Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Jayaraj, R. S. C.
- Agrobio-Cultural Diversity of Alder Based Shifting Cultivation Practiced by Angami Tribes in Khonoma Village, Kohima, Nagaland
Abstract Views :156 |
PDF Views:15
Authors
Affiliations
1 Rain Forest Research Institute, Jorhat - 785 001, IN
1 Rain Forest Research Institute, Jorhat - 785 001, IN
Source
Current Science, Vol 115, No 4 (2018), Pagination: 598-599Abstract
North East India is one of the culturally diverse regions in the world inhabited by more than 200 tribes in eight states. Also, the region is one of the biodiversity hot spots of the world. The region is endowed with rich floral, faunal and sociocultural diversity. These tribes have originated from the ethnic groups of Tibeto-Burmese and Indo-Mongoloids1. The tribal communities of this region live in hilly areas and depend on forest resources for their livelihood. Shifting cultivation is the major agricultural land use system in undulating hilly terrains of this region.References
- https://www.quora.com/in/How-many-tribes-are-there-in-Northeast-India (retrieved on 30 April 2018 at 09.06 am).
- Talukdar, N. C. and Thakuria, D., ENVIS Newsletter on Himalayan Ecology. 2015, 12(4), 5.
- Rathore, S. S., Karunakaran, K. and Prakash, B., Ind. J. Trad. Know., 2010, 9(4), 677–680.
- http://northeasttourism.gov.in/khonoma.html#sthash.cFZTYDjL.dpbs (retrieved on 30 April 2018 at 09.10 am).
- Regression Equations for Estimating Tree Volume and Biomass of Important Timber Species in Meghalaya, India
Abstract Views :129 |
PDF Views:17
Authors
Affiliations
1 Rain Forest Research Institute, Jorhat - 785 001, IN
2 Forest Research Institute, Dehradun - 248 001, IN
3 Forest and Environment Department, Government of Meghalaya, Shillong - 793 001, IN
1 Rain Forest Research Institute, Jorhat - 785 001, IN
2 Forest Research Institute, Dehradun - 248 001, IN
3 Forest and Environment Department, Government of Meghalaya, Shillong - 793 001, IN
Source
Current Science, Vol 116, No 1 (2019), Pagination: 75-81Abstract
Linear regression models were developed for four ecologically and economically important tree species of Meghalaya, India, viz. Betula alnoides, Duabanga grandiflora, Magnolia champaca and Toona ciliata. In the present study a non-destructive approach has been used for measurement of required variables, i.e. diameter at breast height (DBH), basal diameter, tree height, end-diameters and length of frustum. Comparison of various models of relationship on the basis of adj. R2 values showed that the value for linear function (V = f (d2 h)) was more than 0.90 for all the four tree species, except lowest diameter class of T. ciliata (10–30 cm diameter class). Hence this linear regression equation was selected for development of diameter class-wise volume equations. Volume of the stem was taken as the dependent variable, while DBH and tree height were used as independent variables, transformed in the form of d2 h to develop regression equation. Similarly, linear regression equations for each tree species were also developed using linear function [(V = f (d2 ))], considering tree volume as an dependent variable and DBH as an independent variable, transformed in the form of V = d2 . The present study is among a few attempts to develop regression models without the felling of trees since 1977 and an initial attempt using advanced measurement equipment in North East (NE) India, under the current regime of ban on tree felling. The regression equations developed in this study can be used for estimation of timber yield and carbon content of the selected tree species found in the Meghalaya forests.Keywords
Biomass, Regression Equations, Tree Volume, Timber Species.References
- Pandey, R., Dhall, S. P., Kanwar, B. S. and Bhardwaj, S. D., Some models for predicting volume of Populus deltoids. Indian For., 1998, 124(8), 629-632.
- Stiellfor, W. M., Rapid estimation of volume in red pine plantation. For. Chron., 1957, 33(4), 334-340.
- Woessner, R. A., Stem volume equation in young cottonwood clones - which equation? In Proceedings 12th SFTIC, 1973, pp. 270-275.
- Harding, R. B. and Griger, D. G., Individual tree biomass estimation equations for plantation grown white spruce in northern Minnesota. Can. J. For. Res., 1985, 15(5), 738-739.
- Yamamoto, K., A simple volume estimation system and its application to three coniferous species. Can. J. For. Res., 1994, 24, 1289-1294.
- Tewari, V. P. and Gadow, K. V., Modelling the relationship between tree diameters and heights using SBB distribution. For. Ecol. Manage., 1999, 119, 171-176.
- Phillips, O. L. et al., Changes in biomass of tropical forests: evaluating potential biases. Ecol. Appl., 2002, 12, 576-587.
- Dudley, N. S. and Fownes, J. H., Preliminary biomass equations for eight species of fast-growing tropical trees. J. Trop. For. Sci., 1991, 5(1), 68-73.
- Brown, S., Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134, FAO Rome, 1997, p. 55.
- Brown, S., Gillespie, A. and Lugo, A., Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci., 1989, 35, 881-902.
- Chambers, J. Q., Dos Santos, J., Ribeiro, R. J. and Higuchi, N., Tree damage, allometric relationships, and aboveground net primary production in central Amazon forest. For. Ecol. Manage., 2001, 152, 73-84.
- Schmidt, A., Poulain, M., Klein, D., Krause, K., Pena-Rojas, K., Schmidt, H. and Schulte, A., Allometric above-belowground biomass equations for Nothofagus pumilio (Poepp. & Endl.) Natural regeneration in the Chilean Patagonia. Ann. For. Sci., 2009, 66, 513-518.
- Li, R. and Weiskittel, A. R., Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian region. Ann. For. Sci., 2010, 67, 302-316.
- Schroeder, P., Brown, S., Mo, J., Birdsey, R. and Cieszewski, C., Biomass estimation for temperate broadleaf forests of the United States using inventory data. For. Sci., 1997, 43, 424-434.
- Ravindranath, N. H., Somashekhar, B. S. and Gadgil, M., Carbon flow in Indian forests. Climate Change, 1997, 35, 297-320.
- Baishya, R. and Barik, S. K., Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Ann. For. Sci., 2011, 68(4), 727-736.
- UNFCCC, Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 December 2007. Addendum, Part 2. Document FCCC/CP/2007/6/Add.1, United Nations Framework Convention on Climate Change, Bonn, Germany, 2008.
- Basuki, T. M., Van Laake, P. E., Skidmore, A. K. and Hussin, Y. A., Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manage., 2009, 257, 1684-1694.
- Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q. and Ni, J., Measuring net primary production in forests: concepts and field methods. Ecol. Appl., 2001, 11(2), 356-370.
- Wang, H., Hall, C. A. S., Scatena, F. N., Fetcher, N. and Wu, W., Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico. For. Ecol. Manage., 2003, 179, 69-94.
- Joshi, N. R. et al., Development of Allometric equations for Paulownia tomentosa to estimate biomass and carbon stocks: an assessment from ICIMOD Knowledge Park, Godavari, Nepal. ICIMOD Working Paper 2015/10, 2015, p. 38.
- https://www.manualslib.com Nikon Manuals › Measuring Instruments (accessed on 5 June 2018).
- www.haglofsweden.com (accessed on 5 June 2018).
- Husch, B., Miller, C. I. and Beers, T. W., Forest Mensuration, The Roland Press Co., New York, USA, 1982, 3rd edn, p. 402.
- Amin, T. M., Non destructive method for estimating log volume for Melia azedarach L. trees in Erbil-Iraqi Kurdistan region. ARO, Sci. J. Koya Univ., 2014, 2(2), 32-36; http://dx.doi.org/10.14500/ aro.10027.
- Goulding, C. J., Cubic spline curves and calculation of volume of sectionally measured trees. NZ J. For. Sci., 1997, 9(1), 89-99.
- SPSS Base 16.0 User’s Guide, SPSS Inc, Chicago, USA, 2007.
- Zanne, A. E. et al., Global Wood Density Database, 2009; doi:http://dx.doi.org/10.5061/dryad.234/1.
- Cheng, J. C., Yang, J. and Liu, P., Anatomy and Properties of Chinese Woods, Chinese Forestry Publishing, Beijing, China, 1992, p. 820.
- Benthall, A. P., The Trees of Calcutta: and its Neighbourhood, Thacker Spink and Co Ltd, Calcutta, 1984.
- IPCC, Report on good practice guidance for land use, land-use change and forestry. The Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme; http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm
- Lowe, H., Seufert, G. and Raes, F., Comparison of methods used within member states for estimating CO2 emissions and sinks to UNFCCC and UE monitoring mechanism: forest and other wooded land. Biotechnol. Agron. Soc. Environ., 2000, 4, 315-319.
- Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J. and Holland, E. A., Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl., 2001, 11(2), 371-384.
- Zianis, D. and Mencuccini, M., Aboveground biomass relationship for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, northern Greece, and generalized equations for Fagus spp. Ann. For. Sci., 2003, 60, 439-448.
- Rai, S. N. and Proctor, J., Ecological studies on four rainforests in Karnataka, India I. Environment, structure, floristic and biomass. J. Ecol., 1986, 74, 439-454.
- Gibbs, H. K., Brown, S., Niles, J. O. and Foley, J. A., Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett., 2007, 2, 1-13.
- Sharma, R. P. and Jain, R. C., Regional volume tables for Duabanga grandiflora WALP. (based on the data of Manipur state). Indian For., 1977, 103(11), 731-732.
- Montes, N., Gauquelin, T., Badri, W., Bertaudiere, V. and Zaoui, E. H., A non-destructive method for estimating above-ground forest biomass in threatened woodlands. For. Ecol. Manage., 2000, 130, 37-46.
- Aboal, J. R., Arevalo, J. R. and Fernandez, A., Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flora, 2005, 200, 264-274.
- Ravindranath, N. H. and Ostwald, M. (eds), Methods for estimating above-ground biomass. In Carbon Inventory Methods: Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects, Springer Science + Business Media BV, 2008, p. 287.
- Carbon Storage Potential of Mangroves – Are We Missing the Boat?
Abstract Views :97 |
PDF Views:12
Authors
Source
Current Science, Vol 116, No 12 (2019), Pagination: 2071-2071Abstract
No Abstract,Keywords
No Keywords.- Carbon Storage Potential Of Mangroves–Are we Missing the Boat?
Abstract Views :141 |
PDF Views:18
Authors
Affiliations
1 CSIR-National Botanical Research Institute, Rana Pratap Marg, Post Box No. 436, Lucknow 226 001, IN
2 Centre for Advanced Studies in Marine Biology, Annamalai University, Parengipettai 608 502,, IN
3 Rain Forest Research Institute, Jorhat 785 010, IN
4 Department of Ocean Studies and Marine Biology, Pondicherry University, Brookshabad Campus, Port Blair 744 112, IN
1 CSIR-National Botanical Research Institute, Rana Pratap Marg, Post Box No. 436, Lucknow 226 001, IN
2 Centre for Advanced Studies in Marine Biology, Annamalai University, Parengipettai 608 502,, IN
3 Rain Forest Research Institute, Jorhat 785 010, IN
4 Department of Ocean Studies and Marine Biology, Pondicherry University, Brookshabad Campus, Port Blair 744 112, IN
Source
Current Science, Vol 116, No 6 (2019), Pagination: 889-891Abstract
Increasing soil carbon stocks and protecting carbon-rich soils are crucial for achieving the Paris climate targets. Mangrove forests are the potential carbon sinks for mitigating the growing greenhouse gas emissions due to their highest carbon storage capacity per unit area compared to terrestrial forests. Furthermore, restricted global distribution of mangroves testifies their role in climate change mitigation as most effective at the national level rather than on a global scale. Nevertheless, lack of reliable estimates, insufficient data, discrepancy in the available data, increasing degradation rates and failure of conservation endeavours signify that we are missing the carbon storage potential of mangrove soil. So, here we emphasize the imperative need of country-wise site-specific precise estimates and an understanding of the spatial distribution of mangrove soil carbon stocks to recognize the actual climate mitigation potential of the mangroves as well as strengthen the conservation measures for the sustainability of mangroves.References
- Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M. and Kanninen, M., Nature Geosci., 2011, 4, 293–297.
- Alongi, D. M. (ed.), In Blue Carbon, Springer, Switzerland, 2018, pp. 23–36.
- Twilley, R. R., Chen, R. H. and Hargis, T., Water Air Soil Pollut., 1992, 64, 265– 288.
- Alongi, D. M., Annu. Rev. Mar. Sci., 2014, 6, 195–219.
- Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z. and Santos, I. R., J. Geophys. Res. Biogeosci., 2016, 121, 2600–2609.
- Atwood, T. B. et al., Nature Climate Change, 2017, 7, 523–528.
- IPCC, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), Special Report, Cambridge University Press, Cambridge, UK, 2013, p. 594.
- Alongi, D. M., Carbon Manage, 2012, 3, 313–322.
- Kauffman, J. B. and Bhomia, R. K., PLoS ONE, 2017, 12(11), e0187749.
- Walcker, R. et al., Global Change Biol., 2018, 28(6), 2325–2338.
- Murdiyarso, D. et al., Nature Climate Change, 2015, 5, 8–11.
- Jardine, S. L. and Siikamäki, J. V., Environ. Res. Lett., 2014, 9(10), 104013; doi:10.1088/1748-9326/9/10/104013.
- Sanderman, J. et al., Environ. Res. Lett., 2018, 13, 055002.
- Siikamaki, J., Sanchirico, J. N. and Jardine, S. L., Proc. Natl. Acad. Sci. USA, 2012, 109, 14369–14374.
- Friess, D. A. and Webb, E. L., Global Ecol. Biogeogr., 2014, 23, 715–725.
- Rovai, A. S. et al., Nature Climate Change, 2018, 8, 534–538.
- Twilley, R. R., Rovai, R. A. and Riul, P., Front. Ecol. Environ., 2018, doi: 10.1002/fee.1937.
- Adame, M. F., Santini, N. S., Tovilla, C., Vázquez-Lule, A., Castro, L. and Guevara, M., Biogeosciences, 2015, 12(12), 3805–3818.
- Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A. and Donato, D. C., Wetlands, 2011, 31(2), 343–352.
- Weiss, C., Weiss, J., Boy, J., Iskandar, I., Mikutta, R. and Guggenberger, G., Ecol. Evol., 2016, 6(14), 5043–5056.
- Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J. and Megonigal, J. P., Ecol. Appl., 2017, 27(3), 859–874.
- Perez, A., Libardoni, B. G. and Sanders, C. J., Biol. Lett., 2018, 14, 20180237.
- Hutchison, J., Manica, A., Swetnam, R., Balmford, A. and Spalding, M., Conserv. Lett., 2014, 7(3), 233–240.
- Rovai, A. S. et al., Global Ecol. Biogeogr., 2016, 25(3), 286–298.
- Breithaupt, J. L., Smoak, J. M., Smith, T. J. and Sanders, C. J., J. Geophys. Res. Biogeosci., 2014, 119, 2032–2048.
- Lovelock, C. E., Feller, I. C., Reef, R. and Ruess, R. W., Plant Soil, 2014, 379, 135–148.
- Scharler, U. M. et al., Oecologia, 2015, 179(3), 863–876.
- Xiong, Y., Liao, B., Proffitt, E. D., Guan, W., Sun, Y., Wang, F. and Liu, X., Sci. Total Environ., 2018, 619–620, 1226–1235.
- Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. and Eyre, B. D., Sci. Adv., 2018, 4, eaao4985.
- Taillardat, P., Friess, D. A. and Lupascu, M., Biol. Lett., 2018, 14, 20180251.
- Rumpel, C., Amiraslani, F., Koutika, L. S., Smith, P., Whitehead, D. and Wollenberg, E., Science, 2018, 564, 32– 34.
- Hamilton, S. and Casey, D., Global Ecol. Biogeogr., 2016, 25, 729–738.
- Maiti, S. and Chowdhury, A., J. Environ. Prot., 2013, 4(12), 1428–1434.
- Chowdhury, R. R., Uchida, E., Chen, L., Osorio, V. and Yoder, L., In Mangrove Ecosystems: A Global Biogeographic Perspective (eds Rivera-Monroy, V. H. et al.), 2017, pp. 275–300.
- Carugati, L., Gatto, B., Rastelli, E., Martire, M. L., Coral, C., Greco. S. and Danovaro, R., Sci. Rep., 2018, 8, 13298.
- Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S. and Ball, M. C., Sci. Rep., 2017, 7, 1680.
- Duke, N. C. et al., Mar. Freshwater Res., 2017, doi:10.1071/MF16322.
- Harris, T. et al., NESP Earth Systems and Climate Change Hub, Report No. 2, Australia, 2017.
- Harris, R. M. B. et al., Nature Climate Change, 2018, 8, 579–587.
- Sippo, J. Z. et al., Estuarine, Coastal Shelf Sci., 2018; doi:10.1016/j.ecss.2018.10.11.
- Lewis, R. R., Milbrandt, E. C., Brown, B., Krauss, K. W., Rovai, A. S., Beever, J. W. and Flynn, L. L., Mar. Pollut. Bull., 2016, 109, 764–771.
- Romañacha, S. S., Deangelis, D. L., Koh, H. L., Li, Y., Teh, S. Y., Barizan, R. S. R. and Zhai, L., Ocean Coastal Manage., 2018, 154, 72–82.
- Duke, N. C. et al., Science, 2007, 317(5834), 41–42.
- Kennedy, H. et al., In Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.), Intergovernmental Panel on Climate Change, Gland, Switzerland, 2014.
- Effect of plant growth promoting rhizobacteria and Organixxgro on tissue-cultured bamboo plantlets under nursery conditions
Abstract Views :88 |
PDF Views:14
Authors
Krishna Giri
1,
Satyam Bordoloi
1,
Gaurav Mishra
1,
R. S. C. Jayaraj
1,
Navajyoti Bora
1,
Rupjyoti C. Baruah
1,
Bondita Borah
1,
Samiran Kakoti
1
Affiliations
1 Rain Forest Research Institute, Jorhat 785 001, IN
1 Rain Forest Research Institute, Jorhat 785 001, IN
Source
Current Science, Vol 121, No 5 (2021), Pagination: 615-617Abstract
No Abstract.References
- Bakshi, M., Sustainable production of bamboo for rural and tribal communities via farmer-friendly technology, 173–180. In Multipurpose forestry. In Proceedings on Managing and Enhancing Ecosystem Services and Production Function of Forests, Woodlands and Trees Outside Forests (eds Negi, S. S. and Dinesh Kumar), FRI, Dehradun, 2010, p. 268.
- Tewari, D. N., A Monograph on Bamboo, International Book Distributors, Dehradun, 1992, p. 498.
- Hore, D. K., J. Econ. Taxon. Bot., 1998, 22(1), 173–181.
- Loushambam, R. S., Singh, N. R., Taloh, A. and Mayanglambam, S., Indian J. Hill Farm, 2017, 30(2), 181–185.
- Singh, P. K., Devi, S. P., Devi, K. K., Ningombam, D. S. and Athokpam, P., Not. Sci. Biol., 2010, 2(2), 35–40.
- Muthukumar, T. and Udaiyan, K., New For., 2006, 31, 469–485.
- https://iasri.icar.gov.in (accessed on 1 February 2019).
- www.organixxgro (accessed on 5 August 2019).
- Giri, K., J. Soil Sci. Plant. Nutr., 2019, 19, 574–579.
- Hiscox, J. D. and Israelstam, G. F., Can. J. Bot., 1979, 57, 1332–1334.
- Adesemoye, A. O. and Egamberdieva, D., Bacteria in Agrobiology: Crop Productivity, 2013, pp. 45–63.
- Sachin, D., Plant Biofront., 2009, 1(1), 37–46.
- Keibul Lamjao National Park: an ecological and cultural heritage of Manipur, North East India
Abstract Views :24 |
PDF Views:7
Authors
Affiliations
1 Rain Forest Research Institute, Jorhat 785 001, India, IN
2 Rain Forest Research Institute, Jorhat 785 001, India; Centre of Excellence on Sustainable and Management, Indian Council of Forestry Research and Education, Dehradun 248 006, India, IN
3 Rain Forest Research Institute, Jorhat 785 001, India; Principal Chief Conservator of Forests, Andaman and Nicobar Islands, Van Sadan Haddo 744 102, India, IN
1 Rain Forest Research Institute, Jorhat 785 001, India, IN
2 Rain Forest Research Institute, Jorhat 785 001, India; Centre of Excellence on Sustainable and Management, Indian Council of Forestry Research and Education, Dehradun 248 006, India, IN
3 Rain Forest Research Institute, Jorhat 785 001, India; Principal Chief Conservator of Forests, Andaman and Nicobar Islands, Van Sadan Haddo 744 102, India, IN
Source
Current Science, Vol 123, No 11 (2022), Pagination: 1293-1294Abstract
No Abstract.References
- Hussain, S. A., Singsit, S., Vaiphei, N., Angom, S. and Kipgen, K., Indian For., 2006, 132, 40–50.
- Tuboi, C. and Hussain, S. A., Mamm. Biol., 2016, 81, 53–60.
- Tuboi, C. and Hussain, S. A., Aquat. Bot., 2018, 150, 71–81.
- Daisy, A., Ph.D. thesis, Manipur Univer-sity, Imphal, 2005.
- Tuboi, C., Angom, S., Babu, M. M., Badola, R. and Hussain, S. A., NeBIO, 2012, 3, 1–11.
- Ningombam, B. and Bordoloi, S., Zoos’ Print J., 2007, 22, 2688–2690.
- Rohikanta, S., Ph.D. dissertation, Wildlife Institute of India, Dehradun, 2016.
- Maibam, S., Ngasepam, R. S. and Ningt-houkhongjam, I. D., Biol. Forum – Int. J.,2015, 7, 171–179.
- https://www.himalayangeographic.com/stories/the-sangai-story-keibul-lamjao-natio-nal-park/ (accessed on 10 February 2022).
- https://thelandofwanderlust.com/sangai-pride-of-manipur/ (accessed on 10 February 2022).
- https://liamtra.com/blog/sangai-festival-the-cultural-essence-of-manipur/ (accessed on 10 February 2022).