directions of 
hardware and software solutions. 

A hardware implementation is basically focused on the processor design issues. To design any 
processor we have to consider flow of data into its input, output registers and various ALU 
units, called processor data path. Also flow of control information in the form of op-code and 
related micro-operations has to be considered called control logic. It is implemented in different 
ways like, extending instruction set of the processor or enhancing design of multiplier inside 
ALU. Following are some of the design considerations - 

• Enhancing the speed of multiplication. 

• Providing suitable options for very large data size to be implemented on data path of 
limited data size processor. 

• Providing suitable options to implement various non standard number formats, used in 
cryptographic applications. 

• Modifying the instruction set of domain specific processors for ECC operations 

• Performing ECC on server, multi-core systems, media processors etc. 

Below is the summary of some of the papers in this regard - 

[23] and [24] have presented a pyramid hierarchy suggesting implementation of ECC for 
embedded systems in desired form. These papers discuss that the lower layers that represent 
choice of hardware design and processor group selection are more general and can be shared 
with other application specific pyramids. These layers represent FPGA, flash and ASIC design 
options and instruction accurate/cycle accurate models of RTL, strongArm etc. 

The upper layers of hierarchy represent the number theory, security algorithms and security 
protocol architecture specific to cryptographic applications and rarely shared with other 
application. 

Various designs of cryptographic processors are presented in [23], [25], [26], [27]. 

In [23] an ECC processor is presented for key generation and key agreement. The data path is 
bit sliced and n bit wide for data size of GF(2n). It is implemented using feedback loop in place 
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of pipelining as feedback is needed for repeated point doubling and adding of ECC. The paper 
presents three-tier architecture of the processor. The lower layer implements the data path. The 
middle layer implements point doubling, addition and subtraction in two-way handshake. It 
means the processor can issue as well receive ECC keys. The top layers combine these 
operations in ECC multiplications as shown in Fig. 4. The instruction set of this processor 
includes various Elliptic Curve related operations. This processor can be implemented easily in 
a system and can run at an unrelated clock. 

The processor design presented in [25] is based on the idea that general-purpose processors 
support multiplication operations very well. A design extension of the general-purpose 
processor is presented to cope with large data size of cryptographic applications. This processor 
supports famous RSA and Deffie- Hellman along with ECC. Hardware acceleration is 
considered on server machines. This processor supports RSA for GF(p) and arbitrary elliptic 
curves over fields GF(2n). Double and add and Montgomery scalar point multiplication 
operations are used for RSA and ECC. General-purpose processors typically have a data path 
width of 8, 16, 32, or 64 bits and operate on operands that have sizes equal to the data path 
widths. Thus, the long operands of the RSA and ECC algorithms need to be broken up into 
smaller words, and the arithmetic operations addition, subtraction, and multiplication need to be 
implemented as multiple-precision operations. As paper focuses on server applications, 64-bit 
architecture was considered. To adhere to a general-purpose data path, the amount and scope of 
modifications is limited; a number of performance optimizations were omitted. In particular, 
hardware division and optimized squarer for GF(2n) is not provided. The machine has two 
processors, one arithmetic processor and one control processor. VLIW(very large instruction 
word) architecture is used to keep both the processors busy at same time. For example, when a 
multiple-precision multiplication is performed, the arithmetic processor executes multiply-
accumulate instructions while the control processor, in parallel, executes loop control 
instructions. This way, the critical path of the program execution is determined by the 
arithmetic instructions and the control instructions do not add any execution time. The final 
reduced instruction set for public key cryptography includes five arithmetic and four control 
instructions, a total of nine instructions only. The performance analysis shows clear 
performance advantage of ECC over RSA. 

A scalable crypto co processor design is presented in [26]. This paper shows a word based (16 
bit) co processor for RSA and ECC cryptography. It works exclusively for performing word 
based (16 bit) multiplication using Montgomery modular multiplication. It can multiply 2048 
bits for RSA and 512 bits for elliptic curve cryptography. The design of the processor is such 
that we can use extra memory if data size has to be increased. The design of the processor 
includes I/O interface, a memory module, a dual field module, Crypto controller and RSA/ECC 
controller. 

The embedded multicore systems for ECC are considered in [24]. Multicore processors for 
embedded systems are now getting increasing interest from the embedded system industry. 
Chip vendors like Intel, ARM, Fujitsu and Renesas have announced different multi-core 
processors for embedded systems. The advantages of using multicore processors in embedded 
systems can be simply summarized into two points. First, it gives the embedded developers 
more spaces to add new applications. Second, by using parallel computing we can reduce the 
clock frequency and voltage to achieve an energy efficient design. One major problem is data 
transfers between different cores. For multicore systems, software designers have to choose a 
good parallel computing strategy that fits the platform architecture.  The above mentioned 
paper compares the performance of two parallel computing methods and tries to combine them 
efficiently. 

Horizontal Parallelism is used to perform Montgomery modular multiple-precision operation 
(MMO) with all the cores in parallel. Vertical Parallelism is used to perform Different MMOs 
that have no data dependencies. In order to utilize all the cores efficiently, these horizontal 
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parallelism and vertical parallelism are combined making a two-dimensional parallelism. Two 
dimensional parallelism starts from the schedule generated by vertical parallelism method, and 
deploy the horizontal parallelism method to perform some of the modular operations so that all 
cores in the system can be utilized. 

Other papers like [28], [29], [30] also present various suggestions for processor designs. Most 
of the suggestions are focussed on how to enhance the speed of point multiplications on various 
types of processors. Modification in the design of multiplier, extending the instruction set of the 
processors for ECC specific operations, maximizing the utilization available processor 
resources are various design suggestions provided. Some of the papers are also available for the 
processor design on specific values of n in Zn [29], [30], [31]. Another design consideration is 
with respect to large data size of crypto – applications Vs. limited data type lengths available 
for embedded systems. Multiprecision arithmetic operations, i.e. performing arithmetic 
operations by dividing n bit data into blocks of k bits where each block is of size n/k and 
accumulating the final result is the common method for cryptographic related data implemented 
with various parallel processing techniques. 

If cryptographic algorithms are implemented on hardware, they show higher performance in 
terms of speed. Also, they are more secure because they cannot be easily modified or read by 
an outside attacker. Still price per piece and power consumption are the main disadvantages. 
Such implementations are also inflexible in terms of ECC parameters making such systems 
vulnerable to attackers. We cannot switch between multiple schemes easily and if it is needed, 
it results into higher development cost. 

Software implementations of ECC have the advantage of interoperability; we can enhance 
security while switching between different ECC schemes. Therefore ECC implementation 
using software is also seriously considered by the researchers. Various papers in this regard are 
[32] [33] [34]  

Research in this category of ECC is mainly related to present various combinations of speed 
optimized algorithms that will reduce the requirement of separate crypto co processor. Also 
different mathematical techniques are considered to enhance the speed and security of ECC. A 
patent is assigned to sun Microsystems Inc for “Generic implementations of elliptic curve 
cryptography using partial reduction” [32]. A reduction operation is utilized in an arithmetic 
operation on two binary polynomials X(t) and Y(t) over GF(2) were an irreducible polynomial 

1 2
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m m m
M t t a t a t a t a
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− −
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, where the coefficients are equal to either 1 or 
0, and m is a field degree. The reduction operation includes partially reducing a result of the 
arithmetic operation on the two binary polynomials to produce a congruent polynomial of 
degree less than a chosen integer n, with m ≠ n. The partial reduction includes using a 
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reducing the result to the degree less than n and greater than or equal to m. The integer n can be 
the data path width of an arithmetic unit performing the arithmetic operation, a multiple of a 
digit size of a multiplier performing the arithmetic operation, a word size of a storage location, 
such as a register, or a maximum operand size of a functional unit in which the arithmetic 
operation is performed. 

Hasegawa et al. implemented ECDSA signature generation and verification on a 10MHz M16C 
microcomputer [35]. The implementation requires 4KB of code space and uses a 160 bit field 
prime p = 65112 *2144−1 chosen to accommodate the 16-bit processor architecture. Signatures 
can be generated in 150ms and verified in 630ms. Based on the ECC integer library, the authors 
also estimate 10s for RSA-1024 signature generation and 400ms for verification using e = 216 
+1. 
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In [33] it is discussed how ECC is efficient over RSA when implemented on an 8-bit processor. 
Following key steps were taken to accelerate performance of ECC on 8-bit processors. 

Only prime integer fields are considered. Mixed coordinate systems using a combination of 
modified Jacobian and affine coordinates is used as they have been proved to offer the best 
performance [21]. 

They have used NIST and SECG specified set of elliptic curves as they have verified security 
properties and they allow for significant performance optimizations. 

Non-adjacent forms (NAFs) are used. It is a method of recoding the scalar k in a point 
multiplication kP in order to reduce the number of nonzero bits and thus the number of point 
additions. This is accomplished by using digits that can be 0, 1 or -1. For example, 15P = (1 1 1 
1)2P can be represented as 15P = (1 0 0 0 -1)2P.  

As performing multiple precision multiplications on small processors involve significant 
amount of data transport to and from memory due to limited register space. Therefore to 
optimize ECC modular multiplication authors have considered cutting down the memory access 
per multiplication. Three multiplication strategies row wise multiplication, column wise 
multiplication and hybrid multiplication are considered. 

Row-wise implementation requires n + 2 registers and performs n2 + 3n memory accesses. 

Column-wise multiplication requires 2
4 log ( ) /n k+     registers, the fewest number of all three 

algorithms. The number of registers grows only negligibly with the increase of the operand size 
n. 

Hybrid multiplication aims at optimizing for both the number of registers and the number of 
memory accesses. The column-wise strategy is employed as the “outer algorithm" and the row-
wise strategy as the “inner algorithm". That is, hybrid multiplication computes columns that 
consist of rows of partial products. Register usage and memory accesses depend on the number 
of partial products per row (or column width) d. It is suggested that d can be chosen according 
to the targeted processor; larger values of d require fewer memory operations, but more 
registers to store operands and to accumulate the result. To optimize the algorithm performance 
for r available registers, d should be chosen such that 

2
max{ 1 , 3 1 log ( / ) / }d i i n r i n i k= ≤ ≤ ≥ + +    . 

8 bit platforms chosen for implementations were Chipcon CC1010 8 bit 14.7456MHz 
microcontroller which implements Intel 8051 instruction set and ATmega128 8 bit 
microcontroller based on AVR architecture. It can be operated at frequencies upto 16 MHz. 

A similar research presented in [36] shows that elliptic curve cryptography not only makes 
public-key cryptography feasible on highly constrained embedded devices like ‘Motes’, it 
allows one to create a complete secure web server stack that runs efficiently within very tight 
resource constraints. The small-footprint HTTPS stack, nicknamed Sizzle (Small SSL), has 
been implemented on multiple generations of the Berkeley/Crossbow motes where it runs in 
less than 4KB of RAM, completes a full SSL handshake in 1 second (session reuse takes 0.5 
seconds) and transfers 1KB of application data over SSL in 0.4 seconds. The authors have 
claimed that Sizzle is the world’s smallest secure web server and can be embedded inside home 
appliances, personal medical devices, etc., allowing them to be monitored and controlled 
remotely via a web browser without sacrificing end-to-end security. 

A comparative performance evaluation for Pocket PC and wireless sensors is given in [37] to 
study the computational ability to process cryptographic functions, such as point multiplication, 
Pairings, AES, and hash functions. They have shown that current Pocket PC level devices are 
capable to process computational intensive cryptographic functions, such as Parings. However, 
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purely software cryptographic solutions require long time to process cryptographic algorithms 
and special optimization methods must be used to improve the computation performance. They 
have used HP iPAQ hx4700 Pocket PC that runs Microsoft Windows Mobile 2003 operating 
system. The processor in the Pocket PC is a 32-bit processor. The application for the Pocket PC 
was developed in Microsoft Visual Studio 2005 as a smart device project using a machine 
running Windows XP. A software library from Shamus Software Ltd called Miracl is used for 
implementing pairing, hash and encryption algorithms in Pocket PC.  

Micaz 2400 wireless sensor running TinyOS was used as a testing environment to calculate the 
time taken for primitive field operations in pairing. The central idea in Pairing Based 
Cryptography is the construction of a bilinear mapping between two useful cryptographic 
groups (ECC points group and OEF), which transfer the properties of one group to another. The 
sensor is connected to a MIB 510 base station, which is in turn connected to the personal 
computer via an USB port. The code was developed in TinyOS operating system using NESC 
language. The software package TinyECC is used, developed by North Carolina State 
University research group for implementing primitive field operation in pairing.  

The authors have concluded that purely software-based solutions are suitable for Pocket PC; 
whereas wireless sensors have the difficulty to compute computational intensive operations, 
such as Parings. The have also aimed at building an efficient pairing implementation in sensors 
by  

• applying efficient Pairings algorithms for sensors  

• identifying the most efficient curve and system parameters for Parings in sensors 

• specially optimizing the field operations for sensors. 

A recent Paper by Johan Dams [38] is focused on performance comparison of ECC on medium 
sized embedded systems. The paper is aimed to design the system to which is; 

• Portable: the system should be easy to port to different hardware platforms 

• Fast: optimizations should be made where possible, but assembly code should be    
limited as it hampers first requirement. 

• Efficient: Use as little system resources as possible, yet don’t overuse assembly 
language as this hinders portability. 

Following systems were considered for implementation. All systems are running Linux, with 
either GNU Libc or uClibc. 

• Nokia N800, TI OMAP 2420 clocked at 330MHz (GNU Libc) 

• Freescale MPC5200B clocked at 400MHz (GNU Libc) 

• Renesas SH7203 clocked at 200MHz (uClibc) 

• Freescale ColdFire MCF54455 clocked at 266MHz (GNU Libc) 

• Freescale ColdFire MCF52277 clocked at 160MHz (uClibc) 

The performance is compared for time needed by each CPU to perform field operations, point 
multiplications, encryption/decryption, signature generation/ verification and key generation. 

Finally, let us take a review of Various ECC standards as proposed by NIST and other 
agencies. 

American National Standards Institute (ANSI) The ANSI X9F subcommittee of the ANSI 
X9 committee develops information security standards for the financial services industry. Two 
elliptic curve standards have been completed: ANSI X9.62 which specifies the ECDSA 
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(§4.4.1), and ANSI X9.63 which specifies numerous elliptic curve key agreement and key 
transport protocols including STS (§4.6.1), ECMQV (§4.6.2), and ECIES (§4.5.1). The 
objective of these standards is to achieve a high degree of security and interoperability. The 
underlying finite field is restricted to being a prime field Fp or a binary field F(2m). The 
elements of F2m may be represented using a polynomial basis or a normal basis over F2. If a 
polynomial basis is desired, then the reduction polynomial must be an irreducible trinomial, if 
one exists, and an irreducible pentanomial otherwise. To facilitate interoperability, a specific 
reduction polynomial is recommended for each field F2m these polynomials of degree m, 
where 2 ≤ m ≤ 600. 

National Institute of Standards and Technology (NIST) NIST is a non-regulatory federal 
agency within the U.S. Commerce Department’s Technology Administration. Included in its 
mission is the development of security-related Federal Information Processing Standards 
(FIPS) intended for use by U.S. federal government departments. The FIPS standards widely 
adopted and depolyed around the world NIST special publication 800-57[39] indicates the 
value of f (the size of n, where n is the order of the base point G) for algorithms based on 
elliptic curve cryptography (ECC) that are specified for digital signatures in [ANSX9.62] and 
adopted in [FIPS186-3], and for key establishment as specified in [ANSX9.63] and [SP800-56]. 
The value of f is commonly considered to be the key size as per the table summarized below. 

Table 2.  NIST recommended key length 

Algorithm security lifetimes ECC (e.g. ECDSA) 

Through 2010 (min. of 80 bits of strength) Min.: f=160 

Through 2030 (min. of 112 bits of strength) Min.: f=224 

Beyond 2030 (min. of 128 bits of strength) Min.: f=256 

Institute of Electrical and Electronics Engineers (IEEE) The IEEE P1363 working group is 
developing a suite of standards for public-key cryptography. The scope of P1363 is very broad 
and includes schemes based on the intractability of integer factorization, discrete logarithm in 
finite fields, elliptic curve discrete logarithms, and lattice-based schemes. The 1363-2000 
standard includes elliptic curve signature schemes (ECDSA and an elliptic curve analogue of a 
signature scheme due to Nyberg and Rueppel), and elliptic curve key agreement schemes 
(ECMQV and variants of elliptic curve Diffie-Hellman (ECDH)). It differs fundamentally from 
the ANSI standards and FIPS 186-2 in that there are no mandated minimum security 
requirements and there is an abundance of options. Its primary purpose, therefore, is to serve as 
a reference for specifications of a variety of cryptographic protocols from which other 
standards and applications can select. The 1363-2000 standard restricts the underlying finite 
field to be a prime field Fp or a binary field F2m. The P1363a draft standard is an addendum to 
1363-2000. It contains specifications of ECIES and the Pintsov-Vanstone signature scheme 
providing message recovery, and allows for extension fields Fpm of odd characteristic 
including optimal extension fields. 

American National Standards Institute (ANSI) The ANSI X9F subcommittee of the ANSI 
X9 committee develops information security standards for the financial services industry. Two 
elliptic curve standards have been completed: ANSI X9.62 which specifies the ECDSA 
(§4.4.1), and ANSI X9.63 which specifies numerous elliptic curve key agreement and key 
transport protocols including STS (§4.6.1), ECMQV (§4.6.2), and ECIES (§4.5.1). The 
objective of these standards is to achieve a high degree of security and interoperability. The 
underlying finite field is restricted to being a prime field Fp or a binary field F(2m). The 
elements of F2m may be represented using a polynomial basis or a normal basis over F2. If a 
polynomial basis is desired, then the reduction polynomial must be an irreducible trinomial, if 
one exists, and an irreducible pentanomial otherwise. To facilitate interoperability, a specific 
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reduction polynomial is recommended for each field F2m these polynomials of degree m, 
where 2 ≤ m ≤ 600. 

International Organization for Standardization (ISO) ISO and the International 
Electrotechnical Commission (IEC) jointly develop cryptographic standards within the SC 27 
subcommittee. ISO/IEC 15946 is a suite of elliptic curve cryptographic standards that specifies 
signature schemes (including ECDSA and EC-KCDSA), key establishment schemes (including 
ECMQV and STS), and digital signature schemes providing message recovery. ISO/IEC 18033-
2 provides detailed descriptions and security analyses of various public-key encryption schemes 
including ECIES-KEM and PSEC-KEM. 

Standards for Efficient Cryptography Group (SECG) SECG is a consortium of companies 
formed to address potential interoperability problems with cryptographic standards. SEC 1 
specifies ECDSA, ECIES, ECDH and ECMQV, and attempts to be compatible with all ANSI, 
NIST, IEEE and ISO/IEC elliptic curve standards. Some specific elliptic curves, including the 
15 NIST elliptic curves, are listed in SEC 2. 

8. CONCLUSIONS 

Elliptic curve cryptography has been emerged as a vast field of interest for application specific 
security requirements. It has its roots into the number theory which was already used for 
cryptographic applications before ECC. The elliptic curve discrete logarithm problem makes 
ECC most efficient with smaller key size compared to earlier RSA algorithm. It is mostly 
considered for resource constrained devices. Research in the field of Elliptic Curve 
Cryptography has emerged in various directions to analyze its proper implementation on 
hardware as well as software platforms.  
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