
International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

DOI : 10.5121/ijcsit.2013.5402 21

A TABU SEARCH ALGORITHM WITH EFFICIENT

DIVERSIFICATION STRATEGY FOR HIGH SCHOOL
TIMETABLING PROBLEM

Salman Hooshmand1 , Mehdi Behshameh2 and OmidHamidi3

1Department of Computer Engineering, Hamedan University of Technology, Hamedan

Iran
s_hooshmand1@yahoo.com

2Department of Computer Engineering, Islamic Azad University ,Toyserkan Branch,
Toyserkan, Iran

mehdibehshameh@gmail.com
3Department of Science, Hamedan University of Technology, Hamedan, Iran

omid_hamidi@hut.ac.ir

ABSTRACT

The school timetabling problem can be described as scheduling a set of lessons (combination of classes,
teachers, subjects and rooms) in a weekly timetable. This paper presents a novel way to generate
timetables for high schools. The algorithm has three phases. Pre-scheduling, initial phase and optimization
through tabu search. In the first phase, a graph based algorithm used to create groups of lessons to be
scheduled simultaneously; then an initial solution is built by a sequential greedy heuristic. Finally, the
solution is optimized using tabu search algorithm based on frequency based diversification. The algorithm
has been tested on a set of real problems gathered from Iranian high schools. Experiments show that the
proposed algorithm can effectively build acceptable timetables.

KEYWORDS

Timetabling. Tabu Search. Diversification .Graph . Scheduling

1. INTRODUCTION

Scheduling high school lessons has been considered to be one of the main concerns of schools’
staff before beginning of the term. Manual timetabling is tedious and generally takes several
weeks to build an acceptable timetable. The main difficulty is related to the size of the problem;
the algorithm should consider several conflicting criteria and conditions often for a large number
of classes, teachers and courses. Moreover, the structure of timetable as well as criteria of quality
is different between countries or even within schools inside a country. For these reasons, the
problem of building high-school timetables has been extensively studied in operations research
community.

The solution techniques ranging from graph coloring heuristic to complex metaheuristic
algorithms. Using heuristics is justified since the problem is known to be complex and difficult
and exact solutions would be possible only for problems of limited sizes [1]. Examples of these
algorithms include graph coloring heuristics [2][3], Tabu Search [4][5] and simulated annealing
[6][7]. A different approach is constraint logic programming, as in [8][9] and sometimes a CLP

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

22

framework is exploited [10]. For comprehensive survey of the automated approaches for
timetabling, the reader is referred to [11][12].

The aim of this research was to develop a method to build timetables for Iranian high schools.
The algorithm has been changed several times to consider characteristics of different schools. It
consists of several heuristics to obtain the initial solution. Then a tabu search algorithm with
effective neighborhood exploration and diversification strategy is applied to optimize the
solution.

The paper is organized as follows: section two formulates the problem, section three describes the
graph based algorithm to group lessons and algorithm to generate the initial solution. Then
section four details components of optimizing tabu search algorithm and its components namely,
neighborhood structure and diversification strategy. The next section presents our dataset and
results of experiments on them. Finally section six, argues about results and future works.

2. The Problem Considered

The problem consists of a set of classes C, which represents groups of students with the same
curricula and a set of teachers T, who have to teach set of subject S, as courses to classes. Each
course has a weekly structure which indicates the length of the course’s lessons. For example a
course meets five hours a week may have structure of 2-2-1 meaning that two lessons have two
hours long and the other lasts one hour. A period is a pair composed of a day and a timeslot;
There are p periods being distributed in d days and h daily timeslots (p=d×h). In addition, there
are a set of curricula CR, where each curriculum denotes set of same subjects that must be taught
to some classes. Therefore, each lesson can be represented using a set of <t, cl, s> tuples which
have to be met at the same time. In other words a lesson can be defined by the following
definition:

Eq. 1

There are two kinds of lessons: Simple lessons and Blocks. In simple lessons, which are the
common case, a single teacher teaches a single subject to a class. In contrast, in a block several
teachers teach several courses to several classes. In other words, a block consists of several
lessons which have to be scheduled at the same time. There are two special kinds of bocks in
Iranian high schools known as Half-Switch and Double-Lesson. In Half-Switch, two teachers
teach to two classes in first half of period and switch their classes in the second half. In Double-
Lessons a teacher teaches a single lesson to two or more classes at the same period. Fig . 1 depicts
sample of these two kinds of blocks.

Class1 Class2
Language Geography Geography Language

Class1 Class2
Chemistry

(a) (b)

Fig 1: Types of blocks in Iranian schools; (a) Half-Switch, where class 1 has language course in first half
and Geography in the second half of the period and class 2 is vice-versa (b) Double-Lessons, where class 1

and class 2 students has Chemistry with a single teacher at the same time.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

23

The problem can be described as a constraint satisfaction problem, where lessons of a set of
courses should be scheduled into a weekly timetable, in accordance with a given set of constraints
[1].

The constraints can be categorized to hard and soft ones. A feasible timetable is one in which
lectures scheduled so that the hard constraints are satisfied. In addition, a timetable satisfying
hard constraints incurs a penalty cost for the violations of soft constraints which should be
minimized. The constraints used in our algorithms are as follows:

H1. Conflicts: No two lessons should occur at the same time in a class and no teacher scheduled
to teach two lessons at the same time.
H2. Availability: Teachers and classes should be scheduled only at available periods.
C1.Class Gap: No gap should exist between lessons of a given class in a day;
C2.Teacher Gap: It is ideal that no gap exists between lessons of a given teacher in a day.
C3.Compactness: Sessions of a course should not meet in same or consecutive days.
C4.Balance: There should be balanced combination of simple and hard lessons for each class in
all days according to curricula.
C5.Completeness: All lessons should be scheduled in the timetable.Table 1 summarizes a number
of symbols and variable definitions used in the problem.

Table 1: Notations used in the problem

Symbols Description
C Set of classes, C ={c1,c2,…, cn}
T Set of teachers, T ={t1,t2,…, tm}
S Set of subjects, S ={s1,s2,…, sk}
L Set of lessons, 푙 = {< 푡, 푐푙, 푠 >| 푡 ∈ 푇, 푐푙 ∈ 퐶 , 푠 ∈ 푆 }

d The number of working days per week
h The number of timeslots per day
p The total number of periods, p=d×h
CR Set of the curricula, CR={Cr1,Cr2, …, Crf}
cplxi ,k Whether lessoni is a complex one for classk . if so,cplxs,k = 1 otherwise cplxs,k= 0
Schli Whether lesson li is scheduled;

푠푐ℎ = 0
1
푖푓 ∃ < 푙푖, 푝 > ∈ 푄 ,푝 ≠ −1
표푡ℎ푒푟푤푖푠푒

sameli,lj if lessons li and lj belong to same course, sameli,lj= 1 otherwise sameli,lj= 0

clsli,c If class c involves in lesson li, clsli c = 1, otherwise it is 0.

tchli,t If teacher t involves in lesson li, tchli t= 1, otherwise it is 0.

avli,p Whether teachers and classes involved in lesson i are available at period p.
if so, avli,p = 1 otherwise avli,p= 0

Ac,d Set of lessons scheduled to held in class c on day d

clsgpp(ci) Whether a gap exists in class ci schedule at period p
clsgp (c)

= 1
if ∃ (p1 ∈ p, p2 ∈ p) , p1 < 푝 < 푝2 ∧ (p1 mod d = p2 mod d = p mod d) ∧
 (CPB ≠ −1 ∧ CPB = −1 ∧ CPB ≠ −1)

0 otherwise

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

24

tchgpp(ti) Whether a gap exists in teacher ti schedule at period p

tchgp (t) = 1
if ∃ (p1 ∈ p, p2 ∈ p) , p1 < 푝 < 푝2 ∧ (p1 mod d = p2 mod d = p mod d) ∧
 (TPB ≠ −1 ∧ TPB = −1 ∧ TPB ≠ −1)

0 otherwise

compact
(li)

Whether lesson li schedule is compact.
compact(l)

= 1
if ∃ (< 푙푖,푝1 > ∈ 푄 , < 푙푗, 푝2 > ∈ 푝) , p1 ≠ −1 ∧ p2 ≠ −1 (|p1 mod d − p2 mod d| ≤ 1) ∧
same = 1)

0 otherwise

Un-
balancedd(
ci)

Whether a lesson scheduled for class ci at day d are too complex and not balanced.

unbalanced (c) = 1 푐푝푙푥 , × 퐴 , >
ℎ
2

| |

0 otherwise

2.1.Solution Representation

Many researchers have adopted direct representation of timetable as teachers’ timetable[13] or
classes’ timetable [1]. Although these representations are simple to implement, they are not
intrinsically suitable for complex structure of lesson blocks in our problem. Thus we adopted a
representation which can conveniently model various kinds of blocks. Having previous
definitions, the solution to the problem can be presented as a set of <l, p> pairs where l is a lesson
and p represents period of the week when lesson meets.

푄 = {< 푙,푝 >|푙 ∈ 퐿,푝 ∈ 푃 ∪ {−1}} Eq. 2

In above definition, l is set of all lessons and P is the set of all periods in each week. If a lesson is
currently unscheduled, -1 is assigned as its period.

2.1.1 Redundant timetable representations

To improve performance of algorithm, the timetable is represented in two other data structures in
parallel:
 TPBt ×p: where t= |T|, p = |P| and TPBi,j denotes the lesson which teacher i teaches at
period j. If the teacher is unscheduled at that period the value is -1
 CPBc × p: where c = |C|, p= |P| and CPBi,jrefers to the lesson which meets at period j in
class i. If the class is unscheduled at that period the value is -1

It is notable that the value of TBP is valid only if we have no teacher conflict, no teacher exists
scheduled to teach two lessons at the same time. Similarly CPB is valid only if at most one lesson
scheduled to be met in a class at each time. These conditions are always met during our
algorithm. Nevertheless, Eq. 1 can model every possible timetable regardless of these
infeasibilities.

2.2 Objective Function

It is obvious that meeting all constraints are ideal. In real world, except for the first and second
constraints which are considered as hard, all other criteria are somehow violated. In a feasible
solution, following constrains are always satisfied:

 ∄ (< 푙1,푝 > ∈ 푄, < 푙2,푝 > ∈ 푄, 푐 ∈ 퐶 , 푐푙푠 = 1 ∧ 푐푙푠 = 1) ∧
∄ (< 푙1,푝 > ∈ 푄, < 푙2,푝 > ∈ 푄, 푡 ∈ 푇 , 푡푐ℎ = 1 ∧ 푡푐ℎ = 1)

 ∀ < 푙,푝 > ∈ 푄,푎푣푙 = 1

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

25

To evaluate the current solution according to all soft constraints, C1-C5, following objectives can
be defined as:

 퐹 (푄) = ∑ ∑ 푐푙푠푔푝 (푐)| || |
 퐹 (푄) = ∑ ∑ 푡푐ℎ푔푝 (푡)| || |
 퐹 (푄) = ∑ 푐표푚푝푎푐푡(푙)| |
 퐹 (푄) = ∑ ∑ 푢푛푏푎푙푎푛푐푒 (푐)| |

 퐹 (푄) = ∑ 푠푐ℎ(푙)| |

Where, Fi counts total number of violations of constraint Ci.
Having defined above formula, we can then calculate the cost for a given candidate feasible
solution Q according to the objective function F defined in Eq. 3.

퐹(푄) = 푤 × 퐹 (푄)
Eq. 3

Where wiis the weight associated with each objective and the goal is then to find a feasible
solution Q* such that f(Q*) f(Q) for all Q in the feasible search space.

3. Solution method

Our algorithm for building a timetable has three phases. Phase 0 (Section 3.1) which groups
special sessions to form blocks which are easier to schedule; Phase 1 (Section 3.2), which
constructs a feasible timetable using a fast greedy heuristic and Phase 2 (Section 3.3), which
improves the initial timetable using tabu search algorithm [14] with diversification strategy. The
diversification strategy is based on frequency measures of movements in search space.

3.1 Pre-Scheduling

As mentioned in section 2, existence of blocks is one of Iranian schools’ characteristics. Due to
rather complex nature of them, automatic detection of them is desirable. Fig.2. depicts some other
types of blocks which algorithm tries to find in input data, namely half-Loop andhalf-chain; In
half-loop a set of n teachers have lessons with n classes while classes as well as teachers are fully
busy at block’s assigned period. In half-chain, some teachers (Fig 2.b.) or classes (Fig 2.c) are not
fully scheduled at that period.

Class 1 Class 2 Class 3

Language Geography Geography Art Art Language

(a)

Class 1 Class 2 Class 3

Language Geography Geography Art Art Math

(b)

Class 1 Class 2 Class 3

- Geography Geography Art Art -

(c)

Fig2: Other types of blocks in Iranian schools; (a) Half-Loop, (b) Half-Chain (C) special kind of Half-
Chain

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

26

The proposed algorithm (Fig 3) uses a graph search for this task. The buildGraph procedure gets
set of sessions with length one (one hours long) and creates the graph which will be traversed to
find patterns of above mentioned blocks. Each node of this graph consists of two or one lessons.
Sessions L1 and L2 are combined if they are taught to same class and their teachers have at least
one available period in common. If some sessions cannot be combined they form nodes with just
one session hopefully to form Half-chain blocks (Fig 2.c). An edge exits between two nodes if
they have a teacher in common. Having defined the graph, we look for patterns of blocks. Each
block can be presented as a path in graph. These paths are stored in set P. First, Find_HalfSwitch
subroutine searches for most important type of blocks ,Half-Switch, in the graph. These are two
adjacent nodes in graph with two teachers in common. The paths related to this blocks are stores
in P and Find_Halfloopprocedure tries to find loops in the graph. A depth first search method
used to detect loops in G. The loop is admissible if no node of it appeared previously in P.
Finally, Find_HalfChaintraverses the graph to find half-chains; To do so, it starts from nodes with
just one associated session and visits nodes until reaching another node with same structure. The
method checks feasibility of this path. For example suppose that we have a path with nodes {
<class1-art, class1-math>, <class2-Math, class2-Music>, <class3-Geography, class3-Math>} this
path is not feasible since math teacher should teach to class2 and class 3 simultaneously. It is
notable that Half-Chains should be marked to be scheduled preferably at first or last session of a
day, since putting them in the middle of the day causes gap for teachers and/or classes’ timetable.

3.2. Initial solution

We have adopted a sequential greedy heuristic to build the initial solution; starting from an empty
table the algorithm repeatedly schedules the lesson with most priority at its most suitable period.
Priority of a lesson is defined as the inverse of number of possible period for it. Lesson l can be
scheduled at period p if it is available at it,i.e. avll,p = 1, while assigning p to l does not violate any
of constraints. Then we have to choose a period from candidate periods. For each period we
count number of unscheduled lessons who can be scheduled at that period later. The period with
smallest value of this number will be chosen. This initial timetable is used as the starting point for
optimization phase.

1.
2.
3.
4.
5.
6.
7.
8.

Procedure buildblocks(L)
G ←buildGraph(V,E, L);
P ← {}
P ← P Find_HalfSwitch(G);
P ← P Find_Halfloop(G, P);
P ← P Find_HalfChain(G, P);
Return P;

End buildblocks

Fig 3: Block detection algorithm

3.3. Optimizing the solution

This algorithm (Fig 5)starts with initial solution obtained in previous phase and optimizes the
solution by applying an algorithm that is an adaptation of general Tabu Search technique to our
problem definition. Tabu search (TS) is an iterative procedure designed for the solution of
optimization problems. It explicitly makes use of memory structures and responsive exploration
to guide a hill-descending heuristic to continue exploration without being confused by the
absence of improvement movements. Interested readers are referred to [14] for a detailed
description of TS.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

27

3.3.1. Search space (X) and objective function

The search space of our algorithm is the set of schedules satisfying all hard constraints. For each
solution s we have a set of scheduled lessons and a set U(s) of unscheduled lessons. The objective
function is to minimize |U(s)| and other soft constraints penalties as described in the objective
function (Section 2.2)

3.3.2. The neighborhood N(s)

A solution s'X is a neighbor of solution s X if it can be obtained from s by changing period of
set of lessons in s. A move is composed of 3 steps and inspired by [10].

Step 1. Take a lesson l from set of candidate lessons, R, and assign it a new period t.
Step 2. Remove from schedule the lessons for which the assignment of period t to l violates any
hard constraint.
Step 3: Consider each new element of U(s') for its inclusion in new period with no conflict with
any scheduled lesson.

In other words move M can be described as a set:

푀 = < 푙,푝,푑푖푟 >| 푙 ∈ 퐿,푝 ∈ 푃,푑푖푟 ∈ {푖푛, 표푢푡} Eq. 4

It is notable that the definition is so general that can incorporate much diverse range of moves.
Here we have used two types of moves.

1: Out-In move: This moves one of unscheduled lessons to table. i.e. in step 1, R is U(s).
2: Intra move: This type of move changes the period of a scheduled lesson in the table to a new
period inside table i.e. R in step 1 is set of all lessons except U(s).

Out-In moves favor minimizing unscheduled lessons (f5 function) as it has the highest weight
among criteria and is quite effective as will be shown in experiments (section 4). However we
found that as the optimization phase proceeds the set R eventually becomes so small that we trap
in a local minimum and need a way to escape this region. The Intra move proposed to overcome
this problem by rescheduling previously scheduled lessons at a new period. Fig 4 depicts samples
of moves.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

28

Fig 4: Sample of moves (a) Out-In move (b) Intra move
3.3.2.1 Switch between move types

Move type is selected at the beginning of each iteration (line 9). Out-In moves are always
preferred except when we have not found better solutions for a long time
(IntraActivationiterations). These moves continue for successive IntraDepth iterations. The
IntraDepthparameter is adaptive; its initial value is 0 and increases by one at the start of intra-
move activation period (line 8). This value becomes 0 when the best solution updates (line 32).
The process is cyclic and whenever a multiple of IntraActivation non-improvement iterations
occurs activates again.

3.3.3. The tabu lists

Since each move consists of moving lessons into or out of timetable, the tabu list consists of (l, t)
pairs of lessons and the corresponding periods in which they were scheduled before move. A
move is considered tabu if any of lessons involving in it, came back to their previous positions.
In other word we can say move M is tabu if following holds:

∃ (< 푙,푝,푑 > ∈ 푀 , < 푙,푝 > 휖 푇푎푏푢_푙푖푠푡) Eq. 5

After selecting a move, m, its members are put in tabu list for next tabuTenure(m) iterations. We
have used lists with a random length selected from numbers in range (0.25l, 2l) where l is square
root of number of lessons as proposed by [10].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

29

Fig 5: pseudo code of optimization algorithm

3.3.4. Aspiration criterion

The aspiration criterion defined is that the movement will lose its tabu status if its application
produces the best solution found so far.

3.3.5. Diversification

To encourage method to explore previously unvisited regions of search space and minimize the
risk of entrenching in local optima, a diversification strategy is used. In our algorithm a transition
based long term memory exploited to store the frequency of movements involving each lesson
and period. This memory updates at each iteration (line 26) and clears when a better total
solution is found (line 33). When diversification is active, this long term memory involved in
evaluating moves and moves which differ most from previous ones are prioritized. This is done
through using penalty in evaluating moves (line 17). In the following paragraphs a description of
the proposed long term memories and how they are used to compute penalties in the
diversification strategy is presented.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

30

Transition-based long term memory:

In this kind of memory, information stored in a matrix Zl×pwhere l= |L|, p= |P| and Zi,jdenotes
how many times lesson i has moved to period j. using these values we define move ratio. First we
define:

Eq. 6

Accordingly move ratio of a lesson is defined as

Eq. 7

 And penalty of move M is calculated as below:

Eq. 8

Where n = |M| and f(T) is current cost function. It can be seen that more frequent moves get more
penalty. The diversification strategy is applied whenever number of iterations without
improvements reaches a threshold called divActivation. Diversification strategy lasts for
iterationsDiv successive iterations. The process is cyclic as explained for intra move activation
strategy (section 3.3.2.1). Both divActivation and iterationsDivare input parameters.

3.3.6. Selection of moves

Because of performance considerations, neighborhood used in this algorithm is not full. We
explore a subset of N(S) in a two-step procedure. First, candidate lessons for current move type
(as explained in section 3.2.2) are sorted according to inverse of number of possible assignment
periods. Lessons of this sorted set are selected in turn and the first lesson which can be scheduled
at a period improving the objective function (considering the penalty if diversification is active) is
selected. This move is not tabu or the aspiration criterion can be applied. If no lesson can improve
the cost function, a random lesson is chosen and the best move based on that lesson is done.

4. Experiments

4.1. Problem instances and experimental protocol

Experiments were done on set of three Iranian high-schools with typical 3 or 4 periods a day and
some block lessons according to curriculum.
Error! Reference source not found.Table2 introduces some of the characteristics of the
instances as number of classes, teachers and lessons. In addition, schools’ data can be compared
by their sparseness ratio (sr) considering the total number of lessons (#lessons) and the total
number of available periods for them (p); Where it is more difficult to find a feasible solution for
problems with lower sr values [15]. The sparseness ration can be defined as:

푠푟 =
#푎

#푙푒푠푠표푛푠 × 푝

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

31

Table2: characteristics of schools

School Classes Teachers Lessons Blocks Day
Periods

Working
Days

Sparseness
Ratio (sr)

TA 12 43 171 11 3 6 0.34
AL 12 42 152 18 4 6 0.22
DE 9 24 72 5 3 4 0.32

The objective of experiments was to verify effectiveness of different components of the proposed
algorithm on a set of real datasets. Average results of 10 independent executions (different
random seeds) on each instance for different configuration of tabu search components and
instances were computed (in all experiments parameters had these fixed values: divActivation =
20, iterationsDiv = 5, IntraActivation = 40; w1 = 100, w2= 40, w3= 30, w4= 60, w5= 1000) and
the algorithm stops after 3000 iterations. In the following sections the tabu search implementation
with no diversification and intra-moves willbe referred as TS, while the implementation with
diversification will be referred as TSD; another implementation, which incorporates intra-moves
called TSI and finally TSDI refers to considering both diversification and intra moves. The results
are shows in Table 3.

Table3: Results of applying different tabu search strategies on
Cost function (F(Q)) and percent of decrease on initial cost (%IMP)

TestCase

Initial
algorithm

Without Diversification With Diversification
Without Intra
moves (TS)

With Intra
moves (TSI)

Without Intra
moves (TSD)

With Intra moves
(TSDI)

F(Q) %IMP F(Q) %IMP F(Q) %IMP F(Q) %IMP
DE 26 000 8 680 66% 3 240 87% 2 100 %91 1 050 96%
TA 37 000 12 082 67% 5 662 84% 3 248 %91 2 650 93%
AL 61 000 13 682 77% 11 814 80% 3 326 %94 2 880 95%

4.2 Analysis of Optimization phase

It is obvious that both using diversification as well as intra moves decrease cost function
considerably. While the tabu solution without proposed tabu components optimizes the initial
solution by 70% on average, intra moves and diversification, used independently decrease the
cost function by 83.6% and 92% respectively. It shows that on average, the diversification
strategy is more effective than intra moves. However it is interesting that combination of intra
moves and diversification strategy yields 24% lower cost functions in comparison with using
diversification strategy alone(from average cost of 8647 for TSD to 6580 for TSDI). This decrease
can be explained by the type of moves presented in section 3.2.2; as process progresses, number
of unscheduled blocks decreases and just using out-in moves causes repeated type of moves. Thus
intra-moves adopted to add more diversification in the search space. These moves generally
increase cost function according to high weight of w5(1000). It is due to the fact that changing
period of a block inside table usually causes some conflicts with other blocks which must be
moved out of table (For example intra move in fig 2(b) increases unscheduled blocks by one).
These exited blocks increase the size of |U(s)| which adds more diversity to typical out-in moves.
The algorithm’s performance varies between different schools; The TSI algorithm (Intra-moves
component only) works best on simpler schools, DE and TA schools with lower sparseness ratio.
In the other hand, performance of TSD algorithm which incorporates just diversification and no
intra-moves peaks for the hardest problem AL with lowest sparseness ratio. Finally, the TSID,
which outperforms TSD and TSI on all three cases follows the same pattern as TSI and performs
better on schools with higher sparseness.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

32

To verify our results further we did some analysis of variance tests on our results. We consider as
significant the factors or interactions with a level of significance (SL) lower as α = 0.05. The
diversification strategy is considered most influential factor with a SL <0.0001 and F-value of
194.79. The intra-moves are also considered influential with a SL of 0.0001 and F-value of 17.16;
the combination of diversification and intra-moves is also significantly influential (SL = 0.0028
and F-value = 9.76)

Fig 6 illustrates cost function changes of the proposed algorithm over a run of 3000 iterations on
DE test case. This figure shows that TS stops improvement very soon and does not improve after
iteration 17. However other implementations improve overtime. TSD reaches its minimum at
iteration 178, much faster than TSI at iteration 2322. However the combination of both yields best
result at iteration 2664.

Fig 6: Best Cost over 3000 iterations

As described in section 3.3.2.1, intra moves controlled by IntraDepth parameter which updates its
value dynamically. To verify this control mechanism we tested our algorithm considering fixed
values for IntraDepth. Although it seems that higher intra-depth values could cause better results.
Our experiment does not validate this claim. In DE school increasing intra-depth from 1 to 10
decreases the cost function by 7%; however the results get worse by more intra-depth; the cost
function increase to 3070 at intra-depth of 20. It may be due to the fact that the algorithm
searches in very sparse areas of search space and cannot take advantage of frequency based long
term memories defined in section 3.2.5. It is also notable that higher intra-depth values have
performance overheads since it takes much more time to explore the neighborhood. The best
results achieved using adaptive intra-depth at 1050 and average value of intra-depth was 4.22 .

4.3 Analysis of Pre-Scheduling phase

As discussed in section 3.1. A graph based algorithm presented to find various types of blocks in
lessons. Blocks, found by algorithm are validated by school’s staff. Table 4 shows results of
applying the algorithm on our dataset. The algorithm can find all blocks in Ta and AL dataset;
however in DE school 72% of blocks hours are detected. To sum up, the algorithm can detect

0

5000

10000

15000

20000

25000

30000

Be
st

 C
os

t

Iteration

TS

TSD

TSI

TSID

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

33

92% of block hours on average. It is really a good performance for a feature which is really
demanded by schools’ staff.

Table 4: Results of applying pre-scheduling algorithm on detection of block sessions

Test cases Half-Switch Half-chain
All Detecte

d
All Detected

(TA) 32 32 0 -

 (AL) 4 4 2 2
 (DE) 0 - 14 10

5 Conclusions and future work

This paper presented a new tabu search heuristic for high school timetabling problem. The
algorithm is designed by collaboration of educational staff and considers requirements of real
schools. The experiments shown that, this algorithm can build near optimal timetables acceptable
by school’s staff.

Contributions of the proposed algorithm include: using long term memory structures to guide
diversification process of optimization phase which prevents the process to become entrenched in
local optimum; In addition, adopting various types of moves and selecting them dynamically
which makes the algorithm effective in different test cases. Moreover a graph based algorithm
introduced to detect blocks in lessons as a pre-process for optimization. This algorithm was able
to detect more that 90% of blocks on real datasets.

The proposed algorithm does not independent on data structures commonly used in timetabling
research like matrix of teachers or classes over time period. However it generally assigns a set of
events (lessons) to periods. Even, the diversification process and proposed moves do not
dependent of those structures. Thus the algorithm has the potential to be used in other timetabling
problems like university or nurse scheduling.

Although the algorithms performed well in all real data, using other tabu search components like
intensification and strategic oscillation may improve it in terms of consistency and speed.

Acknowledgements

We are thankful to the Hamedan University of Technology, Hamedan-Iran and research
department of Hamedan’s education organization for the support of this work.

REFERENCES

[1] Lü, Z., &Hao, J. K. (2010). Adaptive tabu search for course timetabling. European Journal of

Operational Research, 200(1), 235-244.
[2] Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., &Qu, R. (2007). A graph-based hyper-

heuristic for educational timetabling problems. European Journal of Operational Research, 176(1),
177-192.

[3] Mehta, N. K. (1981). The application of a graph coloring method to an examination scheduling
problem. Interfaces, 11(5), 57-65.

[4] Hertz, A. (1991). Tabu search for large scale timetabling problems. European journal of operational
research, 54(1), 39-47.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

34

[5] Costa, D. (1994). A tabu search algorithm for computing an operational timetable. European Journal
of Operational Research, 76(1), 98-110.

[6] Thompson, J. M., &Dowsland, K. A. (1998). A robust simulated annealing based examination
timetabling system. Computers & Operations Research, 25(7), 637-648.

[7] Zhang, D., Liu, Y., M’Hallah, R., & Leung, S. C. (2010). A simulated annealing with a new
neighborhood structure based algorithm for high school timetabling problems. European Journal of
Operational Research, 203(3), 550-558.

[8] Guéret, C., Jussien, N., Boizumault, P., &Prins, C. (1996). Building university timetables using
constraint logic programming. In Practice and Theory of Automated Timetabling (pp. 130-145).
Springer Berlin Heidelberg.

[9] Kang, L., & White, G. M. (1992). A logic approach to the resolution of constraints in timetabling.
European Journal of Operational Research, 61(3), 306-317.

[10] Alvarez-Valdes, R., Martin, G., &Tamarit, J. M. (1996). Constructing good solutions for the Spanish
school timetabling problem. Journal of the Operational Research Society, 1203-1215.

[11] Schaerf, A. (1999). A survey of automated timetabling. Artificial intelligence review, 13(2), 87-127.
[12] Lewis, R. (2008). A survey of metaheuristic-based techniques for university timetabling problems.

OR spectrum, 30(1), 167-190.
[13] Schaerf, A. (1996). Tabu search techniques for large high-school timetabling problems. Computer

Science, Department of Interactive Systems, CWI.
[14] Glover, F., & Laguna, M. (1997). Tabu search (Vol. 22). Boston: Kluwer academic publishers.
[15] Santos, H. G., Ochi, L. S., & Souza, M. J. (2005). A tabu search heuristic with efficient

diversification strategies for the class/teacher timetabling problem. Journal of Experimental
Algorithmics (JEA), 10, 2-9.

