Refine your search
Collections
Co-Authors
- Ram Sagar
- U. C. Dumka
- Narendra Singh
- D. V. Phanikumar
- Piyush Bhardwaj
- Phani Kumar
- Rajesh Kumar
- N. Ojha
- S. K. Satheesh
- K. Krishna Moorthy
- V. R. Kotamarthi
- Prajjwal Rawat
- Pradeep K. Thapliyal
- Shuchita Srivastava
- Samaresh Bhatacharjee
- S. Venkatramani
- S. N. Tiwari
- Shyam Lal
- Mukunda M. Gogoi
- S. Suresh Babu
- B. S. Arun
- A. Ajay
- P. Ajay
- Arun Suryavanshi
- Arup Borgohain
- Anirban Guha
- Atiba Shaikh
- Binita Pathak
- Biswadip Gharai
- Boopathy Ramasamy
- G. Balakrishnaiah
- Harilal B. Menon
- Jagdish Chandra Kuniyal
- Jayabala Krishnan
- K. Rama Gopal
- M. Maheswari
- Parminder Kaur
- Pradip K. Bhuyan
- Pratima Gupta
- Prayagraj Singh
- Priyanka Srivastava
- R. S. Singh
- Ranjit Kumar
- Shantanu Rastogi
- Shyam Sundar Kundu
- Sobhan Kumar Kompalli
- Subhasmita Panda
- Tandule Chakradhar Rao
- Trupti Das
- Yogesh Kant
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Naja, Manish
- ARIES, Nainital:A Strategically Important Location for Climate Change Studies in the Central Gangetic Himalayan Region
Abstract Views :460 |
PDF Views:184
Authors
Affiliations
1 Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 002, IN
1 Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 002, IN
Source
Current Science, Vol 109, No 4 (2015), Pagination: 703-715Abstract
ARIES, acronym for Aryabhatta Research Institute of Observational Sciences, located in the Central Gangetic Himalayan (CGH) region is emerging as one of the unique sites for climate change studies. The long-term, in situ, precise measurements of aerosols and trace gases obtained from this region provide valuable inputs for climate studies. Atmospheric scientists from ARIES are actively involved in nearsurface measurements for meteorology, aerosols and trace gases as well as vertical profiling. The Institute is also providing the observational infrastructure and research support to three major projects of the Indian Space Research Organization, Geosphere Biosphere Programme, which basically deals with the measurement of aerosols, trace gases and boundary-layer experiments. The upcoming stratosphere-troposphere radar and high-power micro-pulse lidar observational facilities will be utilized for the continuous vertical profiling of winds, aerosol and cloud properties at a very fine resolution in time and space. Apart from this, atmospheric scientists of ARIES also have active national and international research collaborations. The important results obtained from these research activities are highlighted and upcoming major observational facilities in the field of atmospheric sciences are discussed. They clearly demonstrate the importance of the unique geographical location of ARIES for climate change studies in the CGH region. These measurements and routine meteorological observations provide the necessary atmospheric corrections to the astrophysical observations taken using optical telescopes located at the site.Keywords
Aerosols, Air Pollution, Climate Change, Trace Gases, Wind Profiler.- High-Frequency Vertical Profiling of Meteorological Parameters Using AMF1 Facility during RAWEX–GVAX at ARIES, Nainital
Abstract Views :408 |
PDF Views:193
Authors
Manish Naja
1,
Piyush Bhardwaj
1,
Narendra Singh
1,
Phani Kumar
1,
Rajesh Kumar
2,
N. Ojha
1,
Ram Sagar
3,
S. K. Satheesh
4,
K. Krishna Moorthy
5,
V. R. Kotamarthi
6
Affiliations
1 Aryabhatta Research Institute of Observational Sciences, Nainital 263 002, IN
2 National Center for Atmospheric Research, Boulder, Colorado, US
3 Indian Institute of Astrophysics, Bengaluru 560 034, IN
4 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, IN
5 Indian Space Research Organization, Head Quarters, Bengaluru 560 231, IN
6 Argonne National Laboratory, Argonne, IL, US
1 Aryabhatta Research Institute of Observational Sciences, Nainital 263 002, IN
2 National Center for Atmospheric Research, Boulder, Colorado, US
3 Indian Institute of Astrophysics, Bengaluru 560 034, IN
4 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, IN
5 Indian Space Research Organization, Head Quarters, Bengaluru 560 231, IN
6 Argonne National Laboratory, Argonne, IL, US
Source
Current Science, Vol 111, No 1 (2016), Pagination: 132-140Abstract
An extensive field study, RAWEX-GVAX, was carried out during a 10-month (June 2011-March 2012) campaign at ARIES, Nainital and observations on a wide range of parameters like physical and optical properties of aerosols, meteorological parameters and boundary layer evolution were made. This work presents results obtained from high-frequency (four launches per day), balloon-borne observations of meteorological parameters (pressure, temperature, relative humidity, wind speed and wind direction). These observations show wind speed as high as 84 m/s near the subtropical jet. It is shown that reanalysis wind speeds are in better agreement at 250 hPa (altitude of subtropical jet) than those above or below this value (100 hPa or 500 hPa). These observations also demonstrate that AIRS-derived temperature profiles are negatively biased in the lower altitude region, whereas they are positively biased near the tropopause. WRF simulated results are able to capture variations in temperature, humidity and wind speed profile reasonable well. WRF and AIRS-derived tropopause height, tropopause pressure and tropopause temperature also show agreement with radiosonde estimates.Keywords
Aerosols, Radiosonde, Subtropical Jet, Tropopause Folding, Vertical Profiling.- Assessment of Vertical Ozone Profiles from INSAT-3D Sounder Over The Central Himalaya
Abstract Views :415 |
PDF Views:173
Authors
Prajjwal Rawat
1,
Manish Naja
1,
Pradeep K. Thapliyal
2,
Shuchita Srivastava
3,
Piyush Bhardwaj
4,
Rajesh Kumar
4,
Samaresh Bhatacharjee
1,
S. Venkatramani
5,
S. N. Tiwari
6,
Shyam Lal
5
Affiliations
1 Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 002, IN
2 Space Applications Centre, Jodhpur Tekra, Ahmedabad 380 015, IN
3 Indian Institute of Remote Sensing, 4 Kalidas Road, Dehradun 248 001, IN
4 National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301, US
5 Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, IN
6 DDU Gorakhpur University, Gorakhpur 273 009, IN
1 Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 002, IN
2 Space Applications Centre, Jodhpur Tekra, Ahmedabad 380 015, IN
3 Indian Institute of Remote Sensing, 4 Kalidas Road, Dehradun 248 001, IN
4 National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301, US
5 Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, IN
6 DDU Gorakhpur University, Gorakhpur 273 009, IN
Source
Current Science, Vol 119, No 7 (2020), Pagination: 1113-1122Abstract
Vertical distribution of ozone has been obtained for the first time using INSAT-3D for the period 2013-2017 over the central Himalaya and validated utilizing balloon-borne observations from a high-altitude site in Nainital (29.4°N, 79.5°E, 1793 m amsl). The INSAT-3D retrieved ozone profiles captured ozone gradient and ozone peak altitude successfully, despite only one IR channel for ozone. This demonstrates the capability of the INSAT-3D Sounder in capturing the observed features, with a smaller bias in the stratosphere and somewhat larger bias in the troposphere. Total ozone column from INSAT-3D showed maximum difference of 8% with ozonesonde-derived total ozone column. Larger ozone bias in the lower troposphere could be attributed to lower reliability of regression coefficient and INSAT-3D channel constraints itself, whereas high variability near the tropopause is possibly due to low ozone, poor temperature retrieval near the tropo-pause and stratosphere–troposphere transport process in the Himalayan region.Keywords
Ozone Profiles, Ozonesonde, Satellite Data, Vertical Distribution.References
- Mauzerall, D. L. and Wang, X. P., Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling sci-ence and standard setting in the United States, Europe, and Asia. Annu. Rev. Energy Environ., 2001, 26, 237–268.
- Desqueyroux, H., Pujet, J. C., Prosper, M., Squinazi, F. and Momas, I., Short-term effects of low-level air pollution on respira-tory health of adults suffering from moderate to severe asthma. Environ. Res., 2002, 89, 29–37.
- Lal, S., Venkataramani, S., Naja, M., Kuniyal, J. C., Mandal, T. K. and Bhuyan, P. K., Loss of crop yields in India due to surface ozone: an estimation based on a network of observations, Environ. Sci. Pollut. Res., 2017, 24(26), 20972–20981.
- Brasseur, G. P., Orlando, J. J. and Tyndall, G. S., Atmospheric Chemistry and Global Change, Oxford University Press, New York, USA, 1999, pp. 209–234.
- Kumar, R., Barth, M. C., Pfister, G. G., Delle Monache, L. and Lamarque, J. F., How will air quality change in South Asia by 2050? J. Geophys. Res.: Atmos., 2018, 123(3), 1840–1864.
- Ojha, N. et al., On the processes influencing the vertical distribu-tion of ozone over the central Himalayas: analysis of year-long ozonesonde observations. Atmos. Environ., 2014, 88, 201–211; doi:10.1016/j.atmosenv.2014.01.031.
- Naja, M. et al., High-frequency vertical profiling of meteorologi-cal parameters using AMF1 facility during RAWEX–GVAX at ARIES, Nainital. Curr. Sci., 2016, 111(1), 132–140.
- Ratnam, V. M., Kumar, A. H. and Jayaraman, A., Validation of INSAT-3D sounder data with in situ measurements and other similar satellite observations over India. Atmos. Meas. Tech., 2016, 9, 5735–5745; doi:10.5194/amt-9-5735-2016 9. Singh, T., Mittal, R. and Shukla, M. V., Validation of INSAT-3D temperature and moisture sounding retrievals using matched radi-osonde measurements. Int. J. Remote Sensing, 2017, 38(11), 3333–3355; doi:10.1080/01431161.2017.1294776 10. Rao, V. K. et al., Validating INSAT-3D atmospheric temperature retrievals over India using radiosonde measurements and other satellite observations. Meteorol. Atmos. Phys., 2019, https://doi. org/10.1007/s00703-019-00710-8.
- Jindal, P., Thapliyal, P. K., Shukla, M. V., Mishra, A. K. and Mitra, D., Total column ozone retrieval using INSAT-3D sounder in the tropics: a simulation study. J. Earth Syst. Sci., 2014, 123(6), 1265–1271.
- Jindal, P., Shukla, M. V., Sharmac, S. K. and Thapliyal, P. K., Retrieval of ozone profiles from geostationary infrared sounder observations using principal component analysis. Q. J. R. Meteorol. Soc., 2016, 142, 3015–3025; doi:10.1002/qj.2884.
- Komhyr, W. D., Barnes, R. A., Brothers, G. B., Lathrop, J. A. and Opperman, D. P., Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989. J. Geophys. Res., 1995, 100(D5), 9231–9244; http://dx.doi.org/10.1029/ 94JD02175.
- Smit, H. G. J. et al., Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: insights from the Juelich Ozone Sonde Inter-comparison Experiment (JOSIE). J. Geophys. Res., 2007, 112, D19306; 10.1029/2006JD007308.
- Johnson, B. J., Oltmans, S. J. and Vömel, H., Electrochemical concentration cell (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuff-ered ECC sensor cathode solutions. J. Geophys. Res., 2002, 107(D19), 4393; doi:10.1029/2001JD000557.
- WMO, Sources of errors in detection of ozone trends. Global Ozone Research and Monitoring Project Report 12, World Mete-orological Organization, Geneva, 1982, p. 12.
- Li, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H. L. and Achtor, T. H., Global sounding of the atmosphere from ATOVS measurements: the algorithm and validation. J. Appl. Meteorol., 2000, 39, 1248–1268.
- Bian, J., Gettelman, A., Chen, H. and Pan, L. L., Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J. Geophys. Res., 2007, 112, D06305; doi:10.1029/2006JD007502.
- Mitra, A. K., Bhan, S. C., Sharma, A. K., Kaushik, N., Parihar, S., Mahandru, R. and Kundu, P. K., INSAT-3D vertical profile retrievals at IMDPS, New Delhi: a preliminary evaluation. Mausam, 2015, 66(4), 687–694.
- Park, M., Randel, W. J., Gettelman, A., Massie, S. T. and Jiang, J. H., Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res., 2007, 112, D16309; doi:10.1029/2006JD008294.
- McPeters, R. D., Labow, G. J. and Johnson, B. J., A satellite-derived ozone climatology for balloonsonde estimation of total column ozone. J. Geophys. Res., 1997, 102, 8875–8885.
- Bhardwaj, P., Naja, M., Kumar, R. and Chandola, H. C., Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environ. Sci. Pollut. Res., 2015, doi:10.1007/s11356-015-5629-6.
- Srivastava, S., Naja, M. and Thouret, V., Influences of regional pollution and long range transport over Hyderabad using ozone data from MOZAIC. Atmos. Environ., 2015, 117, 135–146.
- Lal, S., Venkataramani, S., Srivastava, S., Gupta, S., Mallik, C. and Naja, M., Transport effects on the vertical distribution of tropospheric ozone over the tropical marine regions surrounding India. J. Geophys. Res.: Atmos., 2013, 118(3), 1513–1524.
- Lal, S., Venkataramani, S., Chandra, N., Cooper, O. R., Brioude, J. and Naja, M., Transport effects on the vertical distribution of tropospheric ozone over western India. J. Geophys. Res.: Atmos., 2014, 119(16), 10012–10026.
- Response of Ambient BC Concentration Across the Indian Region to the Nation-Wide Lockdown: Results from the ARFINET Measurements of ISRO-GBP
Abstract Views :542 |
PDF Views:177
Authors
Mukunda M. Gogoi
1,
S. Suresh Babu
1,
B. S. Arun
1,
K. Krishna Moorthy
2,
A. Ajay
3,
P. Ajay
4,
Arun Suryavanshi
5,
Arup Borgohain
6,
Anirban Guha
7,
Atiba Shaikh
8,
Binita Pathak
4,
Biswadip Gharai
9,
Boopathy Ramasamy
10,
G. Balakrishnaiah
11,
Harilal B. Menon
8,
Jagdish Chandra Kuniyal
12,
Jayabala Krishnan
13,
K. Rama Gopal
11,
M. Maheswari
13,
Manish Naja
14,
Parminder Kaur
7,
Pradip K. Bhuyan
4,
Pratima Gupta
15,
Prayagraj Singh
16,
Priyanka Srivastava
14,
R. S. Singh
17,
Ranjit Kumar
15,
Shantanu Rastogi
16,
Shyam Sundar Kundu
6,
Sobhan Kumar Kompalli
1,
Subhasmita Panda
10,
Tandule Chakradhar Rao
11,
Trupti Das
10,
Yogesh Kant
18
Affiliations
1 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, IN
2 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, IN
3 Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
4 Centre for Atmospheric Studies, Dibrugarh University, Dibrugarh 786 004, IN
5 Regional Remote Sensing Centre, Indian Space Research Organisation, Nagpur 440 033, IN
6 North Eastern – Space Application Centres, Shillong 793 103, IN
7 Department of Physics, Tripura University, Suryamaninagar, Agartala 799 022, IN
8 Department of Marine Sciences, Goa University, Goa 403 206, IN
9 National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, IN
10 Indian Institute of Mineral and Materials Technology, Bhubaneswar 751 013, IN
11 Sri Krishna Devaraya University, Anantapur 515 003, IN
12 G. B. Pant Institute of Himalayan Environment and Development, Kullu 175 126, IN
13 Tamil Nadu Agricultural University, Coimbatore 641 003, IN
14 Aryabhatta Research Institute of Observational Sciences, Nainital 263 002, IN
15 Department of Chemistry, Dayalbagh Educational Institute, Agra 282 005, IN
16 Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273 009, IN
17 Department of Chemical Engineering, IIT-BHU, Varanasi 221 005, IN
18 Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun 248 001, IN
1 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, IN
2 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, IN
3 Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
4 Centre for Atmospheric Studies, Dibrugarh University, Dibrugarh 786 004, IN
5 Regional Remote Sensing Centre, Indian Space Research Organisation, Nagpur 440 033, IN
6 North Eastern – Space Application Centres, Shillong 793 103, IN
7 Department of Physics, Tripura University, Suryamaninagar, Agartala 799 022, IN
8 Department of Marine Sciences, Goa University, Goa 403 206, IN
9 National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad 500 037, IN
10 Indian Institute of Mineral and Materials Technology, Bhubaneswar 751 013, IN
11 Sri Krishna Devaraya University, Anantapur 515 003, IN
12 G. B. Pant Institute of Himalayan Environment and Development, Kullu 175 126, IN
13 Tamil Nadu Agricultural University, Coimbatore 641 003, IN
14 Aryabhatta Research Institute of Observational Sciences, Nainital 263 002, IN
15 Department of Chemistry, Dayalbagh Educational Institute, Agra 282 005, IN
16 Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273 009, IN
17 Department of Chemical Engineering, IIT-BHU, Varanasi 221 005, IN
18 Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun 248 001, IN
Source
Current Science, Vol 120, No 2 (2021), Pagination: 341-351Abstract
In this study, we assess the response of ambient aero-sol black carbon (BC) mass concentrations and spec-tral absorption properties across Indian mainland during the nation-wide lockdown (LD) in connection with the Coronavirus Disease 19 (COVID-19) pan-demic. The LD had brought near to total cut-off of emissions from industrial, traffic (road, railways, ma-rine and air) and energy sectors, though the domestic emissions remained fairly unaltered. This provided a unique opportunity to delineate the impact of fossil fuel combustion sources on atmospheric BC characte-ristics. In this context, the primary data of BC meas-ured at the national network of aerosol observatories (ARFINET) under ISRO-GBP are examined to assess the response to the seizure of emissions over distinct geographic parts of the country. Results indicate that average BC concentrations over the Indian mainland are curbed down significantly (10–40%) from pre-lockdown observations during the first and most in-tense phase of lockdown. This decline is significant with respect to the long-term (2015–2019) averaged (climatological mean) values. The drop in BC is most pronounced over the Indo-Gangetic Plain (>60%) and north-eastern India (>30%) during the second phase of lockdown, while significant reduction is seen during LD1 (16–60%) over central and peninsular Indian as well as Himalayan and sub-Himalayan regions. De-spite such a large reduction, the absolute magnitude of BC remained higher over the IGP and north-eastern sites compared to other parts of India. Notably, the spectral absorption index of aerosols changed very little over most of the locations, indicating the still persisting contribution of fossil-fuel emissions over most of the locations.Keywords
ARFINET, Black Carbon, COVID-19.References
- Ramanathan, V. and Carmichael, G., Global and regional climate changes due to black carbon. Nat. Geosci., 2008, 1, 221–227.
- Bond, T. C. et al., Bounding the role of black carbon in the cli-mate system: a scientific assessment. J. Geophys. Res. Atmos., 2013, 118, 5380–5552; doi:10.1002/jgrd.50171.
- Gogoi, M. M. et al., Radiative effects of absorbing aerosols over north-eastern India: observations and model simulations. J. Ge-ophys. Res. Atmos., 2017, 122(2), 1132–1157; doi:10.1002/ 2016JD025592.
- Li, G. L., Sun, L., Ho, K. F., Wong, K. C. and Ning, Z., Implica-tion of light absorption enhancement and mixing state of black carbon (BC) by coatings in Hong Kong. Aerosol Air Qual. Res., 2018, 18, 2753e2763.
- Lack, D. A., Moosmüller, H., McMeeking, G. R., Chakrabarty, R. K. and Baumgardner, D., Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Anal. Bioanal. Chem., 2014; doi:10.1007/s00216-013-7402-3.
- Weingartner, E., Saathof, H., Schnaiter, M., Streit, N., Bitnar, B. and Baltensperger, U., Absorption of light by soot particles: determination of the absorption coefficient by means of Ae-thalometers. J. Aerosol Sci., 2003, 34, 1445–1463; doi:10.1016/S0021-8502(03)00359-8.
- Drinovec, L. et al., The ‘dual-spot’ Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech., 2015, 8, 1965–1979; doi: 10.5194/amt-8-1965-2015.
- Moorthy, K. K., Babu, S. S., Sunilkumar, S. V., Gupta, P. K. and Gera, B. S., Altitude profiles of aerosol BC, derived from aircraft measurements over an inland urban location in India. Geophys. Res. Lett., 2004; doi:10.1029/2004GL021336. L1B2103.
- Babu, S. S. et al., High altitude (~4520 m amsl) measurements of black carbon aerosols over western trans-Himalayas: seasonal heterogeneity and source apportionment. J. Geophys. Res. Atmos., 2011, 116(24), 1–15; doi:10.1029/2011JD016722.
- Gogoi, M. M. et al., Physical and optical properties of aerosols in a free tropospheric environment: Results from long-term observa-tions over western trans-Himalayas. Atmos. Environ., 2014, 84, 262–274.
- Arun, B. S., Aswini, A. R., Gogoi, M. M., Hegde, P., Kompalli, S. K., Sharma, P. and Babu, S. S., Physico-chemical and optical properties of aerosols at a background site (~4 km a.s.l.) in the western Himalayas. Atmos. Environ., 2019, doi:10.1016/j. atmosenv.2019.1170.
- Lau, K. M., Kim, M. K. and Kim, K. M., Aerosol induced anoma-lies in the Asian summer monsoon – the role of the Tibetan Plat-eau. Clim. Dyn., 2006, 26, 855–864; doi:10.1007/s00382-006-0114-z.
- Jain, S. and Sharma, T., Social and travel lockdown impact con-sidering coronavirus disease (COVID-19) on air quality in mega-cities of India: present benefits, future challenges and way for-ward. Aerosol Air Qual. Res., 2020; doi:10.4209/aaqr.2020. 04.0171.
- Mahato, S., Pal, S. and Ghosh, K. G., Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ., 2020; doi:10.1016/j.scitotenv.2020.139086.
- Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H. and Kota, S. H., Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ., 2020; doi:10.1016/j.scitotenv. 2020.138878.
- Bao, R. and Zhang, A., Does lockdown reduce air pollution? Evi-dence from 44 cities in northern China. Sci. Total Environ., 2020; doi:10.1016/j.scitotenv.2020.139052.
- Saadat, S., Rawtani, D. and Hussain, C. M., Environmental per-spective of COVID-19. Sci. Total Environ., 2020; doi:10.1016/ j.scitotenv.2020.138870.
- Xu, K., Cui, K., Young, L. H., Hsieh, Y. K., Wang, Y. F., Zhang, J. and Wan, S., Impact of the COVID-19 event on air quality in central China. Aerosol Air Qual. Res., 2020, 20, 915–929; doi: 10.4209/aaqr.2020.04.0150.
- Nakada, L. Y. K. and Urban, R. C., COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ., 2020, 730, 139087; doi:10.1016/ j.scitotenv.2020.139087.
- Tobías, A. et al., Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ., 2020, 726, 138540; doi:10.1016/j.scitotenv. 2020.138540.
- Otmani, A., Benchrif, A., Tahri, M., Bounakhla, M., Chakir, E. M., Bouch, M. E. and Krombi, M., Impact of COVID-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ., 2020; doi:10.1016/j.scitotenv. 2020.139541.
- Monserrate, M. A. Z. and Ruano, M. A., Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analy-sis. Air Quality Atmos. Health, 2020; doi:10.1007/s11869-020-00866-y.
- Bauwens, M. et al., Impact of coronavirus outbreak on NO2 pollu-tion assessed using TROPOMI and OMI observations. Geophys. Res. Lett., 2020; doi:10.1029/2020GL087978.
- Sicard, P. et al., Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ., 2020; doi:10.1016/ j.scitotenv.2020.139542.
- Schnaiter, M., Horvath, H., Mohler, O., Naumann, K.-H., Saatho, H. and Schock, O. W., UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci., 2003, 34, 1421–1444.
- Kirchstetter, T. W. and Novakov, T., Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res., 2004, 109, D21208; doi:10.1029/ 2004JD004999.
- Clarke, A. et al., Biomass burning and pollution aerosol over North America: Organic components and their influence on spec-tral optical properties and humidification response. J. Geophys. Res., 2007, 112, D12S18; doi:10.1029/2006JD007777.
- Kuniyal, J. C., Sharma, M., Chand, K. and Mathela, C. S., Water soluble ionic components in particulate matter (PM10) during high pollution episode days at Mohal and Kothi in the North-Western Himalaya, India. Aerosol Air Qual. Res., 2015, 15, 529–543.
- Joshi, H., Naja, M., David, L. M., Gupta, T., Gogoi, M. M. and Babu, S. S., Absorption characteristics of aerosols over the central Himalayas and its adjacent foothills. Atmos. Res., 2019, 233, 104718; doi:10.1016/j.atmosres.2019.104718.
- Dumka., U. C., Manchanda, R. K., Sinha, P. R., Sreenivasan, S., Moorthy, K. K. and Babu, S. S., Temporal variability and radia-tive impact of black carbon aerosol over tropical urban station Hyderabad. J. Atmos. Sol. Terr. Phys., 2013; doi:10.1016/ j.jastp.2013.08.003.
- Pandey, S. K. and Vinoj, V., Surprising increase in aerosol amid widespread decline in pollution over India during the Covid19 Lockdown, EarthArXiv., 2020; doi:10.31223/osf.io/5kmx2.
- Kumar, R. et al., Sources of black carbon aerosols in South Asia and surrounding regions during the integrated campaign for aero-sols, gases and radiation budget (ICARB). Atmos. Chem. Phys., 2015, 15(10), 5415–5428; doi:10.5194/acp-15-5415-2015.