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ABSTRACT 

Modern biological science produces vast amounts of genomic sequence data. This is fuelling the need for 

efficient algorithms for sequence compression and analysis. Data compression and the associated 

techniques coming from information theory are often perceived as being of interest for data 

communication and storage. In recent years, a substantial effort has been made for the application of 

textual data compression techniques to various computational biology tasks, ranging from storage and 

indexing of large datasets to comparison of genomic databases. This paper presents a differential 

compression algorithm that is based on production of difference sequences according to op-code table in 

order to optimize the compression of homologous sequences in dataset. Therefore, the stored data are 

composed of reference sequence, the set of differences, and differences locations, instead of storing each 

sequence individually. This algorithm does not require a priori knowledge about the statistics of the 

sequence set. The algorithm was applied to three different datasets of genomic sequences, it achieved up 

to 195-fold compression rate corresponding to 99.4% space saving. 
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1. INTRODUCTION 

The compression of genomic sequences remains a challenging problem, with profound 

implications in biology and with important technological impact when the use of genomic data 

will become a daily practice in health and medicine. As such, it will certainly be investigated 

further due to several reasons: benefits when storing or transmitting the genome files; 

possibilities for comparison of entire genomes by similarity metrics approximating Kolmogorov 

similarity [1, 2]; and discovering statistically significant relationships among various sequences. 

Data compression and the related information-theoretic techniques find a wide use for 

investigation in computational biology. Such a pervasive use has grounds in some outstanding 

notions that deeply characterizes data compression, in particular universality and quantification 

of statistical dependence via information measures. These notions give rise to methods that need 

very few assumptions on the data models and, as a consequence, very minor parameter 

estimations for their application. This seems to be a major advantage for computational biology 

applications, where the statistical modeling of the data is a highly non-trivial task. In addition, 

the low-computational demand of these methods allows them to scale well with dataset size, 

even on a genomic scale. Obviously, data structure, data modeling and speed are the main 

advantages for the use of data compression in biological investigations [3]. 
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The amount of DNA being extracted from organisms and sequenced is increasing exponentially 

[4]. This yields two problems: storage and comprehension. Despite the prevalence of broadband 

network connections, there still exists a need for compact representation of data to speed up 

transmission. Transferring a single sequence that is millions of characters long may take ten to 

fifteen minutes over a dial-up connection. Compression of genomic sequences can decrease the 

storage requirements, and increase the transmission speed. 

Understanding genomic sequences has wide applications, from the synthesis of medicines to 

genetic screening and engineering. The knowledge of the structure of a sequence is important 

for its comprehension. If a set of sequences have a common structural property that is shared by 

another sequence, it is possible that they are related in some way, or that the knowledge that 

applies to one may also be useful for the other. Compression can help to show both the structure 

of a sequence and how it is related to other sequences. 

DNA is composed of four bases (A, T, G, C), and can be coded using two bits per base. 

According to functionality, DNA manifests different properties from other kinds of data. 

Standard compression algorithms for text or image files exploit small repeated patterns and 

contextual similarities to achieve compression. However, repeated patterns in DNA sequences 

are typically much longer and less frequent, so standard compression algorithms perform poorly 

on DNA. The most popular general-purpose encoders of today, such as gzip [5], which is based 

on the Lempel-Ziv algorithm [6], and bzip2, based on the Burrows-Wheeler Transform [7], 

which usually produces more than two bits per base to achieve the un-encoded representation 

[8]. Hence, the quest for efficient DNA compression programs started to become popular in the 

competition-driven community of data compression enthusiasts. DNA sequences are 

compressible, so they are not random. But they are not highly compressible. It is therefore 

necessary for coding methods to be as efficient as possible. In the context of compression, 

missing structure will lead to inefficient compression.  

In the last two decades, compression of genomic sequences can be divided into two categories: 

Specific compression algorithms developed for efficiently compressing sequence data for the 

sake of reduced resource consumption (disk space or network usage) [8-13]; and investigations 

of the usefulness of compressibility as a measure of information content, for the purpose of 

making inferences about sequences (such as the relatedness of two sequences) [1, 14]. Specific 

compression algorithms have been proposed for DNA compression by using particular 

characteristics such as exact or approximate repeats measures within a single DNA sequence 

that are based on relations between subsequences only. Compression gains afforded by these 

algorithms are ultimately not sufficient to justify their adoption for large databases. While much 

research has been done on compressing individual DNA sequences, surprisingly little has 

focused on the compression of entire databases [3]. The results of compressing genomic 

sequences can be applied to the problem of evolution derivation [15]. Compression–based 

distance measures (CBMs) that depend on probabilities of mismatching locations [16], are not 

distinct enough among different classes. However, researches have been suffering from the poor 

modeling to characterize the relationship between sequences. 

Algorithms for Compressing DNA sequences, such as GenCompress [11] ,Biocompress [10] 

and Cfact [17] were available to compress DNA sequences. Their compression rate was about 

1.74 bits per base i.e., 78% in compression rate. Hence, a compression algorithm named 

”GenBit Compress Tool” [18] is presented, whose compression rate was below 1.2 bits per byte 

(for Best case) , 1.727 bits/bytes (for Average Case), 2.238 bits/bytes (Worst case ) even for 

larger genome (nearly 2,00,000 characters). Recently, P. Raja Rajeswari, and A. Apparao [19] 

presented a new compression algorithm named “DNABIT Compress” whose compression rate 

was below 1.56 bits per base (for Best case) even for larger genome. DNABIT Compress 

algorithm was the best among the remaining compression algorithms and significantly improves 

the running time of all previous DNA compression programs. 
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Researchers have worked in entropy estimation for genomic sequences, either by computing 

frequency of n-mers for long enough inputs, called Shannon entropy [20], or by adopting 

compression methods to obtain an upper bound on entropy [8].  Loewenstern [21, 22] 

introduced a compression method CDNA by considering inexact match in finding patterns. 

Importantly, Lanctot and Yang [23] improved the compression further by exploiting the reverse 

complement property of DNA sequences. Also, this latter method produces a good estimation of 

entropy, e.g., the estimate approaches the actual entropy for long enough input. Badger and 

Chen [1] proposed a distance function with nice properties for cluster related sequences. 

Interestingly, difference compression schemes targets the efficient compression of entire 

databases of sequences. DNAzip [24] was first algorithm introducing the important idea of 

only storing differences to a reference sequence, but in this case for storing an entire, assembled 

genome as a series of difference. This algorithm [24] did not consider the process of generating 

the variations, which can be a challenging problem in itself, but assume that the variation data 

have been provided. Difference compression schemes, which compress entire sets of 

homologous sequences by encoding only the differences between a genomic sequences and a 

reference sequence, are also suggested in [25]. Brandon et al [25] found that selecting the 

reference sequence is important for having an effective compression of dataset. With only a 

partial level of optimization, 3615 genome sequences occupying 56MB in GenBank are 

compressed down to only 167 KB, achieving a 345-fold compression rate, using the revised 

Cambridge Reference Sequence as the reference sequence. Using the consensus sequence as the 

reference sequence, the data can be stored using only 133 KB, corresponding to a 433-fold level 

of compression, roughly a 23% improvement. On the other hand, C. Wang [26] implemented a 

generic tool, GRS, for de novo compression of genome resequencing data which does not need 

the reference SNPs map. When its performance was tested on the first Korean personal genome 

sequence dataset, GRS was able to achieve 159-fold compression, reducing the size of the data 

from 2986.8 to 18.8 MB. While being tested against the sequencing data from rice and 

Arabidopsis thaliana, GRS compressed the 361.0 MB rice genome data to 4.4 MB, and the A. 

thaliana genome data from 115.1MB to 6.5 KB. DNAEncodeWG [27] also presented how to 

compress DNA sequence data using the whole genome sequence of an organism to identify 

differences between DNA sequences if a repository of the whole genome sequence of the 

organism is accessible through the Web. It encoded the sequences 10-fold better than the other 

standard algorithms. Kozanitis [28] focused on fragment compression as opposed to sequence 

compression by using SLIMGENE. H. Afify [29] presented another algorithm in which for each 

pair of similar sequences, a third sequence can be generated; representing the difference 

between them, and the entropy of the generated difference sequence can be estimated. 

Difference sequence can help in building phylogenic tree, while the entropy can help in 

selecting appropriate compression reference for short dataset. 

For difference compression scheme to be appropriate, it should be suitable for the way the set is 

being used. When an entire set is archived or transmitted, the concern will be focused on the 

compression rate. In this situation, a reference sequence is stored, and the next sequence is 

generated from this reference and the appropriate difference sequence. Newly generated 

sequences may be used as references for subsequent sequences. When the set is being actively 

used, in addition to the compression rate, the speed of decompression is of comparable 

importance, where any sequence may be repeatedly fetched at any moment. To speed up 

sequence decompression, it is preferable to have a single reference for the whole set. 

In this study, we describe another solution to the compression of genomic sequence dataset 

which compresses the dataset based on comparing it with a reference sequence. We focus our 

study on large sets of sequences that belong to the same class. If two genomes are, e.g., more 

than 99% identical, it is much more efficient to store one genome as a variation from the other; 

in which case, only that 1% representing the variation needs to be stored. A differentially 

compressed set is a set where a single reference sequence is stored, along with information 
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about the difference between this sequence and the rest of the set. To evaluate the suggested 

selection method, the compression of the differences, compression of difference locations and 

the size of the compressed set are examined, as is explained in the next section. 

2. MATERIAL AND METHOD 

2.1. Data Extraction 

The data used in our work consists of three different datasets of genomic sequences including 

3615 human mitochondrial genomic sequences, 500 human virus sequences H1N1, and 100 

mouse sequences Mus Musculus Dmesticus. 

Mitochondrial dataset takes 56MB size in GenBank, and is downloadable from the GenBank 

database, HapMap web site and the MITOMAO database [30]. Among the sequences, 2671 

correspond to complete genome, while the remaining 944 correspond only to the coding region 

sequence, which is about 1100bp shorter than the full genome sequence. Virus dataset takes 

601KB size in GenBank, and is downloaded from Influenza Research Database [31]. Mouse 

datasets takes 106KB in GenBank, and is downloaded from Mouse Genome Database (MGD) 

[32]. References were selected as follows: Cambridge sequence NC_012920 sequence for 

human mitochondrial dataset, HM17663 for virus dataset, and AJ843867 for mouse dataset. 

2.2. Operation Code Generation 

The DNA is constructed of a double helix held together by hydrogen bonds. Each strand of the 

helix is a biomolecule consisting of many linked components called nucleotides. Each 

nucleotide is one of four possible types: adenine (A), cytosine (C), guanine (G) and thymine 

(T). The two strands of the helix are exact complement of each other. Each nucleotide of one 

strand matches to its complement on the other strand, where A pairs with T and G pairs with C, 

DNA strands that are complementary to themselves are called self-complementary or 

palindromes. 

To generate an operation code of differences between a target sequence and its reference, the 

base at every location of the target is compared with the corresponding bases at the reference. A 

difference between the two bases can be due to one of three modifications to the target: a base 

insertion, a base deletion, or a replacement. Table 1 summarizes the operation codes. 

 

 

Table 1. Operation code generation. 
 

Corresponding Bases Operation Op-codes  

The same Similarity "0" 

A ��T 

G ��C 

Replacement 

"1" 

A ��G 

C ��T 
"2" 

A ��C 

G ��T 
"3" 

A or T or G or C � '-' Deletion "4" 

'-' �G 

Insertion 

"5" 

'-' � A "6" 

'-' � C "7" 

'-' � T "8" 
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2.3. Differential Compression Algorithm 

The proposed differential compression algorithm consists of three main steps: Alignment, 

Differences recording and differences compression. 

2.3.1. Alignment 

We start by aligning each sequence in the dataset with the reference sequence using local 

Sequence Alignment. The sole purpose of sequence alignments is to place homologous 

positions of homologous sequences into the same column by inserting gapes. Gaps reflect the 

occurrence of insertions/deletions or other rearrangements during the process. Also, the 

alignment of similar sequences can help in discovering patterns and relationships between 

sequences, consequently improve their compression ratio [33]. 

2.3.2. Differences Recording 

In this step, differences and differences locations vectors are recorded. Difference vector is 

achieved by storing only the op-code of the different bases between the aligned reference 

sequence and the aligned genomic sequence; these will be according to Table 2 ranging from 1 

to 8. Difference locations with respect to the unaligned reference sequence are recorded. It is to 

be noted out that an insertion in the aligned reference sequence will not change the recorded 

unaligned reference sequence base location, while any other operation in the aligned genomic 

sequence will increment to the next recorded unaligned reference sequence base location. 

 

 

2.3.3. Difference Compression 

The proposed compression algorithm can be divided into two phases, the differences are coded, 

and the codes are compressed in the first phase, while their locations are compressed in the 

second. To improve the compression of differences locations, the distance between successive 

locations are stored. 

To compare the results obtained after the compression of both differences codes and locations, 

we used compression ratio which is the ratio between the compressed size and the 

uncompressed size, and space saving which is defined as the reduction in size relative to the 

uncompressed size (1-compression ratio) [34], as measures for the compression process. Figure 

1 shows the architecture of the proposed differential compression algorithm. 

 

 

Table 2. Op-codes of differences. 
 

  Aligned Reference Sequence Bases 

  G A C T - 

A
li

g
n

ed
 

G
en

o
m

ic
 

S
eq

u
en

ce
 

B
a
se

s 

G 0 2 1 3 5 

A 2 0 3 1 6 

C 1 3 0 2 7 

T 3 1 2 0 8 

- 4 4 4 4 0 
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3. RESULTS AND DISCUSSION 

We have tested the proposed differential compression algorithm on the three genomic sequences 

datasets. Difference codes were compressed using two lossless compression algorithms namely, 

Huffman [35] and ZLIB Deflator algorithm [36]. Table 3 shows the generated Huffman codes. 

Table 4 shows the size of the compressed difference codes. It also shows that ZLIB Deflator 

algorithm achieved better compression ratio than Huffman algorithm in human data, while 

Huffman algorithm achieved slightly better compression ratio in virus and mouse data. 

 

 

Difference locations are compressed using ZLIB Deflator algorithm. Table 5 summarizes the 

compression ratio and space saving of our algorithm on the three datasets. The results confirm 

that mitochondria dataset that occupies 56MB size in GenBank can be stored using only 

294.3KB, corresponding to 195-fold compression rate. While virus dataset that occupies 601KB 

size in GenBank can be stored using only 212.9KB, corresponding to 3-fold level of 

compression. Mouse datasets that occupies 106KB size in GenBank can be stored using only 

9.6KB, corresponding to 11-fold level of compression. It should be noted that compression 
of mitochondria dataset is better than virus and mouse database because it has high similarity 

between genomic sequences. 

Table 4. Size of compressed differences for different compression algorithms 

 

Dataset Uncompressed 

size 

Huffman 

algorithm 

ZLIB Deflator 

algorithm 

Human 1.08MB 156.6KB 35.6KB 

Virus 374.7KB 81.6KB 84.3KB 

Mouse 11.8KB 4.3KB 5.2KB 

 

Table 3. Huffman codes for difference operations. 
 

 Human data Virus data Mouse data 

Relevant 

number 

Probability Encoding 

value 

Probability Encoding 

value 

Probability Encoding 

value 

1 0.0011 11101 0.0641 110 0.0718 0011 

2 0.0942 10 0.0653 101 0.0906 0010 

3 0.0021 1111 0.0550 111 0.0483 0111 

4 0.8957 0 0.7218 0 0.0696 0110 

5 0.0002 1110001 0.0237 10001 0.191 10 

6 0.0007 111001 0.025 10000 0.1849 11 

7 0.005 110 0.0221 10011 0.1595 010 

8 0.0005 1110000 0.0225 10010 0.1839 000 
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The most popular algorithms, including specific compression algorithms: DNACompress [12], 

XM [13], and difference compression scheme: DNAEncodeWG [27], are not suitable for 

compression of entire databases. We believe that DNAEncodeWG is superior for a single 

sequence. It should be mentioned that Brandon et al. algorithm [25], was done by using extra 

reference sequence and based on statistics of the sequence set that are not valid for other sets. 

The compression result of our algorithm is better than C. Wang [26] that achieved 159-fold 

compression on Korean personal genome. Our results confirm that the proposed method 

compresses a 56MB human data file to 294.4KB, with a space savings of 99.4%. For virus data, 

a 601KB file was compressed to 212.9KB, with a space savings of 64.6%. For mouse data, a 

106KB file was compressed to 9.6KB, with a space savings of 91%. 

As can be observed, high similarity between genomic sequences is essential to improve the 

compression. For each dataset, the compression ratio achieved is a measure of the similarity 

between its sequences. In other words, it is possible to measure how much information one 

sequence gives about the other. 

An important point should be mentioned here is that the proposed method does not require a 

priori knowledge about that statistics of the sequence set. This will be a big advantage when the 

updated sequences have different statistics. 

The execution time of the differential compression is depending on the length of the difference 

sequence needed to be compressed. As the difference sequence length increases, the execution 

time increases. On the other hand, decoding speed is similar since both encoder and decoder do 

essentially the same computation. Therefore, our current implementation has been optimized for 

encoding and decoding speed, when the sequence set is under heavy usage. 

The differential compression method has been used for lossless compression. Through our 

investigation, we have found that the use of this method could open new frontiers in quickly 

identifying unknown sequence related to the set of sequences. This method can potentially be 

modified to include variable references instead of using a single reference to improve the 

difference compression. It also extends to update the set with new similar sequences. Further 

investigation of the new method is needed to further assess its practical value. Moreover, when 

individuals have complete genome sequences available as part of their personal health records, 

the focus will shift to difference sequence-level compression. It seems likely that improvement 

of difference compression will continue to be important to advance knowledge of human 

genetic variation, and is the pressing problem faced by researchers today. 

 

Table 5. Comparison of compression ratios and space saving 

 

Dataset Uncompressed 

size 

Differences Locations Compression 

ratio 

Space 

saving 

Human 56MB 35.6KB 258.7KB 0.005 99.4% 

Virus 601KB 81.6KB 131.3KB 0.354 64.6% 

Mouse 106KB 4.3KB 5.3KB 0.09 91.0% 
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4. CONCLUSIONS 

The differential compression method that is based on the differences and locations of 

differences between each sequence in a genomic dataset and its reference sequence is presented. 

This method is simple, universal which does not depend on the statistics of the dataset. and 

could achieve up to 195-fold compression. Compression methods are undergoing rapid 

development making it tempting to store sequencing data for long periods of time so that the 

data can be re-analyzed with the latest techniques. The challenging open research problems, 

huge influx of data, and rapidly improving analysis techniques have created the need to store 

and transfer very large volumes of data. More work is needed to select the prefect reference for 

huge data to improve difference compression generation, and to further investigate the use of 

the new method in practical genomic applications. 
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