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ABSTRACT 
 
This paper describes a generic framework for explaining the prediction of probabilistic machine learning 
algorithms using cases. The framework consists of two components: a similarity metric between cases that 
is defined relative to a probability model and an novel case-based approach to justifying the probabilistic 
prediction by estimating the prediction error using case-based reasoning. As basis for deriving similarity 
metrics, we define similarity in terms of the principle of interchangeability that two cases are considered 
similar or identical if two probability distributions, derived from excluding either one or the other case in the 
case base, are identical. Lastly, we show the applicability of the proposed approach by deriving a metric for 
linear regression, and apply the proposed approach for explaining predictions of the energy performance of 
households. 
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1. INTRODUCTION 
 
Explanation has been identified as a key factor for user acceptance of an intelligent system [1–
6]. If a user does not understand or trust a decision support system, it will be less likely that the 
system will be accepted. For instance, in the medical domain it is well-known that a good 
prediction performance will not automatically mean user acceptance unless the physicians 
understand the reasoning behind [7]. In this paper, we propose a novel approach to using case-
based reasoning (CBR) as an intuitive approach for justifying (explaining) the predictions of a 
probabilistic model as a complement to traditional statistical measures of uncertainty such as the 
mean value and the variance. 
 
CBR is a conceptually simple and intuitive, but yet powerful approach for knowledge 
management and learning [8, 9]. In contrast to model-based approaches in machine learning and 
statistics, inference in CBR is done directly from a set of cases without generalizing to a model. 
The fundamental idea in CBR is that similar problems have similar solutions and therefore, new 
solutions can be created from previous solutions. Traditionally, CBR is not used if there is a 
sufficiently good model-based solution to a problem. Yet, CBR has some advantages that 
complement model-based learning approaches. For instance, a probabilistic machine learning 
model can be hard to understand for non-experts while CBR is conceptually much more intuitive 
and easy to explain. Therefore, by complementing a probabilistic model with a CBR-based 
explanation facility, we can make the system more understandable. 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 6, No 2, April 2014 
 

88 

Explanation using preceding cases has some advantages compared to other approaches. For 
instance, it has been shown in a user experiment that users in some domains prefer case-based 
over rule-based explanation [10]. In [11], Nugent et al. list three advantages of case-based 
explanation. Firstly, it is a natural form of explanation in many domains where explanation by 
analogy is common. Second, it uses real evidence in form of a set of cases relevant to the task at 
hand. This, we argue in this paper, is the key strength of combining probabilistic methods with 
CBR for explanation. Lastly, it is a fixed and simple form of explanation that is directly related 
to the problem at hand. Thus, regardless of the complexity of the problem at hand, the content of 
the explanation can be kept rather constant. 
 
The purpose of explaining a system can vary depending on which type of user the explanation is 
addressing. For instance, Sørmo et al. list five common types of explanations: transparency, 
learning, conceptualization, relevance, and justification [12]. The goal of transparency is to 
explain how the system computed the prediction. This goal is more relevant for expert users that 
are able to assess the reasoning process by themselves. The goal of learning is to help novice 
users to learn the application domain. The goal of conceptualization is to help novice users to 
understand the meaning of concepts used in the system. The explanation goal relevance is about 
explaining why the system does something such as asking a question for more information. In 
this paper, we only consider the last type of explanation – justification – where the goal is to 
support a non-expert user in assessing the reliability of the system predictions using CBR. 
 
The work in the current paper presents developments in line with previous work in knowledge 
light CBE that uses cases to explain model-based machine learning algorithms [13–15]. 
However, while previous work define similarity metrics ad-hoc and by intuitive means, we differ 
by defining similarity metrics with a good theoretical foundation and with a clear meaning. This 
can be achieved by restricting the application to learning algorithms that result in probability 
models. In probabilistic machine learning, the inference is visible in terms of probability 
distributions. So by analyzing the probability distributions from two different probability models, 
we can draw some conclusions of the relation between them. This probabilistic assumption makes 
the proposed approach generically applicable to any probabilistic machine learning algorithm. 
 
In addition, we also differ with respect to previous work in how a prediction is explained. Since 
the probability model is most likely trained on all cases, it would not be sufficient to justify the 
system performance by only showing a list of the most similar cases. A list of similar cases would 
lead the user into checking each case and compare its difference or similarity to the new case. 
This would be very time consuming and would not say much of the system performance at a 
larger scale. As justification of the system performance, we instead propose using the average 
prediction error for all similar preceding cases. This is a straightforward application of CBR 
applied to predicting the probabilistic prediction error. 
 
The rest of the paper is organized as follows. Sect. 2 presents related work in case-based 
explanation. In Sect. 3, we give background to similarity metrics and statistical metrics. Sect. 4 
presents the overall framework for explanation by cases. We present a definition of similarity in 
terms of probability distributions and our approach to case-based explanation. We also derive a 
similarity metric for linear regression. Sect. 5 describes the application of the proposed approach 
to explaining the prediction of the energy performance of a household. In Sect. 6, we make 
concluding remarks and describe future work. 
 
2. CASE-BASED EXPLANATION 
 
Case-based explanation (CBE) is a research field within CBR that investigates the use of cases for 
explaining systems [16–18, 5]. CBE can, similarly to CBR, be divided into knowledge intensive 
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and knowledge light CBE where the former makes use of explicit domain knowledge while the 
latter uses mainly knowledge already contained in the similarity metric and the case base [10]. 
The main work in knowledge light CBE has been in explaining classification while less work 
has been invested in explaining regression. The current work is an instance of knowledge light 
CBE where no explicit explanation mechanisms are modeled and the considered learning task is 
regression. 
 
Furthermore, CBE research differs in how cases are explained. One type of knowledge light CBE 
research investigates the use of other types of learning methods for explanation. The ProCon 
system described in [19, 20] uses a naive Bayes classifier trained on all cases to find which 
features of a case support or oppose the classification. The author argues that even the most 
similar case can some times contain information that contradicts the prediction and that must be 
made explicit in order to keep the confidence of the user. The system presented in [21] by the 
same author generates rules from the nearest neighbors in order to explain the retrieved cases. 
Similarly to the previous system, it is ensured that the learned rules subsumes both cases that 
supports and opposes the classification. Case-based explanation of a lazy learning approach in the 
same vein for classifying chemical compounds was presented in [23]. The approach lets the user 
compare the molecular structures using the similarities between cases with respect to cases from 
different classes. Thus, by showing the user similarities only common to cases of each class the 
user is also able to understand the difference between classifications. In [22], the authors 
describes a system that applies logistic regression to a set of retrieved cases and uses the logistic 
model to explain the importance of features and assign a probabilistic confidence measure of the 
system’s prediction. 
 
A second type of research considers which cases to present to a user for explaining classification 
of new cases. This research was started when it was noticed that the set of cases used for making 
the classification is not necessary also the best cases for explaining the classification. Instead of 
presenting the most similar case, it might be better to show a case close to the decision border 
between two classes. In [24], the authors compare similarity metrics optimized for explanation 
with similarity metrics optimized for classification, while in [25], the authors use the same 
similarity metric as for classification but explore different rules for selecting which case to use as 
explanation. In [22], logistic regression is used to find cases close to the classification border. A 
more recent work describing all these three approaches is presented in [11]. 
 
A third type of knowledge light CBE research has addressed the problem of explaining model-
based machine learning methods using cases, but so far, mainly neural networks have been 
investigated [13, 14, 26, 15, 27, 28]. The first knowledge light CBE for model-based learning 
algorithms was presented in [13, 14]. In the first paper, the author sketches ideas on how to use the 
model of a neural network or a decision tree as a similarity metric. In case of neural networks the 
activation difference between two cases was proposed as a metric while the leaves in the decision 
tree naturally contain similar cases. In [26] the authors explain the prediction of an ensemble of 
neural networks using rules extracted from the network. Then, for a new case, only rules relevant 
for explaining that case are used. The rules are filtered using heuristic criteria. The work presented 
in [27, 28] explains the output of an ensemble of neural networks using the most important feature 
values relative to a case. In [15], a generic knowledge light CBE framework for black-box 
machine learning algorithms is presented. The authors trained a locally weighted linear model to 
approximate a neural network using artificial cases generated from the neural network. Then they 
used the coefficients of the linear model both as feature weights of a similarity metric to retrieve 
relevant cases and for explaining which features are most import for a prediction.  
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3. PRELIMINARIES 
 
In this section, we define the notion of a true metric that is important in order to index cases for 
fast retrieval. In addition, we present the J-divergence that is a statistical measure of similarity 
between probability distribution that we use in our definition of similarity between cases. 
 
3.1. True Metrics 
 
In order to make fast retrieval of cases similarity metrics should adhere to the axioms of a true 
metric. Given a true metric, the search space can be partitioned into smaller regions and 
organized so that there is no need to search through all regions. 
 
In this paper, we use the term metric informally as any function that makes a comparison 
between two cases, while a true metric is a metric in a mathematical sense. This means that a true 
metric is a function d that satisfy the following three axioms where X denotes the case base with 
the set of all cases: 
 

1. d(x, y) ≥ 0 (non-negative and identity) with d(x, y) = 0 if and only if x = y,  x, y ∈ X 

2. d(x, y) = d(y, x) (symmetric) for all x, y ∈ X 

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality) for all x, y, z ∈ X 
 

There is a discussion in the CBR literature whether all of the above axioms are required for useful 
similarity and distance metrics [29, 30]. A common true metric that we will use in this paper is 
the Manhattan distance. The definition of the Manhattan distance is 
 

d(x, y) = ∑ |xk − yk | 

       k 

where | . . . | denotes the absolute value function. 

3.2. Statistical Metrics 
 
A commonly used statistical metric for comparing two probability distributions is the well-
known Kullback-Leibler divergence (KL) [31]. KL is also sometimes called the relative entropy 
or the information gain, since it is closely related to the entropy concept introduced by Shannon 
[32, 33]. The KL for the two probability distributions pi , p j , with parameter θ, is 

       
In case of discrete variables, the integral is replaced with a sum. 
 
KL is not symmetric but by computing the KL divergence in both directions and then add them 
together we get a symmetric metric. This is an important characteristic if we desire a true metric 
as described in Sect. 3.1. The symmetric KL is often called Jeffreys divergence (J-divergence). The 
J-divergence will then be: 
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In this paper, we use the J-divergence as basis for the similarity metrics, because it is a commonly 
used measure and it has a clear information theoretical interpretation. Other statistical metrics for 
comparing distributions are also available such as the total variation distance, the Euclidean 
distance and the Jensen-Shannon divergence [34, 31,35–37]. 
 
4. THE CASE-BASED EXPLANATION FRAMEWORK 
 
In this paper, we propose a generic case-based explanation framework that justifies the predictions 
of an intelligent system by estimating the prediction reliability case by case. We have restricted the 
approach to probabilistic machine learning methods, since that gives the framework a good 
theoretical foundation. However, the explanation part can in principle also be used for any 
learning algorithm. 
 
Assume that we have trained a probability model for predicting an unknown variable, and that we 
have derived a relevant similarity metric. Then, the framework creates a case-based explanation 
according to the following pseudo-algorithm: 
 

1. Make prediction for a new case using the probability model 
2. Retrieve most similar previous cases 
3. For each previous case 

a. Make prediction for the case using the probability model 
b. Compute the absolute prediction error given the ground truth 

4. Estimate the prediction error for the new case as the average of previous prediction errors 
5. Present predicted value and estimated prediction error to the user 

 
We will apply this framework to a real example in Sect. 5 where we explain the predictions from 
a linear regression model of the energy performance of a household. However, before that, we 
will describe the approach in more detail in the rest of this section. First, in Sect. 4.1, we describe 
a generic approach to defining a similarity metric using methods from statistics and machine 
learning. Then, Sect 4.2 shows how a similarity metric based on the linear regression model can 
be derived. Last, Sect. 4.3 describes a CBR approach to estimating the prediction error. 
 
4.1.   A Statistical Measure of Similarity 
 
In this section, we present a principled approach to defining similarity metrics using methods 
from statistics and machine learning. 
 
As a means to relate the similarity between two cases to probability models, we have formulated 
the principle of interchangeability as a general definition. We define the principle of 
interchangeability as follows: 
 
Definition 1. Two cases xi , x j  in case base X are similar if they can be interchanged such that 
the two probability distributions Pi  , Pj  inferred from excluding xi  and x j  respectively from the 
case base – X \ xi  and X \ x j  – are identical with respect to some parameter(s) of interest. 
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We have chosen to use the J-divergence presented in Sect. 3.2 for comparing two probability 
distributions. The J-divergence distance between two cases xi , x j  in case base X is 

  
where pi (θ) and p j (θ) are probability distributions derived from the case base when excluding 
the cases xi  and xj respectively and θ are the parameters that define in what aspects cases are 
similar. 
 
The resulting measure between two cases can then be interpreted information theoretically as the 
sum of the information gain from including one case in the case base over the other case and the 
information gain from including the other case in the case base over the first case. However, the 
resulting J-divergence distance is not a true metric, so an additional step might be needed that 
turns it into a final distance that fulfills the axioms of a true metric. 
 
4.2. Derivation of a Similarity Metric for Linear Regression 
 
In this section, we derive a similarity metric for linear regression showing that this simple 
statistical model leads to a simple metric based on the Manhattan distance. The derived distance 
metric is the ratio between the distribution parameters plus the square of the sum of the weighted 
differences between case features.  
 
In linear regression, we assume that each case xi in case base X can be modeled as a weighted 
sum of a feature vector: 

     K 
yi = ω 0 + ∑ ω k xk + εi                                                               (4) 

  k=1  
where εi are the residual error and the ω is a weight vector, and an unknown value y for a new case 
x is estimated by: 

         K 
ŷ = ω 0 + ∑ ω k xk                                                                   (5) 
               k=1 

Let ε be normally distributed with mean 0 and standard deviation σ and then, the predictive 
distribution, conditioned on the weights and the standard deviation from a point estimation will 
be denoted as:  

                                                   
Theorem 1. Let pi (y|x) and p j (y|x) be the predictive probability distributions for linear 
regression derived from excluding xi and x j  respectively. Let ω i , σi , ω j , σ j  be the corresponding 
point estimations for the parameters of the distributions. Then, it can be shown that the J-
divergence distance for two cases xi , x j is: 

                          

 
 

Remark 1. Notice that a special case of Eq. 7 is when σi  ≈ σj ≈ σ and ωi ≈ ωj ≈ ω , in which case 
the distance metric becomes: 
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which is approximately true with a large number of cases. 
 
If we ignore the difference between the standard deviations, the resulting metric is square of the 
difference between the predicted value of ŷi  and ŷ j  for case xi   and xj respectively. The square 
root of this is a true metric, with respect to the predicted values, but not with respect to the cases.  
  

As a consequence, two cases that lead to the same predicted values would be considered similar. 
If a true metric is desirable, we have to ensure that different features do not cancel out each other. 
One way of doing this is by rewriting the distance metric as follows: 
 

                         

where P and N are all features k where the contribution ω
k 
(xk − xk ) to the sum is positive and 

negative respectively. Then, by then taking the square root of the last metric, we get a true metric 
that is a weighted version of the Manhattan distance: 
 

 
 

 So, the absolute weights are indicating the importance of each feature, which is similar to how 
the weights of a locally weighted linear regression model are used in [15]. Thereby, we can 
theoretically justify the use of the regression weights in a distance metric. 
 
4.3.   Estimating the Prediction Error 
 
In this paper, we have formulated case-based explanation as a regression problem that we solve 
using CBR. Thus, by retrieving a set of similar cases, we can estimate the error of the prediction 
for a new case. Below, we describe the simple average prediction estimation that we use for 
estimating the prediction error.  
 
The average prediction error approach is a simple application of the k nearest neighbor algorithm 
[9]. Thus, given a new case xi , we can retrieve the set of k most similar cases using the metric in 
Eq. 10. Thereafter, we can estimate the prediction error ei  as the average prediction error of the 
retrieved cases: 
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where ej = |ŷ j − y j | is the actual prediction error, ŷ j  is the predicted value for case x j from Eq. 12 
and yj is the true value. 
 
5. EXPLAINING PREDICTED ENERGY PERFORMANCE OF A HOUSEHOLD 
 
In this section, we apply the proposed framework to explaining the prediction of energy 
performance of households. The energy performance of a household is measured in kilowatt 
hours per square meter and year, and corresponds to the energy need in a building for space and 
hot water heating, cooling, ventilation, and lighting based on standard occupancy. The energy 
performance has been computed by a certified energy and it is intended to make it easy to 
compare houses when selling and buying a house. 
 
The rest of this section is organized as follows. Sect. 5.1 describes the used data set. Sect. 5.2 
presents which features we have used and the result from fitting a linear regression model to the 
data. Sect. 5.3 describes the implementation and evaluation of the proposed case-based 
explanation framework for energy performance prediction. Finally, Sect. 5.4 ends this section by 
showing examples of case-based explanation for two households. 
 
5.1. Energy Performance Data 
 
The data that we have used comes from around 1800 energy reports collected in the ME3Gas 
project [38,41] . The energy report consists of four attributes related to the building and location of 
a house, which are shown in the upper part of Table 1, and energy measurements for 12 different 
heating system types, which are shown in Table 2. Each used energy system type is measured in 
kWh. In addition, there are also the time period when measuring was done and the energy 
performance measurement that are shown in the second part of Table 1. 
 
Table 1. The building and location attributes with summary of the data followed by measuring 
period start and energy performance. Climate zone indicate location in Sweden: zone 1 is in the 
most northern part and 4 is in the most southern part of Sweden. 
 

House attribute Summary 
Year of construction 

Climate zone 1-4 

House type 

Size of heated area (m2 ) 

mean: 1956, min: 1083, max: 2013 

90, 248, 934, and 515 in each zone 1-4 

#Detached: 1727, #Terraced: 57  

mean: 177, min: 38, max: 925 

Start dates of measuring period (year) 

Energy performance 

mean: 2011, min: 2007, max: 2013 

mean: 111, min: 24, max: 388 
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Table 2. Heating systems and how many households with each. 
 

Heating System  

District heating  

Heating oil 

Natural gas 

Firewood 

Wood chips/pellets 

Electric water-borne  

200 

75 

19 

512 

133 

316 

Electric direct Acting 

Electric airborne 

Geothermal heat pump electrical  

Exhaust air heat pump  

Heat pump Air Air 

Heat pump Air Water 

738 

50 

317                                                                                              

147 

417 

137 

 
5.2.  Log-Linear Regression Model Fitting 
 
In this section, we first select which features to use and then fit a linear regression model to the 
energy performance data. Our first observation is that the energy performance is not normally 
distributed, but log-normally distributed. This means that the logarithm of the energy 
performance is normally distributed. In addition, all relations between features and the log of the 
energy are not linear. Thus, the following set of new features were added that capture non-linear 
relations: age of the house when the measuring was started, log of age that is the natural 
logarithm of age, log of climate zone, and log of heated area. For the household heating systems, 
we assume that it is only known which types of heating systems a new household uses, not how 
much energy is used by each heating system. Each heating system is therefore represented as 1 if 
present or 0 if not. 
 
A linear regression model was then fitted to the data using the ridge regularization 
implementation of the scikit-learn project [39]. This resulted in a log-linear regression model 
with the weights listed in Table 3. The energy performance can then be predicted as below, using 
the exponential power of the result from Eq. 5 plus an extra term (s2/2) that is an adjustment for the 
bias of the log-normal model: 

         
 

where s2  is the estimated standard error of the predicted value ŷ. The distance metric would still 
be the same as in Eq. 10, but with the extra features added to the cases, and that the distance 
metric is defined with respect to the distribution of log(y) and not y. 
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Table 3. The regression weight of each feature. 
 

House Characteristics Weight (ω ) Heating Systems Weight (ω ) 
 Year of construction 

Age 

Log of Age 

Climate zone 

Log of Climate zone  

Detached house  

Terraced house  

Heated area 

Log of Heated Area 

0.002

0.002

0.107

-0.021

-0.064

0.068

0.064

0.000

-0.221

 District heating 

Heating oil 

Natural gas 

Firewood 

Wood chips/pellets 

Electric water-borne 

Electric direct Acting 

Electric airborne 

Geothermal heat pump electrical 

Exhaust air heat pump 

Heat pump Air Air 

Heat pump Air Water 

0.142

0.190

0.040

0.150

0.263

0.100

0.008

0.036

-0.441

-0.046

-0.159

-0.197

 
5.3. Evaluation of the Estimation of the Prediction Error 
 
In this section, we evaluate the estimation approach proposed in Sect 4.3 for estimating the 
prediction error of the log-linear regression model. We compare the estimated error to the true 
error. 
 
In the experiment, we split the data set 10 times into three sets: a 60% training set, a 20% validation 
set and a 20% test set. Each time the log-linear model is trained on the training set. Then, the k 
nearest neighbor algorithm was trained on the training set and configured to use the distance 
metric from Sect. 5.2 together with average prediction error approaches from Sect. 4.3. 
Thereafter, the performance of the k nearest neighbor algorithm was measured on both the 
validation set and the test set. The results from all data splits were then averaged. The validation 
set is used for selecting the algorithm parameters k. The performance is measured using root mean 
square error (RMSE). 
 
In Figure 1, we show the average RMSE of the estimated prediction error on a validation set and 
a test set. The figure shows that the performance of both the test and the validation set is quite 
consistent. The minimum error of the validation set is located somewhere between k = 25 and k = 
45, so we can select k = 35 as the size of the case set that will be used for explaining the 
prediction. However, we should also consider the experience of the users. If the users distrust the 
explanation because we have selected a too small set of previous cases, we should consider 
selecting a larger k. For instance, the difference in performance between k = 35 and k = 60 is 
quite small, so the latter could be preferred in some situations if it is considered more convincing. 
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Figure 1. Number of k nearest neighbors (x-axis) versus the root mean square error (y-axis) of the 
estimated prediction error. 

 
5.4. Case-based Explanation Examples 
 
This section presents two examples of case-based explanations for two different households using 
the average prediction error as estimation with k = 60 neighbors. The two examples are shown in 
Table 4 and Table 5 respectively. Beginning from top of the tables. First, the characteristics of the 
house are listed, and then the used heating systems. Thereafter, the predicted value is shown, 
together with the true value that is assumed to be unknown but is here shown for comparison. 
Last, we explain the prediction in words, where we classify a estimated prediction error to be 
low if less than 10% of the predicted value, medium high if less than 20%, quite high if less 
than 30%, high if less than 40% and very high otherwise. In classifying the estimated 
prediction error, we use background knowledge in that low values are better than large and that 
the energy performance should be larger than zero. Thus, a relative value is an intuitive means of 
assessing the severity of the error. As can be seen from the examples, the explanations show that 
the prediction errors are medium high or high and that the prediction are not completely reliable, 
which can be confirmed by looking at the value of the true energy performance compared to the 
predicted value (especially the second household). However, the reason that the prediction of the 
second household is so bad is that there are very few houses with that combination of heating 
systems, especially wood chips/pellets, which can be easily seen by in addition listing the most 
similar cases. In Table 6 are the three most similar households listed, and as can be seen, none of 
them are very similar to example 2. 
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Table 4. Household example 1 
 

Feature Value 
 
Year of construction 
Climate zone 1-4 

House type 

Size of heated area 

 
1977 
2 

Detached house 

215 m2 

Electric direct Acting 
Heat pump Air Air 

Yes 
Yes 

Predicted energy performance 

True energy performance 

84.0 kWh/m2 

90 kWh/m2 (Unknown) 

Explanation: The predicted energy performance of this house is 84.0 kWh/m2. 

The average prediction error for the 60 most similar houses is 14.5 kWh/m2. That
is about 17.3% of the predicted energy performance, which is medium high. 

 
Table 5. Household example 2 

 
Year of construction 
Climate zone 1-4 

House type 

Size of heated area 

1961 
1 

Detached house 

100 

Wood chips/pellets 
Electric water-borne 

Heat pump Air Air 

Yes 
Yes 

Yes 

Predicted energy performance 

True energy performance 

185.6 kWh/m2 

 81 kWh/m2 (Unknown) 

Explanation: The predicted energy performance of this house is 185.6 kWh/m2. 
The average prediction error for the 60 most similar houses is 57.5 kWh/m2. That
is about 31.0% of the predicted energy performance, which is high. 
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Table 6. The three most similar cases to household example 2. 
 

Feature Case 1 Case 2 Case 3 

Year of construction 1968 1909 1987 

Heated area 105 107 112 

Detached Yes Yes Yes 

Climate zone 1 2 3 

Heating system 

 
Firewood, Electric 
direct Acting 

Electric water-
borne, Heat 
pump Air Air 

District heating 

Predicted energy 
performance 

186.0 128.7   137.3 

True energy 
performance 172 132 128 

 
6. CONCLUSIONS AND FUTURE WORK 
 
In this paper, we have proposed a framework for knowledge light case-based explanation of 
probabilistic machine learning. The first contribution of this work is a principled and theoretically 
well-founded approach to defining a similarity metric for retrieving cases relative a probability 
model. 
 
As a second contribution, we have proposed a novel approach to justifying a prediction by 
estimating the prediction error as the average prediction error of the most similar cases. Since the 
justification is based on real cases and not merely on the correctness of the probability model, we 
argue that this is a more intuitive justification of the reliability than traditional statistical measures. 
However, it should be regarded as a complement to traditional measures rather than a replacement. 
The work in this paper can be developed further in many directions. Clearly, we could develop 
case-based explanation approaches for other types of probability models. Especially, we would 
like to extend this approach to classification tasks. In addition, in order to evaluate the proposed 
explanation any further we would need to conduct user studies where we let real users use different 
versions of explanations and assess the effectiveness of each approaches. 
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