Open Access Open Access  Restricted Access Subscription Access

Angularly Stable Band Stop FSS Loaded MIMO Antenna with Enhanced Gain and Low Mutual Coupling


Affiliations
1 College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
2 School of Electronics and Information Engineering, Harbin Institute of Technology Harbin, 150001, China
3 Department of Computer Engineering, Gachon University, Seongnam, Sujeong‐gu 13120, Korea, Republic of
4 School of Information and Communication, Guilin University of Electronic Technology Guilin, China
5 School of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China
 

This study investigates the use of a slotted patch MIMO antenna to enhance isolation and gain. Two radiators connected by a network of frequency-selective surfaces (FSS) make up the MIMO antenna design. These antenna components are constructed on an FR-4 substrate and are surrounded by FSS units optimised for X-band frequencies. The suggested MIMO antenna is 65 mm in width, 45 mm in length, and 1.6 mm in height. The main objective of using FSS is to enhance both isolation and gain. The FSS unit cells operate at frequencies ranging from 7 to 9 GHz and have exceptional stability throughout polarisation incidence angles. The FSS-loaded antenna has a bandwidth of 8.0 to 8.55 GHz, a peak gain of 6.5 dB, and a MIMO isolation of greater than -20 dB. Furthermore, the research evaluates the MIMO antenna's performance in terms of diversity gain (DG), efficiency, and envelope correlation coefficient (ECC), demonstrating better results when compared to current state-of-the-art approaches. Keywords - FSS; Gain Enhancement; ECC; Diversity Gain; MIMO Antenna.

Keywords

No keywords.
User
Notifications
Font Size

  • Hussain, M.; Awan, W.A.; Ali, E.M.; Alzaidi, M.S.; Alsharef, M.; Elkamchouchi, D.H.; Alzahrani, A.; Fathy Abo Sree, M. ”Isolation Improvement of Parasitic Element- Loaded Dual-Band MIMO Antenna for Mm-Wave Applications. Micromachines”, 2022, 13, 1918.
  • Bayarzaya, B.; Hussain, N.; Awan, W.A.; Sufian, M.A.; Abbas, A.; Choi, D.; Lee, J.; Kim, N. ”A Compact MIMO Antenna with Improved Isolation for ISM, Sub-6 GHz, and WLAN Application”. Micromachines. 2022, 13, 1355.
  • Rahman, S. U, et al. ”Multifunctional polarization converting metasurface and its application to reduce the radar crosssection of an isolated MIMO antenna.” Journal of Physics D: Applied Physics, vol. 53, no. 30, pp. 305001, 2020.
  • Khan, M.I, Khattak, M. I., Rahman, S. U., Qazi, A. B., Telba, A. A., and Sebak, A. Design and investigation of modern UWB-MIMO antenna with optimized isolation. Micromachines, vo. 11, no. 4, pp. 432, 2020.
  • Ahmad, A., Ullah, A., Feng, C., Khan, M., Ashraf, S., Adnan, M., Nazir, S. and Khan, H.U., Towards an improved energy efficient and end-to-end secure protocol for iot healthcare applications. Security and Communication Networks, vol. 2020, pp.1-10, 2020.
  • Hussain, N.; Awan, W. A.; Ali, W.; Naqvi, S. I.; Zaidi, A.; Le, T. T. ”Compact wideband patch antenna and its MIMO configuration for 28 GHz applications”. AEU Int J Electron Commun2021, 132, 153612.
  • Ibrahim, A.A.; Abdalla, M.A.; Abdel-Rahman, A.B.; Hamed, H.F. ”Compact MIMO antenna with optimized mutual coupling reduction using DGS”. Int. J. Microw. Wirel. Technol., 2014, 6, 173–180.
  • Ahmed M. A. Sabaawi Karrar Shakir Muttair Oras Ahmed Al-Ani Qusai Hadi Sultan , ”DualBand MIMO Antenna with Defected Ground Structure for Sub-6 GHz 5G Applications,” Progress In Electromagnetics Research C, Vol. 122, 57-66, 2022.
  • G. Yan-Yun, L. Wang and Z. Zhang , ”The Novel Y Shaped Fractal Defected Ground Structure for the Mutual Coupling Reduction,” Progress In Electromagnetics Research M, Vol. 72, 13-21, 2018.
  • Yang, Y.; Chu, Q.; Mao, C. ”Multiband MIMO antenna for GSM, DCS, and LTE indoor applications”. IEEE An-tennas Wirel. Propag. Lett., 2016, 15, 1573–1576.
  • Sun Y, Tian M, Cheng GS. ”Characteristic Mode-Based Neutralization Line Design for MIMO Antenna”. International Journal of Antennas and Propagation. 2022 Jul 30;2022.
  • OuYang, J.; Yang, F.; Wang, Z. ”Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application”. IEEE Antennas Wirel. Propag. Lett., 2011, 10, 310–313.
  • Hussain, M.; Abbas, Q.; Gardzi, S. H. H.; Alibakhshikenari, M.; Falcone, F.; Limiti, E. ”Ultrawideband MIMO antenna realization for indoor Ka-band applications”. In 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM) (pp. 108109)., 2022.
  • Saravanan, M.; Geo, V.B.; Umarani, S.M. ”Gain enhancement of patch antenna integrated with metamaterial inspired superstrate”. J Electr Sys Info Technol., 2018, 5, 263-270.
  • Samantaray, D.; Bhattacharyya, S. ”A gain-enhanced slotted patch antenna using metasurface as superstrate configuration”. IEEE Transac Antennas Propag. 2020, 68, 6548-6556.
  • Arnmanee, P.; Phongcharoenpanich, C. ”Improved microstrip antenna with HIS elements and FSS super-strate for 2.4 GHz band applications”. Int J Antennas Propag. 2018, 2018, 1-11.
  • Kushwaha, N.; Kumar, R.; Oli, T. ”Design of a high-gain ultra-wideband slot antenna using frequency selec-tive surface”. Microwave Opt Technol Lett. 2014, 56, 1498- 1502.
  • Yuan, Y.; Xi, X.; Zhao, Y. ”Compact UWB FSS reflector for antenna gain enhancement”. IET Microwaves An-tennas Propag. 2019, 13, 1749-1755.
  • Hsing-Yi, C.; Tao Y. ”Bandwidth enhancement of a U-slot patch antenna using dual-band frequency-selective surface with double rectangular ring elements”. Microwave Opt Technol Lett. 2011, 53, 1547-1553.
  • Adelson, M.L.; Henrique, O.N.; Nilson, H.O.C; da-Silva, J.P. ”Effect of Metamaterial cells Array on a mi-crostrip patch antenna design”. J Microwaves Optoelectron Electromag Appl. 2020, 19, 327-342.
  • Adibi, S.; Honarvar, M.A.; Lalbakhsh, A. ”Gain enhancement of wideband circularly polarized UWB antenna using FSS”. Radio Sci. 2021, 56, e2020RS007098.
  • Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. ”Electromagneticwave beam-scanning antenna using near-field ro-tatable graded-dielectric plates”. J App Phy. 2018, 124, 234901– 234911.
  • Mackay, A.; Sanz-Izquierdo, B.; Parker, E.A. ”Evolution of frequency selective surfaces”. Forum for Electro-magnetic Research Methods and Application Technologies (FERMAT), Vol. 2, 1–7, 2014.
  • Nair, R.U.; Jha, R.M. ”Electromagnetic design and performance analysis of airborne radomes: Trends and perspectives antenna applications corner”. Antennas Propag Mag. 2014, 56, 276–298.
  • Luukkonen, O.; Costa, F.; Simovski, C.R.; Monorchio, A.; Tretyakov, S.A. ”A thin electromagnetic absorber for wide incidence angles and both polarizations”. IEEE Trans Antennas Propag. 2009, 57, 3119–3125.
  • Zahirjoozdani, M.; Khalajamirhosseini, M.; Abdolali, A. ”Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface”. Electron Lett. 2016, 52, 767–768.
  • Hiranandani, M.A.; Yakovlev, A.B.; Kishk, A.A. ”Artificial magnetic conductors realized by frequen-cy-selective surfaces on a grounded dielectric slab for antenna applications”. IEEE Proc Microw Antennas Propag. 2006, 153, 487–493, 2006.
  • Mark, R.; Rajak, N.; Mandal, K.; Das, S. ”Isolation and gain enhancement using metamaterialbased super-strate for MIMO applications”. Radioengineering 2019, 28(4), 689- 695.
  • Peng, H.; Zhi, R.; Yang, Q.; Cai, J.; Wan, Y.; Liu, G. ”Design of a MIMO antenna with high gain and enhanced isolation for WLAN applications”. Electron. 2021, 10(14), 1659.
  • Jiang, H.; Si, L.M.; Hu, W.; Lv, X. ”A symmetrical dualbeam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications”. IEEE Photonics J. 2019, 11(1), 1-9.
  • Lin, M.; Liu, P.; Guo, Z. ”Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique”. IEEE Antennas Wirel Propag Lett. 2017, 16, 3084-3087.
  • Nguyen, N.L. ”Gain enhancement for MIMO antenna using metamaterial structure”. Int J Microw Wirel Tech-nolo. 2019, 11(8), 851-862.
  • Khajeh-Khalili, F.; Honarvar, M.A.; Naser-Moghadasi, M.; Dolatshahi, M. ”Gain enhancement and mutual coupling reduction of multiple-intput multiple-output antenna for millimeter-wave applications using two types of novel metamaterial structures”. Int J RF Microw Comp Aided Eng. 2020, 30(1), e22006.
  • Firmansyah, T.; Herudin, H.; Suhendar, S.; Wiryadinata, R.; Santoso, M.I.; Denny, Y.R.; Supriyanto, T. ”Bandwidth and gain enhancement of MIMO antenna by using ring and circular parasitic with air-gap mi-crostrip structure”. TELKOMNIKA. 2017, 15(3), 1155-1163.
  • . Niu, Z.; Zhang, H.; Chen, Q.; Zhong, T. ”Isolation enhancement in closely coupled dual-band MIMO patches antennas”. IEEE Antennas Wirel Propag Lett. 2019, 18(8), 1686-1690.
  • Mohanty, A.; Behera, B. R.; Nasimuddin, N. ”Hybrid metasurface loaded tri-port compact antenna with gain enhancement and pattern diversity”. Int J RF Microw Comp Aided Eng. 2021, 31(11), e22795.
  • Ullah, H.; Rahman, S.U.; Cao, Q.; Khan, I.; Ullah, H. ”Design of SWB MIMO antenna with extremely wide-band isolation”. Electron. 2020, 9(1), 194.
  • Jabire, A.H.; Zheng, H.X.; Abdu, A.; Song, Z. ”Characteristic mode analysis and design of wide band MIMO antenna consisting of metamaterial unit cell”. Electron. 2019, 8(1), 68.
  • Khan I, Zhang K, Wu Q, Ullah I, Ali L, Ullah H, Rahman SU. ”A Wideband High-Isolation Microstrip MIMO Circularly-Polarized Antenna Based on Parasitic Elements”. Materials. 2023 Jan;16(1):103.
  • Rahman SU, Deng H, Sajjad M, Rauf A, Shafiq Z, Ahmad M, Iqbal S. ”Angularly stable frequency selective surface for the gain enhancement of isolated multiple input multiple output antenna”. Microwave and Optical Technology Letters. 2021 Nov;63(11):2803-10.
  • Balanis, Constantine A. Antenna theory: analysis and design. John wiley & sons, 2016.
  • Khan I, Wu Q, Ullah I, Rahman SU, Ullah H, Zhang K. ”Designed circularly polarized two-port microstrip MIMO antenna for WLAN applications”. Applied Sciences. 2022 Jan 20;12(3):1068.
  • Qiu, Hongbing, Saeed Ur Rahman, and Habib Ullah. "A Compact SWB Monopole Antenna and FSS for." International Journal of Advanced Networking and Applications 14.6 (2023): 5658-5665.
  • Khan, Imran, et al. "Compact Single Band Suppression Monopole Antenna for SWB Application." International Journal of Advanced Networking and Applications 14.5 (2023): 5645-5650.
  • Ullah, Habib, Qunsheng Cao, Ijaz Khan, Saeed Ur Rahman, and Adamu Halilu Jabire. "A Novel Frequency Selective Surface Loaded MIMO Antenna with Low Mutual Coupling and Enhanced Gain." Progress In Electromagnetics Research M 118 (2023): 83-92.

Abstract Views: 70

PDF Views: 1




  • Angularly Stable Band Stop FSS Loaded MIMO Antenna with Enhanced Gain and Low Mutual Coupling

Abstract Views: 70  |  PDF Views: 1

Authors

Habib Ullah
College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Qunsheng Cao
College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Ijaz Khan
School of Electronics and Information Engineering, Harbin Institute of Technology Harbin, 150001, China
Inam Ullah
Department of Computer Engineering, Gachon University, Seongnam, Sujeong‐gu 13120, Korea, Republic of
Imran Khan
School of Information and Communication, Guilin University of Electronic Technology Guilin, China
Saeed Ur Rahman
School of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China

Abstract


This study investigates the use of a slotted patch MIMO antenna to enhance isolation and gain. Two radiators connected by a network of frequency-selective surfaces (FSS) make up the MIMO antenna design. These antenna components are constructed on an FR-4 substrate and are surrounded by FSS units optimised for X-band frequencies. The suggested MIMO antenna is 65 mm in width, 45 mm in length, and 1.6 mm in height. The main objective of using FSS is to enhance both isolation and gain. The FSS unit cells operate at frequencies ranging from 7 to 9 GHz and have exceptional stability throughout polarisation incidence angles. The FSS-loaded antenna has a bandwidth of 8.0 to 8.55 GHz, a peak gain of 6.5 dB, and a MIMO isolation of greater than -20 dB. Furthermore, the research evaluates the MIMO antenna's performance in terms of diversity gain (DG), efficiency, and envelope correlation coefficient (ECC), demonstrating better results when compared to current state-of-the-art approaches. Keywords - FSS; Gain Enhancement; ECC; Diversity Gain; MIMO Antenna.

Keywords


No keywords.

References