
International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

DOI : 10.5121/ijcsit.2011.3412 145

DNA LOSSLESS DIFFERENTIAL COMPRESSION

ALGORITHM BASED ON SIMILARITY OF GENOMIC

SEQUENCE DATABASE

Heba Afify
1
, Muhammad Islam

1
 and Manal Abdel Wahed

1

1
Department of Systems and Biomedical Engineering, Cairo University, Egypt

hebaaffify@yahoo.com, Manalaw2003@yahoo.com

ABSTRACT

Modern biological science produces vast amounts of genomic sequence data. This is fuelling the need for

efficient algorithms for sequence compression and analysis. Data compression and the associated

techniques coming from information theory are often perceived as being of interest for data

communication and storage. In recent years, a substantial effort has been made for the application of

textual data compression techniques to various computational biology tasks, ranging from storage and

indexing of large datasets to comparison of genomic databases. This paper presents a differential

compression algorithm that is based on production of difference sequences according to op-code table in

order to optimize the compression of homologous sequences in dataset. Therefore, the stored data are

composed of reference sequence, the set of differences, and differences locations, instead of storing each

sequence individually. This algorithm does not require a priori knowledge about the statistics of the

sequence set. The algorithm was applied to three different datasets of genomic sequences, it achieved up

to 195-fold compression rate corresponding to 99.4% space saving.

KEYWORDS

Data compression, Genomic sequences, Differential compression algorithm

1. INTRODUCTION

The compression of genomic sequences remains a challenging problem, with profound

implications in biology and with important technological impact when the use of genomic data

will become a daily practice in health and medicine. As such, it will certainly be investigated

further due to several reasons: benefits when storing or transmitting the genome files;

possibilities for comparison of entire genomes by similarity metrics approximating Kolmogorov

similarity [1, 2]; and discovering statistically significant relationships among various sequences.

Data compression and the related information-theoretic techniques find a wide use for

investigation in computational biology. Such a pervasive use has grounds in some outstanding

notions that deeply characterizes data compression, in particular universality and quantification

of statistical dependence via information measures. These notions give rise to methods that need

very few assumptions on the data models and, as a consequence, very minor parameter

estimations for their application. This seems to be a major advantage for computational biology

applications, where the statistical modeling of the data is a highly non-trivial task. In addition,

the low-computational demand of these methods allows them to scale well with dataset size,

even on a genomic scale. Obviously, data structure, data modeling and speed are the main

advantages for the use of data compression in biological investigations [3].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

146

The amount of DNA being extracted from organisms and sequenced is increasing exponentially

[4]. This yields two problems: storage and comprehension. Despite the prevalence of broadband

network connections, there still exists a need for compact representation of data to speed up

transmission. Transferring a single sequence that is millions of characters long may take ten to

fifteen minutes over a dial-up connection. Compression of genomic sequences can decrease the

storage requirements, and increase the transmission speed.

Understanding genomic sequences has wide applications, from the synthesis of medicines to

genetic screening and engineering. The knowledge of the structure of a sequence is important

for its comprehension. If a set of sequences have a common structural property that is shared by

another sequence, it is possible that they are related in some way, or that the knowledge that

applies to one may also be useful for the other. Compression can help to show both the structure

of a sequence and how it is related to other sequences.

DNA is composed of four bases (A, T, G, C), and can be coded using two bits per base.

According to functionality, DNA manifests different properties from other kinds of data.

Standard compression algorithms for text or image files exploit small repeated patterns and

contextual similarities to achieve compression. However, repeated patterns in DNA sequences

are typically much longer and less frequent, so standard compression algorithms perform poorly

on DNA. The most popular general-purpose encoders of today, such as gzip [5], which is based

on the Lempel-Ziv algorithm [6], and bzip2, based on the Burrows-Wheeler Transform [7],

which usually produces more than two bits per base to achieve the un-encoded representation

[8]. Hence, the quest for efficient DNA compression programs started to become popular in the

competition-driven community of data compression enthusiasts. DNA sequences are

compressible, so they are not random. But they are not highly compressible. It is therefore

necessary for coding methods to be as efficient as possible. In the context of compression,

missing structure will lead to inefficient compression.

In the last two decades, compression of genomic sequences can be divided into two categories:

Specific compression algorithms developed for efficiently compressing sequence data for the

sake of reduced resource consumption (disk space or network usage) [8-13]; and investigations

of the usefulness of compressibility as a measure of information content, for the purpose of

making inferences about sequences (such as the relatedness of two sequences) [1, 14]. Specific

compression algorithms have been proposed for DNA compression by using particular

characteristics such as exact or approximate repeats measures within a single DNA sequence

that are based on relations between subsequences only. Compression gains afforded by these

algorithms are ultimately not sufficient to justify their adoption for large databases. While much

research has been done on compressing individual DNA sequences, surprisingly little has

focused on the compression of entire databases [3]. The results of compressing genomic

sequences can be applied to the problem of evolution derivation [15]. Compression–based

distance measures (CBMs) that depend on probabilities of mismatching locations [16], are not

distinct enough among different classes. However, researches have been suffering from the poor

modeling to characterize the relationship between sequences.

Algorithms for Compressing DNA sequences, such as GenCompress [11] ,Biocompress [10]

and Cfact [17] were available to compress DNA sequences. Their compression rate was about

1.74 bits per base i.e., 78% in compression rate. Hence, a compression algorithm named

”GenBit Compress Tool” [18] is presented, whose compression rate was below 1.2 bits per byte

(for Best case) , 1.727 bits/bytes (for Average Case), 2.238 bits/bytes (Worst case) even for

larger genome (nearly 2,00,000 characters). Recently, P. Raja Rajeswari, and A. Apparao [19]

presented a new compression algorithm named “DNABIT Compress” whose compression rate

was below 1.56 bits per base (for Best case) even for larger genome. DNABIT Compress

algorithm was the best among the remaining compression algorithms and significantly improves

the running time of all previous DNA compression programs.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

147

Researchers have worked in entropy estimation for genomic sequences, either by computing

frequency of n-mers for long enough inputs, called Shannon entropy [20], or by adopting

compression methods to obtain an upper bound on entropy [8]. Loewenstern [21, 22]

introduced a compression method CDNA by considering inexact match in finding patterns.

Importantly, Lanctot and Yang [23] improved the compression further by exploiting the reverse

complement property of DNA sequences. Also, this latter method produces a good estimation of

entropy, e.g., the estimate approaches the actual entropy for long enough input. Badger and

Chen [1] proposed a distance function with nice properties for cluster related sequences.

Interestingly, difference compression schemes targets the efficient compression of entire

databases of sequences. DNAzip [24] was first algorithm introducing the important idea of

only storing differences to a reference sequence, but in this case for storing an entire, assembled

genome as a series of difference. This algorithm [24] did not consider the process of generating

the variations, which can be a challenging problem in itself, but assume that the variation data

have been provided. Difference compression schemes, which compress entire sets of

homologous sequences by encoding only the differences between a genomic sequences and a

reference sequence, are also suggested in [25]. Brandon et al [25] found that selecting the

reference sequence is important for having an effective compression of dataset. With only a

partial level of optimization, 3615 genome sequences occupying 56MB in GenBank are

compressed down to only 167 KB, achieving a 345-fold compression rate, using the revised

Cambridge Reference Sequence as the reference sequence. Using the consensus sequence as the

reference sequence, the data can be stored using only 133 KB, corresponding to a 433-fold level

of compression, roughly a 23% improvement. On the other hand, C. Wang [26] implemented a

generic tool, GRS, for de novo compression of genome resequencing data which does not need

the reference SNPs map. When its performance was tested on the first Korean personal genome

sequence dataset, GRS was able to achieve 159-fold compression, reducing the size of the data

from 2986.8 to 18.8 MB. While being tested against the sequencing data from rice and

Arabidopsis thaliana, GRS compressed the 361.0 MB rice genome data to 4.4 MB, and the A.

thaliana genome data from 115.1MB to 6.5 KB. DNAEncodeWG [27] also presented how to

compress DNA sequence data using the whole genome sequence of an organism to identify

differences between DNA sequences if a repository of the whole genome sequence of the

organism is accessible through the Web. It encoded the sequences 10-fold better than the other

standard algorithms. Kozanitis [28] focused on fragment compression as opposed to sequence

compression by using SLIMGENE. H. Afify [29] presented another algorithm in which for each

pair of similar sequences, a third sequence can be generated; representing the difference

between them, and the entropy of the generated difference sequence can be estimated.

Difference sequence can help in building phylogenic tree, while the entropy can help in

selecting appropriate compression reference for short dataset.

For difference compression scheme to be appropriate, it should be suitable for the way the set is

being used. When an entire set is archived or transmitted, the concern will be focused on the

compression rate. In this situation, a reference sequence is stored, and the next sequence is

generated from this reference and the appropriate difference sequence. Newly generated

sequences may be used as references for subsequent sequences. When the set is being actively

used, in addition to the compression rate, the speed of decompression is of comparable

importance, where any sequence may be repeatedly fetched at any moment. To speed up

sequence decompression, it is preferable to have a single reference for the whole set.

In this study, we describe another solution to the compression of genomic sequence dataset

which compresses the dataset based on comparing it with a reference sequence. We focus our

study on large sets of sequences that belong to the same class. If two genomes are, e.g., more

than 99% identical, it is much more efficient to store one genome as a variation from the other;

in which case, only that 1% representing the variation needs to be stored. A differentially

compressed set is a set where a single reference sequence is stored, along with information

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

148

about the difference between this sequence and the rest of the set. To evaluate the suggested

selection method, the compression of the differences, compression of difference locations and

the size of the compressed set are examined, as is explained in the next section.

2. MATERIAL AND METHOD

2.1. Data Extraction

The data used in our work consists of three different datasets of genomic sequences including

3615 human mitochondrial genomic sequences, 500 human virus sequences H1N1, and 100

mouse sequences Mus Musculus Dmesticus.

Mitochondrial dataset takes 56MB size in GenBank, and is downloadable from the GenBank

database, HapMap web site and the MITOMAO database [30]. Among the sequences, 2671

correspond to complete genome, while the remaining 944 correspond only to the coding region

sequence, which is about 1100bp shorter than the full genome sequence. Virus dataset takes

601KB size in GenBank, and is downloaded from Influenza Research Database [31]. Mouse

datasets takes 106KB in GenBank, and is downloaded from Mouse Genome Database (MGD)

[32]. References were selected as follows: Cambridge sequence NC_012920 sequence for

human mitochondrial dataset, HM17663 for virus dataset, and AJ843867 for mouse dataset.

2.2. Operation Code Generation

The DNA is constructed of a double helix held together by hydrogen bonds. Each strand of the

helix is a biomolecule consisting of many linked components called nucleotides. Each

nucleotide is one of four possible types: adenine (A), cytosine (C), guanine (G) and thymine

(T). The two strands of the helix are exact complement of each other. Each nucleotide of one

strand matches to its complement on the other strand, where A pairs with T and G pairs with C,

DNA strands that are complementary to themselves are called self-complementary or

palindromes.

To generate an operation code of differences between a target sequence and its reference, the

base at every location of the target is compared with the corresponding bases at the reference. A

difference between the two bases can be due to one of three modifications to the target: a base

insertion, a base deletion, or a replacement. Table 1 summarizes the operation codes.

Table 1. Operation code generation.

Corresponding Bases Operation Op-codes

The same Similarity "0"

A ��T

G ��C

Replacement

"1"

A ��G

C ��T
"2"

A ��C

G ��T
"3"

A or T or G or C � '-' Deletion "4"

'-' �G

Insertion

"5"

'-' � A "6"

'-' � C "7"

'-' � T "8"

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

149

2.3. Differential Compression Algorithm

The proposed differential compression algorithm consists of three main steps: Alignment,

Differences recording and differences compression.

2.3.1. Alignment

We start by aligning each sequence in the dataset with the reference sequence using local

Sequence Alignment. The sole purpose of sequence alignments is to place homologous

positions of homologous sequences into the same column by inserting gapes. Gaps reflect the

occurrence of insertions/deletions or other rearrangements during the process. Also, the

alignment of similar sequences can help in discovering patterns and relationships between

sequences, consequently improve their compression ratio [33].

2.3.2. Differences Recording

In this step, differences and differences locations vectors are recorded. Difference vector is

achieved by storing only the op-code of the different bases between the aligned reference

sequence and the aligned genomic sequence; these will be according to Table 2 ranging from 1

to 8. Difference locations with respect to the unaligned reference sequence are recorded. It is to

be noted out that an insertion in the aligned reference sequence will not change the recorded

unaligned reference sequence base location, while any other operation in the aligned genomic

sequence will increment to the next recorded unaligned reference sequence base location.

2.3.3. Difference Compression

The proposed compression algorithm can be divided into two phases, the differences are coded,

and the codes are compressed in the first phase, while their locations are compressed in the

second. To improve the compression of differences locations, the distance between successive

locations are stored.

To compare the results obtained after the compression of both differences codes and locations,

we used compression ratio which is the ratio between the compressed size and the

uncompressed size, and space saving which is defined as the reduction in size relative to the

uncompressed size (1-compression ratio) [34], as measures for the compression process. Figure

1 shows the architecture of the proposed differential compression algorithm.

Table 2. Op-codes of differences.

 Aligned Reference Sequence Bases

 G A C T -

A
li

g
n

ed

G
en

o
m

ic

S
eq

u
en

ce

B
a
se

s

G 0 2 1 3 5

A 2 0 3 1 6

C 1 3 0 2 7

T 3 1 2 0 8

- 4 4 4 4 0

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

150

3. RESULTS AND DISCUSSION

We have tested the proposed differential compression algorithm on the three genomic sequences

datasets. Difference codes were compressed using two lossless compression algorithms namely,

Huffman [35] and ZLIB Deflator algorithm [36]. Table 3 shows the generated Huffman codes.

Table 4 shows the size of the compressed difference codes. It also shows that ZLIB Deflator

algorithm achieved better compression ratio than Huffman algorithm in human data, while

Huffman algorithm achieved slightly better compression ratio in virus and mouse data.

Difference locations are compressed using ZLIB Deflator algorithm. Table 5 summarizes the

compression ratio and space saving of our algorithm on the three datasets. The results confirm

that mitochondria dataset that occupies 56MB size in GenBank can be stored using only

294.3KB, corresponding to 195-fold compression rate. While virus dataset that occupies 601KB

size in GenBank can be stored using only 212.9KB, corresponding to 3-fold level of

compression. Mouse datasets that occupies 106KB size in GenBank can be stored using only

9.6KB, corresponding to 11-fold level of compression. It should be noted that compression
of mitochondria dataset is better than virus and mouse database because it has high similarity

between genomic sequences.

Table 4. Size of compressed differences for different compression algorithms

Dataset Uncompressed

size

Huffman

algorithm

ZLIB Deflator

algorithm

Human 1.08MB 156.6KB 35.6KB

Virus 374.7KB 81.6KB 84.3KB

Mouse 11.8KB 4.3KB 5.2KB

Table 3. Huffman codes for difference operations.

 Human data Virus data Mouse data

Relevant

number

Probability Encoding

value

Probability Encoding

value

Probability Encoding

value

1 0.0011 11101 0.0641 110 0.0718 0011

2 0.0942 10 0.0653 101 0.0906 0010

3 0.0021 1111 0.0550 111 0.0483 0111

4 0.8957 0 0.7218 0 0.0696 0110

5 0.0002 1110001 0.0237 10001 0.191 10

6 0.0007 111001 0.025 10000 0.1849 11

7 0.005 110 0.0221 10011 0.1595 010

8 0.0005 1110000 0.0225 10010 0.1839 000

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

151

The most popular algorithms, including specific compression algorithms: DNACompress [12],

XM [13], and difference compression scheme: DNAEncodeWG [27], are not suitable for

compression of entire databases. We believe that DNAEncodeWG is superior for a single

sequence. It should be mentioned that Brandon et al. algorithm [25], was done by using extra

reference sequence and based on statistics of the sequence set that are not valid for other sets.

The compression result of our algorithm is better than C. Wang [26] that achieved 159-fold

compression on Korean personal genome. Our results confirm that the proposed method

compresses a 56MB human data file to 294.4KB, with a space savings of 99.4%. For virus data,

a 601KB file was compressed to 212.9KB, with a space savings of 64.6%. For mouse data, a

106KB file was compressed to 9.6KB, with a space savings of 91%.

As can be observed, high similarity between genomic sequences is essential to improve the

compression. For each dataset, the compression ratio achieved is a measure of the similarity

between its sequences. In other words, it is possible to measure how much information one

sequence gives about the other.

An important point should be mentioned here is that the proposed method does not require a

priori knowledge about that statistics of the sequence set. This will be a big advantage when the

updated sequences have different statistics.

The execution time of the differential compression is depending on the length of the difference

sequence needed to be compressed. As the difference sequence length increases, the execution

time increases. On the other hand, decoding speed is similar since both encoder and decoder do

essentially the same computation. Therefore, our current implementation has been optimized for

encoding and decoding speed, when the sequence set is under heavy usage.

The differential compression method has been used for lossless compression. Through our

investigation, we have found that the use of this method could open new frontiers in quickly

identifying unknown sequence related to the set of sequences. This method can potentially be

modified to include variable references instead of using a single reference to improve the

difference compression. It also extends to update the set with new similar sequences. Further

investigation of the new method is needed to further assess its practical value. Moreover, when

individuals have complete genome sequences available as part of their personal health records,

the focus will shift to difference sequence-level compression. It seems likely that improvement

of difference compression will continue to be important to advance knowledge of human

genetic variation, and is the pressing problem faced by researchers today.

Table 5. Comparison of compression ratios and space saving

Dataset Uncompressed

size

Differences Locations Compression

ratio

Space

saving

Human 56MB 35.6KB 258.7KB 0.005 99.4%

Virus 601KB 81.6KB 131.3KB 0.354 64.6%

Mouse 106KB 4.3KB 5.3KB 0.09 91.0%

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

152

Start

Select reference sequence

If not end of

DNA

sequence

databases

Compress difference

codes and locations

Get next sequence

Align with reference

Locate differences

Record difference codes

and locations

Calculate Compression

ratio and space saving

End

Figure 1. Architecture of the differential compression algorithm

True

False

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

153

4. CONCLUSIONS

The differential compression method that is based on the differences and locations of

differences between each sequence in a genomic dataset and its reference sequence is presented.

This method is simple, universal which does not depend on the statistics of the dataset. and

could achieve up to 195-fold compression. Compression methods are undergoing rapid

development making it tempting to store sequencing data for long periods of time so that the

data can be re-analyzed with the latest techniques. The challenging open research problems,

huge influx of data, and rapidly improving analysis techniques have created the need to store

and transfer very large volumes of data. More work is needed to select the prefect reference for

huge data to improve difference compression generation, and to further investigate the use of

the new method in practical genomic applications.

REFERENCES

[1] M. Li, J. Badger, X. Chen, S. Kwong, P. Kearney and H. Zhang, “An Information Based

Sequence Distance and its Application to Whole Mitochondrial Genome,” Bioinformatics, vol.

17, no. 2, pp. 149-154, 2001.

[2] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi, , “ The Similarity Metric,” Proc. 14th Ann. ACM-

SIAM Symp. Discrete Algorithms, pp. 863-872, 2003.

[3] R. Giancarlo, D. Scaturro and F. Utro, “Textual Data Compression in Computational Biology: a

synopsis,” Bioinformatics, vol. 25, no. 13, pp. 1575–1586, 2009.

[4] L. Rowen, G. Mahairas and L. Hood, “Sequencing the Human Genome,” Science, vol. 278, pp.

605-607, 1997.

[5] J.Gailly, M.Adler, “gzip (GNUzip) compression utility,”[http://www.gnu.org/soft-ware/gzip/]

[6] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE Trans.

Information Theory, vol. 23, pp. 337-343, 1977.

[7] M. Burrows and D. J. Wheeler, “A Block Sorting Lossless Data Compression Algorithm,”

Technical Report 124, Digital System Research Center, 1994.

[8] T. Matsumoto, K. Sadakane, H. Imai, “Biological Sequence Compression Algorithms,” Tokyo,

Genome Informatics ,vol. 11, pp. 43-52, 2000.

[9] S. Grumbach and F. Tahi, “Compression of DNA Sequences,” Proc. IEEE Symp. Data

Compression, Snowbird, UT, pp. 340-350, 1993.

[10] S. Grumbach and F. Tahi, “A New Challenge for Compression Algorithms: Genetic Sequences,”

Information Processing Management, vol. 30, no. 6, pp. 875-886, 1994.

[11] X. Chen, S. Kwong and M. Li, “A Compression Algorithm for DNA Sequences and its

Applications in Genome Comparison,” Proc. 4
th

 Ann. International Conf. Computational

Molecular Biology, pp. 107, 2000.

[12] X. Chen, M. Li, B. Ma and J. Tromp, “DNACompress: Fast and Effective DNA Sequence

Compression,” Bioinformatics, vol. 18, no. 12, pp. 1696-1698, 2002.

[13] M. D. Cao, T. I. Dix and L. Allison, “A Simple Statistical Algorithm for Biological Sequence

Compression,” Proc. IEEE Data Compression Conference (DCC '07), pp. 43-52, 2007.

[14] A. Kocsor, A. Kertesz-Farkas, L. Kajan and S. Pongor, “Application of Compression-Based

Distance Measures to Protein Sequence Classification: A Methodology Study,” Bioinformatics,

vol. 22, pp. 407-412, 2006.

[15] A. Hatengan and I. Tabus, “Protien is Compressible,” Proc. 6
th

 Nordic Signal Processing

Symposium, pp. 192-195, 2004.

[16] R. Cilibrasi and P. M. B. Vitanyi, “Clustering by Compression,” IEEE Trans. Information

Theory, vol. 51, no. 4, pp.1523-1545, April 2005.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No 4, August 2011

154

[17] E. Rivals, J.P.Delahaye, M.Dauchet, and O.Delgrange, “A Guarantee DNA Sequences for

Repetitive DNA Sequences,”LIFL Lille I University, Technical Report IT-285, 1995.

[18] P.Raja Rajeswari, and A.Apparao, “GENBIT Compress Tool (GBC): A Java – Based Tool to

Compress DNA Sequences and Compute Compression Ratio (BITS/BASE) Of Genomes,”

International Journal of Computer Science and Information Technology, vol. 2, no 3, June 2010.

[19] P.Raja Rajeswari1, and A.Apparao, “DNABIT Compress – Genome Compression Algorithm,”

Bioinformation, vol. 5, Issue 8, 2011.

[20] C. E. Shannon, “A Mathematical Theory of Communications,” Bell System Technology Journal,

vol. 27, pp. 379-423, 1948.

[21] D. M. Loewenstern, H. Hirsh, P. Yianilos and M. Noordewier, “DNA Sequence Classification

Using Compression-based Induction,” Technical Report 95-04, DIMACS, 1995.

[22] D. M. Loewenstern and P. N. Yianilos, “Significantly Lower Entropy Estimates for Natural

DNA Sequences,” Proc. IEEE Data Compression Conference (DCC '97), pp. 151-160, 1997.

[23] J. K. Lanctot, M. Li and E. H. Yang, “Estimating DNA Sequence Entropy,” Proc. 11
th

Annul.

ACM-SIAM Symp. Discrete Algorithms, pp. 409-418, 2000.

[24] S. Christley, Y.Lu, C. Li, and X. Xie, “Human Genomes as Email Attachments,” Bioinformatics,

vol. 25, no. 2, pp. 274-275, 2009.

[25] C.Brandon, D. C. Wallace and P. Baldi, “Data Structures and Compression algorithms for

Genomic Sequence data,” Bioinformatics, vol. 25, no. 14, pp. 1731-1738, 2009.

[26] C. Wang and D. Zhang, “A Novel Compression Tool for Efficient Storage of Genome

Resequencing Ddata,” Nucleic Acids Research, doi:10.1093/nar/gkr009, January 2011.

[27] H. Do Kim, Ju-Han Kim, “DNA Data Compression Based on the Whole Genome Sequence,”

Journal of Convergence Information Technology, vol. 4, no. 3, 2009.

[28] C. Kozanitis, C.Saunders, S.Kruglyak, V.Bafna, and G.Varghese, “Compressing Genomic

Sequence Fragments Using SLIMGENE,” RECCOMB, 2010.

[29] H. Afify, M. Islam, M. Abdel Wahed, and Y. M. Kadah, “Genomic Sequences Differential

Compression Model,” 27
th

National Radio Science Conference, NRSC’2010, Menouf, Egypt,

March 16-18, 2010.

[30] M. Brandon, et al., “MITOMAP: a human mitochondrial genome database-2004,” Nucleic Acids

Res., vol. 33, pp. D611–D613, 2005.

[31] http://www.fludb.org/brc/home.do?decorator=influenza.

[32] http://www.informatics.jax.org

[33] S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, “Basic Local Alignment

Search,” J. Molecular Biology, vol. 215, pp. 403-410, 1990.

[34] http://en.wikipedia.org/wiki/Data_compression_ratio.

[35] Khalid Sayood, “Introduction to Data Compression, 3
rd

ed.,” University of Nebraska, 2006.

[36] http://www.mathworks.com/matlabcentral/fileexchange/8899.

