

Indexed in Scopus Compendex and Geobase Elsevier, Geo-Ref Information Services-USA, List B of Scientific Journals, Poland, Directory of Research Journals International Journal of Earth Sciences and Engineering

ISSN 0974-5904, Volume 09, No. 06

December2016, P.P.2480-2485

Risk Assessment of the Chaancun Debris Flow Gully and Mitigative Measures in Dalian City, China

YAN XU, LEI NIE*, MIN ZHANG, TONG WANG AND JIAXIN WANG College of Construction Engineering, Jilin University, China

*Email: 3111609@qq.com

Abstract: The Chaancun debris flow gully is located on the mountain slope of the crown of the Chaancun landslide. The hiking corridor, leisure square, Lvshun middle road, and Wangjiadian reservoir are situated below the debris flow track. The Chaancun debris flow gully poses a serious threat to the safety of this site and to the development of tourist attractions. First, an appropriate recognition of the debris flow gully is required by a field investigation. This gully is steep and straight. The weathered and denuded rocks coming from the fault zone are the debris source. In addition, concentrated rainfall occurs in this area. Therefore, the debris flow gully has the forming conditions of a debris flow. Many factors affect the formation and assessment of a debris flow, and they result in uncertainty, randomness, and fuzziness. Therefore, the fuzzy mathematics method is suitable for the risk assessment of debris flow. To improve the reliability of the risk assessment of the Chaancun debris flow gully, primary fuzzy assessment. This gully was categorized as "extremely hazardous;" thus, appropriate mitigations such as building a concrete dam and planting in bare areas were designed and implemented.

Keywords: debris flow, risk assessment, fuzzy mathematics, mitigative measures

1. Introduction

Chaancun debris flow gully is located on the mountain slope of the crown of Chaancun landslide, shown in Figure1. Lvshun middle road and Wangjiadian reservoir at the toe of Chaancun landslide are situated below the debris flow track. Chaancun Landslide is the second largest landslide has occurred in northeast China (Zhang et al., 2015; Xu et al., 2011). Now, it was mitigated as a park for tour and leisure. Hiking corridors distribute on the slope and leisure square is sited at the toe of slop. Beautiful landscapes of this site attract many tourists. However Chaancun debris flow gully forms a serious threat to the safety of this site and development of tourist attraction. So an appropriate recognition of the debris flow gully is required by field investigation, then risk assessment of debris flow need to be undertaken, providing scientific evidence to determine whether or not applying protective mitigations.

Figure 1: Chaancun landslide was mitigated as a park for leisure and tour. Hiking corridors distribute on the slope and leisure square is constructed at the toe of slope

2. Field investigation of Chaancun debris flow gully

Debris flow as a kind of sudden geological disaster needs three conditions including favorable topography, rich loose material and rainfall. Slope gradient of longitudinal gully of Chaancun gully is 322‰ and bend coefficient is 1.2. Average slope angle on the left and right flank of the gully is 32° and 31° respectively. The gully is steep and straight. Longitudinal section of Chaancun debris flow gully is shown in Figure2. Topography of this gully is favorable to the occurrence of debris flow.

Figure 2: Longitudinal section of Chaancun debris flow gully (unit: m)

Bedrock are alternating layers of thick layer of slate and laminated quartzite and the overlying quaternary diluvium are gravel and silty clay containing gravel. According to geophysical prospecting of resistivity survey and seismic survey, there are three faults in the study area, as shown in figure3. F_1 is reverse fault with strike of NE18° and inclination angle of 20°. The outcropping length is about 600 m. Meanwhile, there was another fault called F_2 truncated by F_1 . Strike of F_2 is NW310° and inclination angle is $70 \sim 80^{\circ}$.Outcropping length is about 800m.The third fault called F₃ close to the NS strike and outcropping length is about 600m.

Figure 3: Faults in the study area

Chaancun debris flow gully is located along the fault fracture zone of F_3 . Fault fracture zone is weak and vegetation is rare. Therefore bare rock in natural condition easily weathered and denuded, generating a lot of loose debris accumulating in the gully. Rich loose material about 730m³ of this gully is favorable to forming debris flow.

Rainfall is excitation condition of debris flow. This study area is located in Dalian city and belongs to the northern hemisphere warm temperate semi-humid monsoon climate zone. Rainfall mainly concentrated in July and August, average annual precipitation of 662mm, maximum precipitation per hour of 68 mm, maximum precipitation within 24 hour of 149.4 mm. Large and concentrated rainfall provides a rich source of water for debris flow and hydrodynamic conditions.

Table 1: Rainfall statistics in the study area

Precipitation	Value
average annual precipitation	662.0mm
largest precipitation within 10min	20.5mm
maximum precipitation within 1 hour	68.0mm
maximum precipitation within 24 hour	149.4mm
maximum precipitation of continuous rational	in178.6mm

Based on investigation of topography, loose material and rainfall, Chaancun debris flow gully has occurrence conditions of debris flow. Once debris flow occurring, it will bring serious hazard to person and public facilities. Therefore, before the disaster occurring, risk assessment of debris flow need to be undertaken, providing scientific evidence to determine whether or not applying protective mitigations, which is important for reducing loss of life and property due to debris flow.

3. Risk assessment of fuzzy mathematical method

Debris flow risk can quantitatively describe the degree of debris flow hazard, expressed by probability value rang [0% 100%], as expression of the debris flow warning level. Many factors affect the formation

and assessment of debris flow, which result in debris flow risk having character of uncertainty, randomness and fuzziness. Hence fuzzy mathematics method is very suitable for use in debris flow risk assessment (Lin et al,2012). In order to improve the reliability of risk assessment to Chaancun debris flow gully, primary fuzzy assessment and the secondary fuzzy assessment considering hierarchical analysis were undertaken.

3.1 Determination of assessment factor set

Consulting the related literature published in recent, volume of loose material, catchment area, longitudinal slope gradient, rainfall intensity, daily precipitation, cumulative precipitation, vegetation coverage, soil and rock type, bend coefficient of gully were frequently applied in debris flow risk assessment, that illustrates the importance of these factors in debris flow risk assessment(Liu et al 2009; Lin et al 2002; Ohlmacher et al 2003;Lan et al 2004; Catani et al 2005; Chang et al 2006,2007; Lu et al 2007;Tiranti et al 2008; Tunusluoglu et al 2008).According to field investigation of the Chaancun debris flow gully, seven factors were selected related to topography, loose material and rainfall.

Assessment factor set $U = (u_1, u_2, u_3, u_4, u_5, u_6, u_7)$ were established. Seven assessment factors from u_1 to u_7 are respectively volume of loose material, catchment area, slope gradient of longitudinal gully, maximum precipitation within 24 hour, bend coefficient of gully, vegetation coverage, soil and rock type, values obtained by investigation as shown in table 2.

 Table 2: Value of assessment factor obtained by investigation

$u_1/10^4 { m m}^3$	u_2/km^2	u ₃ /Ÿ	<i>u</i> 4 /mm	u ₅	u ₆ / %	<i>u</i> ₇
0.073	2.1	322	149.4	1.2	39	strong weathered rocks and denuded rocks

3.2 Determination of assessment set

Risk degree of debris flow is divided into four levels, it is shown by assessment set $V=(v_1, v_2, v_3, v_4) =$ (slightly hazardous, moderately hazardous, very hazardous, extremely hazardous). According to actual conditions by field investigation and in line with the suggestions of experts, standard values of assessment factors were determined, as shown in Table 3.

 Table 3: Standard values of assessment factors

 relative to risk degree

	v ₁ slightly hazardous	v ₂ moderately hazardous	v ₃ very hazardous	v ₄ extremely hazardous
$u_1/10^4 m^3$	1	5	10	50
u_2/km^2	0.20	0.5	2	5

$u_{3/}\%$	10	20	25	30
u_4/mm	50	75	100	125
u_5	1.1	1.25	1.4	1.5
$u_{6/}\%$	70	50	30	10
<i>u</i> ₇	hard rock	strong weathered and joints developed rock	Soft and hard interlayer rock	Soil and soft rock

3.3 Weight vector of assessment factor

For fuzzy assessment of debris flow risk degree, the first is to consider the weight of assessment factors selected, and correctness of risk assessment depends on the rationality of weight assignment. At present, weighting method of experts'experience combine with mathematical method was widely used. Therefore, according to actual conditions of Chaancun debris flowgully, judgment matrix A was given by expert scoring, and then weight vector W was obtained by calculation.

 a_{ij} in judgment matrix A is defined that considering seven assessment factors relative to the final risk degree, the different importance of one assessment factor relative to another factor, represented by nine natural number of 1-9 and eight fraction of 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9.

Table 4: Explanation of a_{ij} in judgment matrix A

Value	Explanation				
1	Indicates that two factors are of equal				
1	importance.				
2	Indicates that i factor is a little more				
3	important than J factor				
5	Indicates that i factor is obviously more				
	important than j factor				
7	Indicates that i factor is significantly				
/	important than j factor				
0	Indicates that the i factor is extremely				
9	important than the j factor				
2,4,6,8	Indicates that the intermediate value of the				
	adjacency judgment				

 a_{ij} in judgment matrix of A is as follows: $a_{ij} \ge 21$,

 $a_{ii} = 11, a_{ij} = 11/a_{ji}$

Scoring the seven assessment factors of Chanancun debris flow gully by experts, judgment matrix A was given as shown below.

	Ä1	7	3	3	5	6	3
	A Ål∕7	1	1/6	1/4	1	1/2	1/2
	Å1/3	6	1	3	5	5	4
A =	=Ål/5	4	1/3	1	5	4	4
	Å1/5	1	1/5	1/5	1	1/2	1/2
	А Ді/6	2	1/5	1/4	2	1	1
	Åt/3	2	1/4	1/4	2	1	1

Maximum eigenvalue and corresponding eigenvectors after normalization of judgment matrix A are calculated, and then making consistency check. When meeting the consistency check, the corresponding eigenvector after normalization can be as weight vector $W = (w_1, w_2, w_3, w_4 w_5, w_6, w_7)^T$, w_i is the weight of each factor, otherwise establishing new judgment matrix.

First, calculate maximum eigenvalue $\hat{}_{max}$ and corresp-onding eigenvector of judgment matrix A. Eigenvectors \overline{W} is calculated by formula below.

$$\overline{w}_{i} = \frac{1}{\sqrt{\int_{j=1}^{7} a_{ij}}} \quad i = 11, 2, \quad z^{7}$$
(1)

 \overline{W} =(3.437, 0.395, 2.494, 1.666, 0.412, 0.615, 0.701)^T

Normalizing \overline{W} , eigenvector after normalization W is calculated by formula as follow:

$$w_i = 1 \frac{w_i}{\bigwedge_{i=1}^{7} \overline{w_i}} i = 11, 2, \frac{27}{\sqrt{7}}$$
 (2)

 $W = (0.345, 0.041, 0.257, 0.171, 0.042, 0.063, 0.072)^T$, whe re w_i is weight of each factor.

Maximum eigenvalue is calculated by formula below.

$$\hat{x}_{\max} = \bigwedge_{i11}^{7} \frac{(Aw)_i}{7w_i}$$
(3)
$$\hat{x}_{\max} = 17.376$$

Then, consistency check of judgment matrix A is divided into the following three steps. First step the consistency index CI is calculated, where n is matrix order of A in the following formula.

$$CI \mid \frac{1}{n \mid 1} (\hat{n}_{\max} \mid n) \tag{4}$$

Second step, according to Table 5 and matrix order n of judgment matrix A, the mean random index RI is determined. Third step, consistency of matrix A is judged by the value of consistency ratio CR.

Table 5: The mean random consistency index RI

n	1	l	2	3	;	4	5	6	7	8	9	10	11	12
RI	0.	00	0.0	00.5	580).90	1.12	1.24	1.32	1.41	1.45	1.49	1.52	1.54
С	R	1	CI /	RI										(5)

If CR 0.1 judgment matrix meets consistency check. If CR 0.1, judgment matrix needs to be adjusted until meeting consistency check.

Based on the above process, for Chaancun debris flow, n=7, CI = 0.059, RI=1.32, while CR=0.045 0.1, The judgment matrix A meets consistency check. So vector W can be as the weight vector of assessment factor.

3.4 Determination of membership degree

Assessment factor set of Chaancun debris flow was established as $U=(u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7)$; Risk degree of debris flow was divided into four levels $V=(v_1 \ v_2 \ v_3 \ v_4)$; Matrix R was used to show the fuzzy relationship between U and V.

In the above formula where $r_{ij} \perp \partial f u_i, v_j \notin b v_{ij}$ this the possibility of assessment factor u_i evaluated as level v_j , or r_{ij} also can be interpreted as the probabilities of assessment factor u_i belong to level v_j , namely membership degree.

Membership degree was defined by L.A.Zadeh (1965). There is a F(x), F(x) @ [0,1], and x belongs to U. If F(x) corresponding to each x, namely F(x) is a function of x, in this case F is fuzzy set for U, F(x) was membership degree of x relate to F. For Chaancun debris flow, weight values of seven factors had already been given, so the membership degree can be determined by a linear function as shown in formula(7)-(10) below.

$$u_{1}(x) = \begin{pmatrix} \zeta & 1 & x \cup x_{1} \\ \frac{\xi_{2}}{\xi_{2}} & x_{1} \\ \frac{\xi_{2}}{\xi_{2}} & x_{1} \\ \frac{\xi_{2}}{\xi_{2}} & x_{1} \\ 0 & x \\ 0 & x_{2} \end{pmatrix}$$
(7)

$$u_{3}(x) = \begin{cases} C & 0 & x \cup x_{2} \text{ or } x \downarrow x_{4} \\ E & x \downarrow x_{2} \\ E & x_{3} \downarrow x_{2} \\ E & x_{4} \downarrow x \\ E & x$$

$$\underbrace{\underbrace{e}_{x_4 \mid x_3}}_{c x_4 \mid x_3} \qquad x_3 \circ x \circ \alpha_4$$

$$\underbrace{c \circ x \sqcup x_3}_{c x_1 \mid x_3} \qquad x_3 \circ x \circ \alpha_4 \qquad (10)$$

$$u_{4}(x) = \begin{cases} \frac{x + x_{3}}{x_{4} + x_{3}} & x_{3} \\ 0 & x \\ 0$$

 $u_1(x)$, $u_2(x)$, $u_3(x)$, $u_4(x)$ is the membership degree of an assessment factor belongs to risk degree v_1 , v_2 , v_3 , v_4 respectively. x_1, x_2, x_3, x_4 is the standard values of this assessment factor relative to risk degree in Table 3 respectively and x is value of this assessment factor obtained by investigation shown in Table 2.

Membership degrees of seven assessment factors were summarized in membership degree set R as follow.

Ä1	0	0	0
Δo	0	0.967	0.033
Âo	0	0	1
A AO	0	0	1
Å0.33	0.67	0	0
ÅΟ	0.75	0.25	0
Æ	1	0	0
	Ä1 Å0 Å0 Å0 Å0 Å0.33 Å0.33 Å0 Å0.33	Å1 0 Å0 0.67 Å0 0.75 Å0 1	A1 0 0 A0 0 0.967 A0 0 0 A0 0 0 A0.33 0.67 0 A0 0.75 0.25 A0 1 0

3.5 The result of primary fuzzy assessment

In membership degree set R, r_{ij} is the membership degree of assessment factor u_i belongs to risk degree v_j . The row of i shows membership degree of assessment factor u_i relative to each risk degree, $r_{i1} \tilde{Z} r_{i2} \tilde{Z}_{i3} n_{i4}^2$ 1. However, each factor has a large or small importance in risk assessment, w_i is the weight of assessment factor u_i relative to target risk, $w_1 \tilde{Z} w_2 \tilde{Z} w_3 \tilde{Z} w_7^2$ ²¹, $0 \cup w_i \cup 1; W = 10w_1, w_2, w_3 \tilde{Z} w_7^2$ as the weight of assessment factor.

The comprehensive membership degree is associated of w_i and r_{ij} with formula below $s_j \stackrel{2}{\stackrel{}{\text{A}}} \stackrel{w_i r_{ij}}{}$. The fuzzy set $S \stackrel{1}{\text{B}} \stackrel{1}{\text{I}}_{s_2}, s_3, s_4 \stackrel{1}{\text{E}} \stackrel{1}{\text{D}} \stackrel{w_j}{}_{ij}$ is obtained by formula $S \stackrel{1}{\text{W}} \stackrel{w}{\text{R}}$. $s_1 \quad s_2 \quad s_3 \quad s_4$ shows the probability of risk degree v_1 , v_2 , v_3, v_4 , respectively, $s_{i_0} \stackrel{1}{\text{I}} \max_{1 \text{ui} \stackrel{1}{\text{d}}} Os_j O_i, v_{i_0}$ is target risk degree.

For Chancun debris flow gully, $S \mid W \mid R = [0.368 0.148 0.055 0.429]$, 0.429 is the largest probability shown in Table 6, so risk degree of Chaancun debris flow gully is categorized as 'extremely hazardous' by primary fuzzy assessment.

Risk degree	v ₁ Slightly hazardous	<i>v</i> ₂ Moderately hazardou	v ₃ s Very hazardous	<i>v</i> ₄ Extremely hazardous
Membership degree	0.368	0.148	0.055	0.429
Condition of lo material Volume of loose material	ose Wat charact Magnadient of longitudinal gully C	Catchment Vegetation coverage	Maximum precipitation within 24 hour	Characteristic of gully Bend coefficient of gully

Table 6: Comprehensive membership degree of debris flow

Figure 4: Flow chart of AHP in secondary fuzzy assessment

3.6 The secondary fuzzy assessment considering hierarchical analysis

Analytic hierarchy process (AHP) is widely used in many fields of engineering geology, According to thesimilar attributes, seven assessment factors are divided into four categories, illustrated in the Figure4. First, make primary assessment in each category, and then make secondary assessment of four categories again, finally risk degree of debris flow is obtained. The framework is as follows:

$$U \ 1 \ 0 U_1, U_2, U_3, U_4 \ q$$
$$U_1 = 0 u_1, u_7 \ q; \quad U_2 \ 1 \ 0 u_2, u_3, u_6 \ q; \quad U_3 \quad D u_4 \ q; \quad U_4 \quad 0 u_5 \ q$$

Table 7: The explanation of four categories

U_1	U_2	U_3	${U}_4$
Condition of loose material	Watershed Characteristics	External dynamic condition	Characteristic of gully

The result of secondary assessment is shown in Table 8. The probability of v_4 was the highest one which was 0.408, so risk degree of debris flow of Chaancun gully is extremely hazardous.

According to result of primary fuzzy assessment and secondary fuzzy assessment considering hierarchical analysis, risk degree of Chanancun debris flow gully is extremely hazardous. Secondary fuzzy assessment considering hierarchical analysis was recommended for risk assessment of debris flow, due to that evaluation factors divided by attribute and it is better to avoiding error because of relevance factors compared with each together.

4. Mitigative Measures

Risk degree of Chaancun debris flow was categorized as 'extremely hazardous', so corresponding defensive measures must be taken. A concrete dam was built at start part of transition area beside the uppermost hiking corridors, perpendicular to downstream gully, shown in Figure5 and Table 9. Moreover vegetation was planted on the bare area.

Figure 5: Mitigation with a concrete dam with length of and planting vegetation.

Risk degree	v ₁ Slightly haz	ardous Moderate	v ₂ ly hazardous `	v ₃ Very hazardous	<i>v</i> ₄ Extremely hazardous		
Membership deg	ree 0.289	θ 0).141	0.162	0.408		
Table 9: Size designed of concrete dam							
Length of dam base/ m	Length of dam top/ m	Height of dam / m	Width of dam top / m	Width of dam base /n	Depth of dam n foundation / m		
34.4	42.0	5.0	1.8	3.8	2.0		

Table.8: Comprehensive membership degree of the secondary fuzzy assessment

5. Conclusions

Chaancun debris flow gully is steep and straight. Weathered rocks and denuded rocks coming from tectonic fault zone provide debris source, furthermore more and concentrated rainfall. Chaancun debris flow gully has occurrence conditions of debris flow. Fuzzy mathematical method was undertaken for quantitative risk assessment, providing scientific evidence to determine whether or not applying protective mitigations. Seven factors including of volume of loose material, catchment area, slope gradient of longitudinal gully, maximum precipitation within 24 hour, bend coefficient of gully, vegetation coverage, soil and rock type were selected related to topography, loose material and rainfall. Based on the primary fuzzy assessment and the secondary fuzzy assessment considering hierarchical analysis, this gully was categorized as 'extremely hazardous'.

Risk degree of Chaancun debris flow was categorized as 'extremely hazardous', so corresponding defensive measures must be taken. A concrete dam was built at start part of transition area, moreover planting on the bare slope, in order to avoid debris flow hazards that may occur in the future.

Acknowledgements

This work is supported by Liaoning Hydrogeology Engineering Geology Exploration Courtyard and Seed fund of Jilin University. Special gratitude is also extended to those participants who have contributed to this work.

References

[1] M. Zhang, L. Nie, Y. Xu, and S.L. Dai (2015). A thrust load-caused landslide triggered by excavation of the slope toe: a case study of the Chaancun Landslide in Dalian City[J], China. Arab J Geosci, 2015 8,(9): 6555–6565.

- [2] Y.Xu, L.Nie, S.L.Dai, M.Zhang (2011). Formation and evolution of Chaancun Landslide in Dalian City, China. Adv Mater Res 250– 253:1395–1399.
- [3] J.W. Lin C.W. Chen C.Y. Peng(2012). Potential hazard analysis and risk assessment of debris flow by fuzzy modeling.NaturalHazards, 64 (1) :273-282
- [4] C.N. Liu, J.J. Dong, Y. F. Peng, H.F. Huang(2009) .Effects of strong ground motion on the susceptibility of gully type debris flows[J]. Engineering Geology,104(3): 241-253.
- [5] P. S. Lin, J. Y. Lin, J. C. Hung and M.D. Yang(2002). Assessing debris-flow hazard in a watershed in Taiwan[J]. Engineering Geology, 66(66): 295-313.
- [6] G.C.Ohlmacher, J.C.Davis(2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA[J]. Engineering Geology, 69(69(3–4)): 331-343.
- [7] H.X. Lan., C.H. Zhou, L.J. Wang, H.Y. Zhang, R..H.Li(2004).Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China[J].Engineering Geology,76(1): 109-128.
- [8] F.Catani, N. Casagli, L Ermini., G. Righini and G. Menduni(2005).Landslide hazard and risk

mapping at catchment scale in the Arno River basin[J]. Landslides, 2(4): 329-342.

- [9] T.C. Chang, R.J. Chao(2006). Application of back-propagation networks in debris flow prediction[J]. Engineering Geology, 85(s3–4): 270-280.
- [10] T. C. Chang. Risk degree of debris flow applying neural networks[J]. Nature Hazards, 2007, 42(1) : 209-224.
- [11] G. Y. Lu, L.S. Chiu, D. W. Wong(2007). Vulnerability assessment of rainfall-induced debris flows in Taiwan[J]. Nature Hazards, 43(2): 223-244.
- [12] T.C. Chang, Y.H.Chien(2007). The application of genetic algorithm in debris flows prediction[J]. Environmental Geology, 53(2): 339-347.
- [13] D. Tiranti, S.Bonetto, G. Mandrone(2008) Quantitative basin characterisation to refine debris-flow triggering criteria and processes: an example from the Italian Western Alps[J]. Landslides, 5(1): 45-57.
- [14] M.C.Tunusluoglu,C.Gokceoglu, H.ANefeslioglu,H Sonmez(2008). Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey)[J]. nvironmental Geology, 54(1): 9-22.
- [15]L. A. Zadeh(1965). Fuzzy sets, Information and Control, 8: 338-353.