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ABSTRACT

Breast cancer is known as one of the most common cancers to afflict the female population. Computer
assisted diagnosis can be helpful for doctors in detection and diagnosing of potential abnormalities.
Several techniques can be useful for accomplishing this task. This paper outlines an approach for
recognizing breast cancer diagnosis using neuro-fuzzy inference technique namely ANFIS (Adaptative
Neuro-Fuzzy Inference System). Wisconsin breast cancer diagnosis (WBCD)database developed at
University of California, Irvine (UCI) is used to evaluate this method. Results show that   the best
performances are obtained by our model compared to others cited in literatur (an accuracy of 98, 25 % ).
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1. INTRODUCTION

In [5] , breast  cancer  has  been  one of  the major  causes  of  death  among  women  and  a true
emergency  for  the  healthcare  systems  of  industrialized countries . It is the second leading
cause of cancer deaths among women in the world [2].It is characterized by an abnormal
multiplication of a cell in the human body. Not entailing serious consequences, early, cancer can
be developed into a serious condition if treatment is not done on time. Due to its late diagnosis, it
often causes a mutilating and expensive treatments accompanied by a high mortality rate. It has
the form of lumps or tumors in the tissues of the breast. Tumors can either be malignant or
benign. However, differentiating a malignant tumor from  a  benign  one  is a very tedious task
due to the structural similarities between the two (figure 1) [24]

Figure 1: Fine Needle Biopsies of Breast. Malignant (left) And benign (right) breast tumors [33]
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It is an extremely critical and time consuming task for the physician to accurately identify the
structural differences.The question remains if there could be an automated technique that could
relieve the physician of the tedious task of distinguishing a malignant tumor from a benign one
[24]. Computer aided diagnosis systems are important   for  pattern   recognition ,  aiming  to
assist doctors in making diagnosis decisions. Machine learning  have been successfully applied in
computer-aided diagnosis (CAD) systems [7], [34], [25]. These methods learn hypotheses from a
large amount of diagnosed samples, i.e., the data collected from a number of necessary medical
examinations along with the corresponding diagnoses made by medical experts, to assist the
medical experts in making a diagnosis in the future [13]

In the literature, several methods have been applied to detect the presence of cancer in the breast.
Most work reported employs Neural Networks , Genetic Algorithm (GA) , Fuzzy Inference
System (FIS) and Neuro-Fuzzy Hybrid Models  for breast cancer classification. Some literature
works based on WBCD (Wisconsin breast cancer diagnosis) are shown in the following Table1:

TABLE 1: Some Literature Works

Neuro-Fuzzy Hybrid models improve relatively remarkable performances in diagnosis [28] .
There exists many kinds of neuro-fuzzy classifiers such as trainable fuzzy classification systems
[20][8], histogram based fuzzy systems [4][14] ,fuzzy sets self organizing classification systems
[12][11][16], Neuro-fuzzy classification systems (NeFClass)[27]…

This paper presents the Adaptive Neuro-Fuzzy Inference System (ANFIS), which is well-suited
to classification of qualitative input and output variables. The rest of the paper is organized as
follows. First, we introduce artificial neural network (ANN) and the neuro-fuzzy approach .Then,
the dataset used for breast cancer diagnosis is described in the second section. The final section
views and analyzes results obtained for classification of the breast cancer probelm.

2.   NEURO-FUZZY SYSTEMS

Neural networks and fuzzy logic are two approaches that are widely used to solve classification
and pattern recognition problems. The main advantage of neural networks is their learning
capabilities and their ease of implementation. In the other hand  , the non interpretability of their
results is a major disadvantage (black boxes). The fuzzy inference systems can interpret their
results using a knowledge base (rule base). The joint use of neural networks and fuzzy inference
systems can exploit the advantages of both methods.

References Technique Classification rate
(%)

[3] IGANFIS 98.24
[32] SANFIS 96.07
[10] L.V .Q 95,82
[15] Fuzzy 96,71
[21] Fuzzy-GA1 97,36
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Table 2 below gives a comparative view between the two approaches:

TABLE 2: Comparison between neural networks and fuzzy inference systems [18]

Artificial neural network Fuzzy inference system
Difficult to use prior rule

knowledge
prior rule base can be

incorporated
Based on Learning Can not learn

Black box Interpretable(If – Then  rules)
Complicated learning

algorithms
Simple interpretation and

implementation
Difficult to extract knowledge Knowledge can be available

We can say that neuro-fuzzy systems are connectionist models that allow learning as artificial
neural network , but their structure can be interpreted as a set of fuzzy rules .Fuzzy logic and
neural networks form the basis of the majority aided diagnostic intelligent systems.It would be
interesting to combine the two approaches to exploit both advantages.

Different models exist for combining fuzzy logic and  neural networks. In this paper we diagnose
breast cancer using  the ANFIS approach (Adaptive Neuro Fuzzy Inference System) proposed
by Jang [9].

2.1. ANFIS Architecture

The Anfis (acronym of Adaptative Neuro Fuzzy Inference System) is a neuro-fuzzy model
proposed by Jang in  [9] . Jang combined both Fuzzy Logic and Neural Network to produce a
powerful processing tool named Neuro-Fuzzy Systems that have both Neural Network and Fuzzy
Logic advantages and the most common one is ANFIS .Actually, this tool is like a fuzzy
inference system, but the difference is in the use of  a back propagation algorithm for  minimizing
the error [29].The Anfis architecture is illustrated in the figure 2:

Figure  2. a) A two input first-order b) Equivalent Anfis Architecture  Sugeno fuzzy model  with two rules

For simplicity ,we assume  that the fuzzy inference system under consideration has two inputs x
and y and one output z .for a first-order Sugeno fuzzy model, a common rule set with two fuzzy
if-then rules is the following:

R1: If x is A1 and y is B1 then f1=p1x+q1y+r1 (1)

R2: If x is A2 and y is B2 then f2=p2x+q2y+r2 (2)
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Figure 2.a) gives an illustration about the reasoning mechanism for this Takagi-Sugeno Model.
Figure 2.b) shows the corresponding equivalent ANFIS architecture where nodes of the same
layer have similar functions.

As illustrate figure 2.b) ,the Anfis architecture contains fixed nodes (circular) and adaptive nodes
(square) that allows representing the basic rules carried out by an adaptative network .

Note that the structure of this adaptative network is not unique, we can combine layer 3 and 4 to
obtain an equivalent network with only four layers .The first hidden layer is for fuzzification of
the input variables and T-norm operators are deployed in the second hidden layer to compute the
rule antecedent part. The third layer normalizes the rule strengths and the consequent parameters
of the rules are determined in the fourth layer [1]. Output layer computes the overall input as the
summation of all incoming signals [1]

2.2. Hybrid learning algorithm

Table 3 shows how to apply the hybrid learning algorithms to indentify Anfis parameters. The
learning algorithm is composed of two phases:

- In the forward pass of the hybrid learning algorithm, node outputs values go forward until layer
4 and the consequent parameters are identified by the least squares method  [9]
- In the backward pass, the premise parameters are adjusted using the gradient descent method
[9].

TABLE 3 .  Two passes in the hybrid learning procedure for ANFIS  [18]

The output ‘f‘ in Figure 2 b) can be written as:= 1 + 2 (3)

= 1 ( 1 + 1 + 1) + 2 ( 2 + 2 + 2) (4)= 1 1 + 1 1 + 1 1 + 2 2 + 2 2 + 2 2 (5)

This way an adaptive network that is functionally equivalent to a first order Sugeno fuzzy model
is constructed. [31]

3 .  DADASET DESCRIPTION

This section describes the database used for medical diagnosis problem. In this study we used the
dataset provided by researchers at the University of Wisconsin. The dataset was obtained from
the University of California Irvine (UCI) Machine Learning Repository [19] consist of 699 data
with 65.5% classified as benign and 34.5% as malignant The Wisconsin breast cancer diagnosis
(WBCD) database is the effort made at the University of Wisconsin Hospital for accurately
diagnosing breast masses based solely on an FNA (Fine Needle Aspirates) test [6][21] .Nine
visually assessed charac-teristics of an FNA sample considered relevant for diagnosis were
identified, and assigned an integer value between 1 and 10[26] .The measured variables are
described in Table 4.

TABLE  4. Attributes of the diagnostic base
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The Wisconsin Breast Cancer Diagnosis (WBCD) problem involves classifying a presented case
as to whether it is benign or malignant [22],[30].There are several studies based on this database.
Among them, researchers having interpretability of the diagnostic as a prior objective have
applied the method of extracting boolean rules from neural networks [22],[23]. Our work for the
WBCD problem showed that it is possible to obtain diagnostic systems exhibiting high
performance, coupled with interpretability and a confidence measure.The database itself consists
of 699 cases including 16 unavailable instances as shown in Table 5

TABLE 5 . The Wisconsin Breast  Cancer  Data base

4. RESULTS AND  DISCUSSION

4.1. Choice of Parameters

we note that choice of the number of membership functions is important  for the development of
neuro-fuzzy systems. This affects the number of rules generated. Our goal is to obtain a high
performance with a reasonable number of rules. In this study, we have used information gain
algorithm [3] in order to reduce the feature number of  the Wisconsin breast cancer database
(WBCD), So we obtain 6 features instead of 9. Table 6 shows some results obtained for our
experimentation:

TABLE 6. Error and classification rate for different configurations

Configuration Number  of
rules

Learning
Error

Classification
rate %

2*2*2*2*2*2 64 0.29843 0.9825
2*3*3*3*2*2 216 0.16176 0.8904
2*2*2*3*2*3 144 0.16982 0.9386

Case CT UCS UCH MA SEC BN BC NN M Diagnosis

1 5 1 1 1 2 1 3 1 1 Benign

2 5 4 4 5 7 10 3 2 1 Benign

…. … … … … … … … … … …

683 4 8 8 5 4 5 10 4 1 Malignant
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We have assigned the values of error threshold to 0.001. Besides, we adopt the TSK as the
structure for the Fuzzy model. After several trials, we have chosen to assign two membership
functions for each descriptor in order to reduce the size of rules generated (sm: small, bg: big).
Regarding the type of membership functions, we chose generalized bell functions (to guard the
readability of results).

Initial parameters of membership functions are shown in the following figure 3:

The structure of  the proposed  neuro-fuzzy model is presented in the following figure 4:

Figure 3. Initial membership functions (before learning)

Figure 4. The Framework of ANFIS

After choosing these initial configurations, we start learning phase, using the back propagation
algorithm and the hybrid method (based on back propagation and least squares techniques).

4.2. Generated Fuzzy rules

At the end of learning, membership parameters will be modified as shown on figure 5:

Figure 5. Final membership functions (after learning)
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Rules generated by our neuro-fuzzy model are divided into two groups:

• 1st group : Fuzzy rules indicating benign class (1,2,5,7,8,9,11,14,17,20,22,25,31,33, 39,45,
50,51,53,56) .

• 2nd group : Fuzzy rules indicating malignant class (3,4,6,10,13,15, 16,18,19,21,23, 24,26,
27,28,29,30,32,34,35,36,37,38,40,41,42,43, 44,46,47,48,49,52,54,55,57, 58,59,60, 61,62
,63,64)

We coded the two outputs by two classes:

* Benign Class = 0  and   * Malignant class = 1.

4.3. Results Analysis

The performances of the neuro-fuzzy classifier were evaluated using the following parameters:

1. CC=TP+TN/(TP+TP+FP+FN)*100 is the correct classification rate.

2. Error_rate = FP+FN/(TP+TP+FP+FN)*100 is the error rate

3. Se : Sensitivity= TP/(TP+FN)*100 is the true positive rate.

4. Sp : Specificity =TN/(TN+FP)*100 is  the fraction of nonevents that has been correctly
rejected.

5. Nbr TP:  is the number of True Positives.

6. Nbr TN: is the number of True Negatives.

7. Nbr FP:  is the number of False Positives.

8. Nbr FN: is the number of False Negatives.

Performances of the neuro-fuzzy systems using hybrid and back-probagation algorithms   are
summarized in Table 7:

TABLE  7: Differentes results of Anfis

We note that the hybrid method (which combine back-propagation and least squares for learning)
gives better results than back propagation method, because the conclusion of the rules are
adjusted using least square method.The confusion matrix showing the classification results of the
ANFIS model is given in Table 8 :

CC
%

Error rate
%

Se
%

Sp
%

Nbr
Tp

Nbr
Tn

Nbr
Fp

Nbr
Fn

Type

98.25 1.75 97.5 98.65 78 146 2 2 hybrid

64.91 35.09 0 100 76 148 0 80 Back-
propagation
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TABLE  8: Confusion Matrix

Desired & Output
result

Benign records Malignant records

Benign records 146 2
Malignant records 2 78

4.3.1. Correctly recognized cases

4.3.1.1. Cancerous cases correctly recognized

We calculated the degree of solicitation (degree of activation between 50% and 100%) for each
rule in relation to the number of examples. The results are shown in the following Table 9 :

TABLE 9: Degree of solicitation for rules in T.P case

Rules cited in Table 9 are presented below:

R58: If (CT is bg,UCS is bg,UCH is bg,MA is sm,SEC is sm and BN is bg) then Class = 1
R62:If (CT is bg,UCS is bg,UCH is bg,MA is bg,SEC is sm and BN is bg) then Class = 1
R63:If (CT is bg,UCS is bg,UCH is bg,MA is bg,SEC is bg and BN is sm) then Class = 1
R64:If (CT is bg, UCS is bg,UCH is bg,MA is bg, SEC is bg and BN is bg) then Class = 1
We note that: Sm : Small, bg : big .

According to these results, Rule 64 has the most important degree of solicitation. We take two
examples with a CT higher than 5, so the activated fuzzy rules and their degrees of solicitation are
shown below:

1st exemple :

• (CT=8, UCS=10, UCH=10 ,MA=7, SEC=10, BN=10) activates essentially the rule number 64
with  a degree of solicitation equals to 82.25%.

2nd example:

• (CT=6, UCS=10, UCH=10, MA=10 ,SEC=10, BN=10) activates basically rules number 64 and
32 with respectively degree of solicitation equal to 62.11% and 37.71%. Rule 32 is given
below:

R32:If (CT is sm,UCS is bg,UCH is bg,MA is bg,SEC is bg and BN is bg) then Class = 1 .
For the two previous examples the CT has gone beyond normal which makes the malignancy.

Rule Solicitation degree (%)

64 8/80  = 10%
62 3/80  =  3%

63 4/80  =  5%

58 2/80  =  2,5%
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4.3.1.2. Non cancerous cases correctly recognized

The degrees of solicitation for rules that represent the non-cancerous cases correctly recognized
are presented in the Table 10:

TABLE 10: Degree of solicitation for rules in T.N case

Rules presented in table 9 are:

R1: If (CT is sm, UCS is sm, UCH is sm, MA is sm, SEC is sm and BN is sm) then Class = 0.
R33: If (CT is bg, UCS is sm, UCH is sm, MA is sm, SEC is sm and BN is sm) then Class = 0.
We note that the first rule has the greatest solicitation degree.

If we take the first example in the diagnostic database having the following parameters:

• ( CT = 1,UCS = 1 ,UCH = 1 , MA =1,SEC =2 ,BN =4) has activated :

- The first rule (rule 1) with a degree of 81.40%.
- The second rule (rule 2) with a degree of 2.72% .Noting that Rule 2 says:
If  (CT is sm,UCS is sm,UCH is sm,MA is sm,SEC is sm and BN is bg) then Class = 0

4.3.2 . Misrecognized Cases:

4.3.2.1. Non cancerous cases predicted as cancerous (FP)

Among the non-cancerous cases, our model has recognized two cases as cancerous, but only one
example has a degree of solicitation between 50% and 100%. The Table 11 shows this case.

TABLE 11 : Degree of solicitation for rules in F.P case

4.3.2.2. Cancerous cases predicted as non cancerous (FN)

We have just two examples where cancerous cases have been predicted as non cancerous with
degree of solicitation less than 40% in most cases.

5.    CONCLUSION

This work presents a knowledge extraction and classification of breast cancer disease using
basically a neuro-fuzzy approach for system design, able to explain human decisions. We can say

Rule Solicitation degree (%)

1 140/148 = 95%

33 3/148  =  2%

Rule: Solicitation degree % :

33 1/148 = 0.006
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that the proposed  method is an important tool which can be integrated in a CAD (computer
aided diagnosis) for assisting in diagnostic decision making, with providing an understandable
explanation of the underlying reasoning. According to results obtained in table 7,8 and others, we
can say that the used method is very promising approach in medical data recognition .
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