
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

DOI : 10.5121/ijcsit.2012.4308 85

HIGH AVAILABILITY SOLUTION: RESOURCE USAGE
MANAGEMENT IN VIRTUALIZED SOFTWARE AGING

Aye Myat Myat Paing1 and Ni Lar Thein1

1University of Computer Studies, Yangon
amyat2p@googlemail.com

ABSTRACT

As businesses increasingly rely on IT for their mission-critical operations, continuous availability is a
universal concern. Nowadays, virtualized platform has become the popular option to deploy complex
enough services. Deployed services are expected to be always, available, but these long running services
are especially sensitive to suffer from software aging phenomenon. Software aging of virtual machine
monitors (VMMs) is becoming critical because performance degradation or crash failure of a VMM affects
all virtual machines (VMs) on it. To counteract this issue, we deploy software rejuvenation methodology.
To eliminate the service outage during software rejuvenation process, we combine the rejuvenation with
live migration technology. Live VM migration enables a running VM on a host serer to move onto the other
host server with very small interruption of the execution. Live VM migration depends on VMs placement
and efficient resource available is required. The idea behind our paper is two-fold. First, we present the
optimization of the resource usage as accepting as many services as in virtualized environment which
support of VM live migration. Second, to demonstrate how much it can improve system availability, the
stochastic Petri nets model a virtualized server system in case of using time based software rejuvenation for
VMM is presented. Finally, we perform the numerical analysis to evaluate the model.

KEYWORDS

Availability, Clustering Technology, Software Aging, Software Rejuvenation, Stochastic Petri Nets,
Virtualization.

1. INTRODUCTION

Availability has long been a critical issue for online computer systems whose failure can halt
business process. This is particularly more pertaining to high demanded high available (HA)
computing systems based on off-the-shelf components. Exhaustion of system resources, data
corruption, and numerical error accumulation are the primary symptoms of the degradation,
which may eventually lead to performance degradation of the software, crash/hang failure, or
other undesirable effects. That degradation of software is known as software aging. Software
aging has not only been observed in software used on a mass scale but also in specialized
software used in high-availability and safety critical applications [3].

System Virtualization techniques are getting popular and gaining significant interest in the
enterprise and personal computing spaces. The majority of today’s high availability (HA) clusters
is based on real physical hardware and virtualization is coming more and more popular nowadays,
one has to think about possible combinations of virtualization and high availability clustering.
Modern computers are sufficiently powerful to use VMs. Many fields, such as autonomic
computing, server consolidation, security and education publish results that praise the benefits of

mailto:amyat2p@googlemail.com

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

86

virtualization. Software rejuvenation can be applied so as to mitigate adverse effects of
software aging. Software rejuvenation [3] is a proactive fault management technique aimed at
cleaning up the system internal state to prevent the occurrence of more severe crash failures in the
future. To eliminate the service outage during software rejuvenation process, we combine
rejuvenation with virtualization technology. A virtualization layer also called virtual machine
monitor (VMM) is a software layer that abstracts the physical resources for use by the VMs.
Recently, software aging of VMMs is becoming critical because many VMs run on top of a
VMM in one machine consolidating multiple servers and aging of the VMM directly affects all
the VMs. Without any rejuvenation, both the OS software and the application software running
on top of VM degrade in performance with time due to the exhaustion of system resources such
as free physical memory, and eventually crash, which is very undesirable to high availability
(HA) systems and fatal to mission-critical applications.

One of the promises of virtualization is the ability to allow applications to dynamically move
from one physical server to another as the demands and resource availabilities change, without
service interruption. More recently, Xen [1] and VMWare [8] have implemented ``live'' migration
of VMs that involve extremely short downtimes. To migrate, we must know which virtual
machine needs to be migrated and when this relocation has to be done and, moreover, which host
must be destined.

The main contributions of this paper are two-fold. Firstly, we present the optimization of the
resource usage as accepting as many services as possible on the virtualized environment.
Secondly, we present VM migration based rejuvenation policy to offer the high availability by
preventing failures due to software aging. We use a stochastic Petri nets based approach to builds
models and evaluate through both analytical and SHARPE (Symbolic Hierarchical Automated
Reliability and Performance Evaluator) tool simulation [6].

The organization of this paper is as follows. In Section 2 we discuss the related work. The
proposed resource management algorithm for enhancing system availability and stochastic Petri
nets model for system availability are follow in Section 3 and 4. Finally we conclude our paper in
Section 5.

2. RELATED WORK

In this section we review selected publications related to our work. There are many benefits to
virtualization technologies. The authors [2] presented a mixed software rejuvenation policy for an
operational software system with multiple degradation states, which considered both the history
information and the current running state. By this policy, the system is rejuvenated when it
achieves to a degradation threshold or it comes to pre-determined rejuvenation interval.
Continuous-time Markov chains were used to describe the multiple degradation states model.
Machida et. al [7] presented comprehensive availability models of three rejuvenation techniques
for a server virtualized system with time-based rejuvenations for VM and VMM. The result of
sensitivity analysis showed that Migrate-VM rejuvenation achieves the best steady-state
availability as long as VM live migration is fast enough and other servers have capacity to receive
the migrated VM. However they do not consider the VMs placement on other physical servers
when VM migration is needed.

Rezaei et al. [9] proposed a new rejuvenation technique for high available virtualized systems that
is applied at both VM and VMM levels and yet it does not require any modifications to
applications. They have considered a typical virtualized system that acts as a hot-standby machine
containing two VMs that run on a single VMM.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

87

High available systems using virtualization technology and software rejuvenation methodology
are proposed by Thein et al. [11, 12]. In [12], they provide stochastic process based models to
evaluate availability of the system in case of without virtualization technology and in case when
virtualization and software rejuvenation are used. Virtual machine based software rejuvenation
framework to offer high availability for application servers is presented in [11].

Kim et. al [4] have presented availability models of a nonvirtualized and virtualized system using
two level hierarchical stochastic models with fault tree and CTMC. In virtualized system model,
HA service and VM live migration are incorporated. In order to minimize the downtime of a
server virtualized system, a fast software rejuvenation technique called Warm-VM Reboot for
VMM [5] was presented by introducing the on-memory suspend technique and quick reload
mechanism.

In our work, to analyze the availability of virtualized server system we present stochastic Petri
nets model for time-based rejuvenation policy for VMM. To support live VM migration, resource
usage management algorithm is proposed.

3. PROPOSED RESOURCE MANAGEMENT ALGORITHM FOR ENHANCING

SYSTEM AVAILABILITY

To counteract the software aging phenomenon for VMM in virtualized cluster system, we
combine software rejuvenation and live VM migration. During the live VM migration, we need to
consider the process of dynamically allocating VMs to other PMs in resource pool and to meet
their resource requirements. Therefore, resource management algorithm is proposed for
guaranteeing the availability of potential services and is accepted as many services as possible
according to the available resource capacity. This section presents system architecture and
resource management in virtualized environment.

3.1. System Architecture

The system consists of virtualized cluster severs and management server. Example system
architecture is shown in Figure 1. Clustering supports two or more servers running multiple VMs.
To enable live VM migration, all PMs are connected on the same network and the shared disk
image. A heartbeat keep-alive system is used to monitor the health of the PM between them. The
management server contains three service providers: resource manager, aging detector and
rejuvenation manager. The aging detector of management server is responsible for the detection
of software aging. When software aging happens in active VMM, the rejuvenation manager will
trigger the rejuvenation action. Before rejuvenation, the resource manager is responsible for
getting resource information, and how to allocate the VMs to accept the maximum number of
services in virtualized environment according to the resources available.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

88

S h a re d S to ra g e

R e s o u rc e
M a n a g e r

A g in g D e te c to r

R e ju v e n a t io n
M a n a g e r

M a n a g e m e n t S e rv e r V ir tu a liz e d S e rv e r C lu s te r

V M M V M M V M M

M a n a g e -
V M

S er v ic e -
V M

S er v ic e -
V M

S er v ic e -
V M

S tan d b y -
V M

M a n a g e -
V M

Figure 1. System Architecture

The sequence diagram for proposed system is shown in Figure 2. When some potential anomaly
happens, in order not to lose any in-flight request or session data at the time of rejuvenation for
VMM, all the VMs on that aging affected PM are migrated to one of the selected PM from
virtualized cluster system using resource management algorithm. After the VM migration, a
rejuvenation operation will be triggered for VMM.

: Monitor : Aging Detector
: Resource

Manager

: Rejuvenation

Manager

Monitoring ()

Resource management ()

Migration ()

Rejuvenation ()

return no

Detection () Detection process ()

PM Selection ()

Figure 2. Sequence Diagram for Proposed System

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

89

3.2. Resource Management in Virtualized Environment

This sub-section describes how to solve the software aging failure in VMM using software
rejuvenation and live VM migration. Live VM migration technology allows us to migrate a
running VM without any or minimal outage, from one physical machine to another.

As time degrades, the VMM running on the PM becomes software aging. When the software
aging or some potential anomaly happens in one of the PM in the resource pool, the rejuvenation
manager of management server will trigger a rejuvenation operation. If the aging affected PM is
about to be rejuvenated, all the new requests and sessions are migrated from the VMs from the
aging affected PM to VMs from other PMs in the resource pool. When the ongoing requests are
finished in aging infected PM, these VMM will be rejuvenated.

With the advent of the virtualization, live migration can be performed without service
interruption. In order to carry out the appropriate VM live migrations, the proposed Resource
Management Algorithm carries out how to allocate the VMs to accept the maximum number of
services on the virtualized infrastructure according to the resources available. The resource
management algorithm is presented in Figure 3.

The assumptions used in the resource management algorithm are as follow.

• It does not allowed same service in one PM because it can be decided to which PM of
each VM must be allocated such that number of VMs is maximized the services and VMs
requirements are satisfied without exceeding PM’s capacity and whole infrastructure
capacity limits.

• One of the PMs in the resource pool can suffer software aging at a time.

Begin
1. Calculate the maximum number of VMs according to resource capacity

of PMs in the resource pool
2. Detect the VMM aging that needed to rejuvenate
3. For other PMs in the resource pool do
4. Select PM which has maximum size of available resource capacity
5. For all VMs on aging affected PM do
6. If ((size of created VMs+ size of migrate VM) <= size of

available PM resource capacity) AND (Selected PM’s VM’s
service != Migrate VM’s service) then

7. VM Migration to selected PM
8. End if
9. End for

10. End for
End

Figure 3. Resource Management Algorithm

The example scenario is described for calculating the maximum number of services as the input
for the resource management algorithm taking into account the VM and the PM features as shown
in Table 1.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

90

Table 1. Example Resource Capacity Description for VM and PM

Role Memory Size

PM1, PM2, PM3 16384 MB

Virtualization Layer (VMWare ESX) 4096 MB

Service VM 2048 MB

Manage-VM 512 MB

Standby VM 2048 MB

In this basic scenario, the VM size is only computed with the memory required and based on
virtualized clustering architecture. The VM’s size is predefined and fixed on the available
physical resources.

The example infrastructure is composed of three physical machines, and Manage-VM is deployed
separately with service VMs: then the maximum numbers of VMs is computed as followings:

Available Memory Memory size Memory size usage of
for each PM = of each PM - VMM (1)

Total Available Memory =∑
=

m

i 1
mPMofsizememory

(m= number of PMs)

(2)

VMsof VMeachofsizeMemory

sizeMemoryAvailableTotal
numberMaximum =

(3)

According to the Table I, we can calculate available memory for each PM: 12288 MB and the
example infrastructure is composed of 3 PMs then we get 36864 MB total memory available. If
we only deploy service VM (basic scenario): 36864/2048 = 18 VMs are available to be run
simultaneously as shown in Table 2.

For the scenario of Manage VM associated with every Service VM, and a load balanced scenario
of Manage-VM and two service VMs, the maximum number of services can be deployed as
shown in Table 2.

Table 2. Maximum Number of VMs accepted by different scenario

Maximum Allowed VMs

Basic Scenario 18

Scenario with Manage -VM 14

Load Balanced Scenario with LB(with Manage-
VM and Standby VM)

8

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

91

4. STOCHASTIC PETRI NETS MODEL FOR SYSTEM AVAILABILITY

In this section, we present stochastic Petri nets (SPN) model with time-based rejuvenation policy
for VMM in virtualized cluster system as shown in Figure 4. It has n tokens which represented n
VMs and m tokens which represented m PMs. In this policy, the rejuvenation interval is
determined by using clock. If the active VMM is about to be rejuvenated cause of software aging,
all the VMs on aging affected PM are migrated to other PMs according to VMs placement
through resource management algorithm and then will be started for the new requests and
sessions. It can return back to the original PM after the completion of the VMM rejuvenation
through live VM migration.

In initial condition all PMs are “healthy” working states, indicated by a token in place Pup. As
time progresses, each VMM eventually transits to failure probably states in place PFP through the
transition Tfp but the failure probably rates are different for each VMM. The VMM are still
operation in this state but VMs need to migrate when token is placed in PFP and before VMM
rejuvenation. When the VMs migration transition Tmig is enabled, the VMs from PVM are migrated
to another PM and a token is moved to a place PMig. After the migration, VMs will be restarted on
another PM.

P u p

P F P

P c lo c k

P RP M ig

P F

P V M

T fp T c lo c k

T re j

T m ig

T f

m 1

n
T m ig - b k

T re j

T re p

n

n

Figure 1. Stochastic Petri Nets Model for VMM Rejuvenation

Places Description
Pup : Healthy state of ith PM
PFP : Failure Probably state of ith PM

i= 1,2,3 (number of PM)
PF : Failure state
PR : Rejuvenation state of ith PM
PMig : VMs Migration state from aging PM to selected PM for migration

Pclock : Rejuvenation Interval state of ith PM

PVM : Available VMs state on ith PM

In this model, rejuvenation interval is determined by using a clock and there are tokens in the
place Pclock . There are VMMs to be rejuvenated (a token is placed in PFP and Pup), the transitions
Tclock is enabled. This transition is competitively enabled with Tfp and fires when the clock expires

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

92

if Tfp has not fired by that time. Once its fires, token moves in the place PR and the activity related
with software rejuvenation. During the rejuvenation, every other activity in the VMM is
suspended. This is modeled by inhibitor arcs from PR to transitions Tfp and Tf. After VMMs have
been rejuvenated, it goes back to healthy state with transition Trej and a token is also reset to Pclock.
When there is a system is crash (i.e., there is a token is placed in place PF by using transition Tf.
From a full system outage, the system can be repaired through the transition Trep and all VMMs
are in healthy state in place Pup.

4.1. Reachability Graph

We construct the reachability graph for SPN model with 2VMs and 3PMs (n=2, m=3). Let 7 tuple
(Pup, PFP, Pclock, PR, PMig,PF and PVM) denote the marking with Px =1, if a token is presented in
place Px, and zero otherwise. A marking is reachable from another marking if there exists a
sequence of transition firings starting from the original marking that result in the new marking.
The marking process is mapped into a continuous time Markov chain (CTMC) with state space
isomorphic to the reachability graph of the SPN as shown in Figure 5.

3010002

2110002

1210002

0310002

3001002

2101002

1201002

0301002

0210012

0110022

0010032

0210300 3010002

0110400 3010002

30100020010500

up

FP1

FP2

FP3

Rup

R1

R2

R3

F1

F2

F3

Mig1

Mig2

Mig3

VM1

VM2

VM3

λ

λ

λ

λ1

λ1

λ1

λ1

μr

μr

μr

μr

μ

μ

μ

λmig

λmig

λmig

λmig

λmig

λmig

μmig

μmig

μmig

μmig

μmig

μmig

λf

λf

λf

Figure 2. Reachability Graph for SPN Model

Figure 5 illustrates the reachability graph with squares representing the markings and arcs
representing possible transition between the markings. Let λ, λ1, λf, λmig, µmig, μr, and μ be the
transition rates associated with Tfp, Tclock,Tf, Tmig, Tmig, Trej and Trep respectively.

By mapping through actions to this reachability graph with stochastic process, we get
mathematical steady-state solution of the chain. We may compute the steady-state probability by
first writing down the steady-state balance equations of figure as follows.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

93

The conservation equation of Figure 5 is obtained by summing the probabilities of all states in the
system and the sum of equation is 1.

1
3

1

3

1

3

1

3

1

3

1

=++++++ ∑∑∑∑∑
===== i

VM
i

F
i

R
i

Mig
i

FPRup iiiiiup
PPPPPPP

(21)

Combining the above-mentioned balance equations with the conservation equation, and
solving these simultaneous equations, we acquire the closed-form solution for the system.

upPupPMigPmigFPRPrRPrRPrRPr up 133312
 +=+++++ (4)

upR
P

rup
P  =

1
(5)

1122 1 FP
P

FP
P

F
P

Mig
P

migup
P  +=++ (6)

111 R
P

rFP
P  = (7)

22111 1 FP
P

FP
P

F
P

Mig
P

migFP
P  +=++ (8)

221 R
P

rFP
P  = (9)

3332 1 FP
P

FP
P

fFP
P

migFP
P  ++= (10)

331 R
P

rFP
P  = (11)

11113 MigPmigMigPmigMigPmigVMPmigFPPmig  ++=+ (12)

11 VM
P

migMig
P

mig
 = (13)

22221 MigPmigMigPmigMigPmigVMPmigMigPmig  ++=+ (14)

22 VM
P

migMig
P

mig
 = (15)

3332 MigPmigMigPmigVMPmigMigPmig  +=+ (16)

33 VM
P

migMig
P

mig
 = (17)

13 F
P

FP
P

f
 = (18)

21 F
P

F
P

f
 = (19)

32 F
P

F
P

f
 = (20)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

94

up
P

rup
R

P



1= (22)

up
BP

fmig
FP

P



1

2

++
= (23)

up
BP

fmig

r
R

P 










 ++
=







 11
2

(24)

up
ABP

FP
P


1

1

=
(25)

up
BPA

r
R

P 




=


 11
1

(26)

up
BP

FP
P =

3 (27)

up
BP

r
R

P



1

3

= (28)

up
BP

migmig

mig
Mig

P














+
=





1 (29)

up
BP

migmig

mig

mig

mig
VM

P














+
=









1

(30)

up
BP

migmig

mig
Mig

P

2

2 













+
=





(31)

up
BP

migmig

mig

mig

mig
VM

P

2

2 













+
=









(32)

up
BP

migmig

mig

mig

mig
Mig

P

2

3 













+
=









(33)

up
BP

migmig

mig

mig

mig
VM

P

22

3 













+












=









(34)

up
BP

f
F

P



=

1

(35)

up
BP

f
F

P

2

2 











=





(36)

up
BP

f
F

P

3

3 











=





(37)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

95

1

22

222

32

1

11111111

−





















































+












++















+












+















+
+















+
+















+
+















+
+















+
++






++











 ++
+

++
+++

=

B
f

B
f

B
f

B
migmig

mig

mig

mig

B
migmig

mig

mig

mig
B

migmig

mig

mig

mig
B

migmig

mig

B
migmig

mig

mig

mig
B

migmig

mig
B

r

BA
r

ABB
fmig

r
B

fmig
B

r

upP










































































(38)

Where
















−















+
−













 ++
+++=

f
migmig

mig
mig

fmig
fmig

A 










1
1

)
1

(

22
1














−















+
−+

=

















f

migmig

mig
mig

AA

B

The meaning of the probabilities as follows:

up
P : The probability of the VMM is in healthy state

up
R

P : The probability of the VMM is in rejuvenation state from VMM healthy state

i
R

P : The probability of the VMM is in rejuvenation state from VMM failure probably
state (i=1,2,3 where i= number of PM)

iFP
P : The probability of the VMM is in failure probably state

iMig
P : The probability of the VMs migration state

iF
P : The probability of VMM is in failure state

i
VM

P : The probability available VMs on PM state

4.2. Availability and Downtime Analysis

Availability is a probability of a system which provides the services in a given instant time. Based
on this, system availability and unavailability can be computed. In the proposed model, services
are not available when both VMMs are in failure state

iFP . We also define the availability of the

SPN model as:

Availability = 1-Unavailability

∑
=

−=
3

1

1tyAvailabili
i

Fi
P

(39)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

96

Downtime is the expected total downtime of the application with rejuvenation in an interval of T
time units is:






×= ∑

=

3

1

Downtime
i

F i
PT (40)

4.3. Numerical Analysis

In this subsection, we illustrate the applicability of the SPN model and solution methodology
through numerical analysis. The exact model transition firing rates for the model are not known, a
good estimate value for a range of model transition firing rates is assumed. For this purpose, we
perform numerical analysis using the following failure profile mentioned in Table 3 [3,10].

Table 3. Transition Firing Rates

Transitions Firing Rates (h-1)

Tfp 1 time/a day

Tf 2times/ 3 months

Tclock 1time/ month

1/Tmig 3 mins

1/Trej 10 mins

Trepair 1time/ 2 hours

The influence of VM migration transition firing rates along with different rejuvenation rates on
availability is shown in Figure 6. The mean time to VM migration transition is assumed 2 mins
and 3 mins. The higher VM migration rates, the higher availability of our system model can be
achieved. Therefore, the availability is dependent on the mean time to VM migration transition.

0.9999974
0.9999976
0.9999978
0.9999980
0.9999982
0.9999984
0.9999986
0.9999988
0.9999990

0.00208 0.00278 0.00417 0.00833

Rejuvenation Rates (per hour)

A
va

ila
bi

lit
y

λmig=2mins (Derivation) λmig=2mins (SHARPE)

λmig=3mins (Derivation) λmig=3mins (SHARPE)

Figure3. Availability vs. different rejuvenation rates and different mean time to VM migration

The Figure 7 shows the differences in downtime with different mean time to VM migration
transition and different rejuvenation transition firing rates. From the result, it is apparent that by
combining virtualization technology and software rejuvenation mechanism can enhance the
availability of virtualized IT infrastructure.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

97

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0.00208 0.00278 0.00417 0.00833

Rejuvenation Rates (per hour)

D
ow

nt
im

e
(m

in
 p

er
 y

ea
r)

λmig=2mins (Derivation) λmig=2mins (SHARPE)

λmig=3mins (Derivation) λmig=3mins (SHARPE)

Figure 4. Downtime vs. different rejuvenation rates and different mean time to VM migration

The change in availability of a system with different rejuvenation rates and different VMM
failure rates is plotted in Figure 8. The influence of failure rates along with different rejuvenation
rates on availability can be seen from this figure. We assume the failure rates are one time per
month and two times per three months. High availability systems require fewer failures and faster
repair. We observe from Figure 8 that the failure rate of the system acts as an important factor in
the availability of the virtualized system.

0.9999975
0.9999976
0.9999977
0.9999978
0.9999979
0.9999980
0.9999981
0.9999982
0.9999983
0.9999984
0.9999985

0.00208 0.00278 0.00417 0.00833

Rejuvenation Rates (per hour)

A
va

ila
bi

lit
y

λf=2times/3months (Derivation) λf=2times/3months (SHARPE)

λf=1time/a month (Derivation) λf=1time/a month (SHARPE)

Figure 5. Availability vs. different rejuvenation rates and different VMM failure rates

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

98

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0.00208 0.00278 0.00417 0.00833

Re juve nation Rate s (pe r hour)

D
o

w
n

ti
m

e
(m

in
 p

er
 y

ea
r)

λ f=2times /3 months (Derivation) λ f=2times /3 months (SHA RPE)

λ f=1time/ a month (Derivation) λ f=1time/ a month (SHA RPE)

Figure 6. Downtime vs. different rejuvenation rates and different VMM failure rates

Figure 9 plotted the downtime as a function of the different rejuvenation rates. According to the
Figure 9, we can see that the fewer failure, the lower downtime can be achieved.

SHARPE [6] is well known package in the field of reliability and performability. It is possible to
use different kinds of models hierarchically for different physical or abstract levels of the system
and to use different kinds of models to validate each other’s results. So for our models’ validity
we use this tool. According to Figure 6, 7, 8 and 9, it is found that the derivation results and
SHARPE tool simulation results are the same.

5. CONCLUSION

Software can cause software aging as time degrades. Software aging decreases the availability of
the system. It is widely understood that the technique of rejuvenation provides better results,
resulting in higher availability and lower cost. In this paper we presented possible combinations
of virtualized clustering and software rejuvenation in order to counteract the software aging and
also presented a resource management algorithm to guarantee the availability of the services
deployed and optimize the resources available in the infrastructure. Stochastic Petri nets model
for analyzing VMM time based software rejuvenation in continuously running applications are
presented and express availability and downtime and in terms of the transitions firing rates in the
model. The numerical results are validated with the evaluation results through SHRPE tool. It is
found that the derivation results and the SHARPE result are the same. The proposed combine
method can be applied to any cluster server configurations without any additional cost. The
obtained results show that the use of virtualization, clustering technology and software
rejuvenation mechanism can provide a very fast recovery to cut down the mean time to recovery
to the minimum. It can achieve minimize downtime even in case of service restart.

REFERENCES

[1] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, andA. Warfield. Live
migration of virtual machines. In Proc. NSDI '05, May 2005.

[2] X. Du, Y. Qi, D. Hou, Y. Chen, X.Zhong, “ A Mixed Software Rejuvenation Policy for Multiple
Degradations Software System,” Proceedings of 11th IEEE International Conference on High
Performance Computing and Communications 2009, pp.376-383,2009

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 3, June 2012

99

[3] Y. Huang, C. Kintala, N. Kolettis, N. D. Fulton, “Software rejuvenation: Analysis, module and
application,” Proc. the 25th Int. Symp., Fault-Tolerant Computing, Pasadena, CA, June. 1995,
pp.381-390. doi: 10.1109/FTCS.1995.466961

[4] D. Kim, F. Machida, and K. S. Trivedi, Availability modeling and analysis of a virtualized system, In
Proc. of IEEE Int’l Symp. Pacific Rim Dependable Computing (PRDC 2009), 2009.

[5] K. Kourai and S. Chiba, Fast software rejuvenation of virtual machine monitor, In IEEE Trans. on
depnedable and secure computing, 2010.

[6] K. S. Trivedi, SHARPE 2002: Symbolic Hierarchical Automated Reliability and Performance
Evaluator. In Proc. Int. Conference on Dependable Systems and Networks, 2002, pp. 544.

[7] F. Machida, D. Kim, and K. S. Trivedi, Modeling and Analysis of Software Rejuvenation in a Server
Virtualized System.In Proc. of the 2rd International Workshop on Software Aging and
Rejuvenation,(WoSAR2010),2010.

[8] F. Machida, D. Kim, J. Park and K. S. Trivedi, Toward Optimal Virtual Machine Placement and
Rejuvenation Scheduling in a Virtualized Data Center, In Proc. of the 1st Int’l Workshop on Software
Aging and Rejuvenation (WoSAR2008), 2008.

[9] A. Rezaei and M. Sharifi, Rejuvenating High Available Virtualized Systems”, The 2010
International Conference on Availability, Reliability and Security, IEEE, 2010

[10] Software rejuvenation. Department of Electrical and Computer Engineering, Duke University,
[Online] Available form: http://www.software-rejuvenation.com

[11] T. Thein and J. S. Park, Availability Analysis of Application Servers Using Software Rejuvenation
and Virtualization, J. Computer Science and Technology, 24(2), 2009,pp. 339-346.

[12] T. Thein, S. Chi, J. Park, “Improving Fault Tolerance by Virtualization and Software Rejuvenation”,
In Proceedings of the Second Asia International Conference on Modeling & Simulation, Kuala
Lumpur, Malaysia, 2008, pp. 855–860.

http://www.software-rejuvenation.com

