A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Quek, Long Xiang
- Platinum Group Elements in Proximal Impactites of the Bukit Bunuh Impact Structure, Malaysia
Authors
1 Department of Geology, University of Malaya, Kuala Lumpur 50603, MY
2 Centre for Global Archaeological Research, Universiti Sains Malaysia, Penang 11800, MY
3 Institute of Petroleum Engineering, Heriot-Watt University, Precinct 2, Putrajaya 62100, MY
Source
Current Science, Vol 109, No 12 (2015), Pagination: 2303-2308Abstract
The Bukit Bunuh in Malaysia has recently been identified as an impact structure after the discovery of possible impact-melt-like rocks and impact breccias from this area. The impact event is believed to have occurred around 1.34-1.84 Ma. Twelve impact-related rocks from this suspected impact structure were analysed in the present study for platinum group of element (PGE) content. The sample population includes proximal impactites (two impact-melt rocks and three impact breccias) and possible impact-related rocks (four mylonites) and basement granite (three in number). The results showed no observable clear distinction between the impactites and basement granite. Compared to other asteroid impact sites in the world, the impactites and impact-related rocks in the Bukit Bunuh structure clearly contain a lower concentration of PGEs. Even though previous studies reported possible evidences of shock metamorphism in the Bukit Bunuh structure and electrical resistivity survey favoured the presence of asteroid impact structure in this area as well, the absence of a clear projectile signature in our investigation on PGE hinders further discussion on the existence and nature of the impact. We suggest that the absence of any PGE signature in the Bukit Bunuh impactites could be indicative either of (1) an achondrite projectile, or (2) an oblique impact or (3) the presence of a volatile-rich layer.Keywords
Basement Granite, Impact Structure, Platinum Group Elements, Proximal Impactites.References
- Avci, E., Uysal, I., Saka, S., Akmaz, R. M. and Muller, D., Mineralogy and composition of solid phases in chromite grains of ophiolitic podiform chromitites from the Pozanti–Karsanti Ophiolite, southern Turkey. Geophys. Res. Abstr., 2014, 16.
- Schmidt, G. and Pernicka, E., The determination of platinum group elements (PGE) in target rocks and fall-back material of the Nördlinger Ries impact crater, Germany. Geochim. Cosmochim. Acta, 1994, 58, 5083–5090.
- Schmidt, G., Clues to the nature of the impacting bodies from platinum‐group elements (rhenium and gold) in borehole samples from the Clearwater East crater (Canada) and the Boltysh impact crater (Ukraine). Meteorit. Planet. Sci., 1997, 32, 761–767.
- McDonald, I., Clearwater East impact structure: A re‐interpretation of the projectile type using new platinum‐group element data from meteorites. Meteorit. Planet. Sci., 2002, 37, 459–464.
- Tagle, R., Erzinger, J., Hecht, L., Schmitt, R. T., Stöffler, D. and Claeys, P., Platinum group elements in impactites of the ICDP Chicxulub drill core Yaxcopoil‐1: Are there traces of the projectile? Meteorit. Planet. Sci., 2004, 39, 1009–1016.
- Goderis, S., Tagle, R., Schmitt, R. T., Erzinger, J. and Claeys, P., Platinum group elements provide no indication of a meteoritic component in ICDP cores from the Bosumtwi crater, Ghana. Meteorit. Planet. Sci., 2007, 42, 731–741.
- Gertsch, B., Keller, G., Adatte, T. and Berner, Z., Platinum Group Elements (PGE) Geochemistry of Brazos Sections, Texas, USA. The End-Cretaceous mass extinction and the Chicxulub impact in Texas. SEPM Special Publication, 2011, vol. 100, pp. 227– 249.
- Koeberl, C., Claeys, P., Hecht, L. and McDonald, I., Geochemistry of impactites. Elements, 2012, 8, 37–42.
- Jinmin, M., Saad, R., Saidin, M. and Bery, A. A., Electrical resistivity survey in Bukit Bunuh, Malaysia for subsurface structure of meteorite Impact study. Open J. Geol., 2013, 3, 34–37.
- Saidin, M., Historic discovery of meteorite impact at Bukit Bunuh, Lenggong Valley, Perak. In International Conference on Archeogeology of Meteoritic Impact at Bukit Bunuh Area, Lenggong, Perak, Malaysia, Center for Global Archaeological Research, University Sains Malaysia, Pulau Pinang, 2012.
- Saidin, M., Absolute date of Bukit Bunuh impactites. In International Conference on Archeogeology of Meteoritic Impact at Bukit Bunuh Area, Lenggong, Perak, Malaysia, Center for Global Archaeological Research, University Sains Malaysia, Pulau Pinang, 2012.
- Mohamad, H., Saidin, M., Rashidi, N. A. and Umor, M. R., Petrography of Bukit Bunuh impactites and their protolith. In International Conference on Archeogeology of Meteoritic Impact at Bukit Bunuh Area, Lenggong, Perak, Malaysia, Center for Global Archaeological Research, University Sains Malaysia, Pulau Pinang, 2012.
- Stöffler, D. and Grieve, R. A. F., Impactites. In Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences (eds Fettes, D. and Desmons, J.), Cambridge University Press, Cambridge, 2007, pp. 82–92; 111–125 and 126–242.
- Isahak, A., Rashidi, N. A., Cahyaningsih, C. and Saidin, M., Indications of shock metamorphism in Bukit Bunuh area, Lenggong, Perak. In International Conference on Archeogeology of Meteoritic Impact at Bukit Bunuh Area, Lenggong, Perak, Malaysia, Centre for Global Archaeological Research, University Sains Malaysia, Pulau Pinang, 2012.
- Huber, H., Koeberl, C., McDonald, I. and Reimold, W. U., Geochemistry and petrology of Witwatersrand and Dwyka diamictites from South Africa: search for an extraterrestrial component. Geochim. Cosmochim. Acta, 2001, 65, 2007–2016.
- Simonson, B. M., McDonald, I., Shukolyukov, A., Koeberl, C., Reimold, W. U. and Lugmair, G. W., Geochemistry of 2.63– 2.49 Ga impact spherule layers and implications for stratigraphic correlations and impact processes. Precambrian Res., 2009, 175, 51-76
- Raj, J. K., Tan, D. N. K. and Abdullah, W. H., Cenozoic stratigraphy. In Geology of Peninsular Malaysia (eds Hutchison, C. S. and Tan, D. N. K.), University of Malaya and Geological Society of Malaysia, Kuala Lumpur, 2009, pp. 133–173.
- Ghani, A. A., Searle, M., Robb, L. and Chung, S.-L., Transitional I S type characteristic in the Main Range Granite, Peninsular Malaysia. J. Asian Earth Sci., 2013, 76, 225–240.
- Cobbing, E. J. and Mallick, D. I. J., South East Asia granite project: field report for Peninsula Malaysia, British Geological Survey, Keyworth, UK, 1987.
- Cobbing, E. J., Pitfield, P. E. J., Darbyshire, D. P. F. and Mallick, D. I. J., The granites of the South–East Asian tin belt, British Geological Survey, Keyworth, UK, 1992, p. 369.
- French, B. M. and Koeberl, C., The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why. Earth-Sci. Rev., 2010, 98, 123–170.
- Hecht, L., Reimold, W. U., Sherlock, S., Tagle, R., Koeberl, C. and Schmitt, R. T., New impact‐melt rock from the Roter Kamm impact structure, Namibia: Further constraints on impact age, melt rock chemistry, and projectile composition. Meteorit. Planet. Sci., 2008, 43, 1201–1218.
- Koeberl, C. and Reimold, W. U., Geochemistry and petrography of impact breccias and target rocks from 60 the 145 Ma Morokweng impact structure, South Africa. Geochim. Cosmochim. Acta, 2003, 67, 1837–1862.
- Pratesi, G., Morelli, M., Rossi, A. P. and Ori, G. G., Chemical compositions of impact melt breccias and target rocks from the Tenoumer impact crater, Mauritania. Meteorit. Planet. Sci., 2005, 40, 1653–1672.
- Morgan, J. W., Janssens, M. J., Hertogen, J., Gros, J. and Takahashi, H., Ries impact crater, southern Germany: Search for meteoritic material. Geochim. Cosmochim. Acta, 1979, 43, 803–815.
- Palme, H., Identification of projectiles of large terrestrial impact craters and some implications for the interpretation of Ir-rich Cretaceous/Tertiary boundary layers. Geol. Soc. Am. Spec. Pap., 1982, 190, 223–234.
- Wolf, R., Woodrow, A. B. and Grieve, R. A., Meteoritic material at four Canadian impact craters. Geochim. Cosmochim. Acta, 1980, 44, 1015–1022.
- Krot, A. N., Keil, K., Goodrich, C. A., Scott, E. R. D. and Weisberg, M. K., Classification of meteorites. In Meteorites, Comets and Planets: Treatise on Geochemistry, Volume 1 (ed. Davis, A. M.), Elsevier, Amsterdam, 2005, pp. 83–128.
- Stöffler, D., Artemieva, N. A., Wünnemann, K., Reimold, W. U., Jacob, J., Hansen, B. K. and Summerson, I. A., Ries crater and suevite revisited – Observations and modeling Part I: Observations. Meteorit. Planet. Sci., 2013, 48, 515–589.
- Gelinas, A., Kring, D. A., Zurcher, L., Urrutia‐Fucugauchi, J., Morton, O. and Walker, R. J., Osmium isotope constraints on the proportion of bolide component in Chicxulub impact melt rocks. Meteorit. Planet. Sci., 2004, 39, 1003–1008.
- Alvarez, L. W., Alvarez, W., Asaro, F. and Michel, H. V., Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 1980, 208, 1095–1108.
- Samsudin, A. R., Saidin, M., Harun, A. R., Ariffin, M. H., Hamzah, U. and Sahibul Karamah, M. S., Morphology of Bukit Bunuh Crater: geophysical gravity evidences. International Conference on Archeogeology of Meteoritic Impact at Bukit Bunuh Area, Lenggong, Perak, Malaysia, Center for Global Archaeological Research, University Sains Malaysia, Pulau Pinang, 2012.
- McDonough, W. F. and Sun, S. S., The composition of the Earth. Chem Geol., 1995, 120, 223–253.
- Adatte, T., Keller, G., Stüben, D., Harting, M., Kramar, U., Stinnesbeck, W. and Benjamini, C., Late Maastrichtian and K/T paleoenvironment of the eastern Tethys (Israel): mineralogy, trace and platinum group elements, biostratigraphy and faunal turnovers. Bull. Soc. Geol. Fr., 2005, 176, 37–55.
- Highly Potassic Melagranite of Bintang Batholith, Main Range Granite, Peninsular Malaysia
Authors
1 Department of Geology, University of Malaya, Kuala Lumpur, 50603, MY
2 Centre for Global Archaeological Research, Universiti Sains Malaysia, Penang, 11800, MY
Source
Current Science, Vol 108, No 12 (2015), Pagination: 2159-2163Abstract
No Abstract.- Petrogenesis of Ajil Mafic Dykes from Eastern Belt of Peninsular Malaysia:Fractionated within Plate Lithospheric Mantle Magma Beneath the Eastern Malaya Block
Authors
1 Department of Geology, University of Malaya 50603, Kuala Lumpur, MY
Source
Current Science, Vol 113, No 07 (2017), Pagination: 1448-1455Abstract
North-eastern trending mafic dykes are found intruding granitic body in Ajil area, Eastern Belt of Peninsular Malaysia. The intrusions display sharp, vertical to sub-vertical contacts to granitic host and consist mainly of plagioclase and clinopyroxene. Majority of the dykes are quartz tholeiite with some olivine tholeiite. All dykes display enrichment in light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and depletion in high field strength elements (HFSE) and Pb. Low compatible elements’ content such as MgO, Ni and Cr implied that crystal fractionation were controlled by olivine and clinopyroxene. The dykes were originated from shallow lithospheric mantle, the source region of which has been influenced by hydrous metasomatism. The emplacement of the dykes took place in fault-controlled within-plate tectonic setting.Keywords
Ajil Mafic Dykes, Clenopyroxene, Peninsular Malaysia, Petrogenesis, Plagioclase.References
- Searle, M. P. et al., Tectonic evolution of the Sibumasu-Indochina terrane collision zone in Thailand and Malaysia: constraints from new U-Pb zircon chronology of SE Asian tin granitoids. J. Geol. Soc., 2012, 169, 489–500.
- Tjia, H. D. and Gobbett, D. J., Tectonic history. In Geology of the Malay Peninsula: West Malaysia and Singapore (eds Gobbett, D. J. and Hutchison, C. S.), John Wiley-Interscience, New York, 1973, pp. 305–330.
- Hutchison, C. S., Tectonic evolution of Sundaland: a Phanerozoic Synthesis. Bull. Geol. Soc. Malaysia, 1973, 6, 61–86.
- Cobbing, E. J., Pitfield, P. E. J., Darbyshire, D. P. F. and Mallick, D. I. J., The granites of the South-East Asian Tin Belt. Overseas Memoir 10. British Geological Survey, 1992.
- Ghani, A. A., Lo, C.-H. and Chung, S.-L., Basaltic dykes of the Eastern Belt of Peninsular Malaysia: the effects of the difference in crustal thickness of Sibumasu and Indochina. J. Asian Earth Sci., 2013, 77, 127–139.
- Thompson, R. N., Dispatches from the basalt front. 1. Experiments. Proc. Geol. Ass., 1984, 95, 249–262.
- Winchester, J. A. and Floyd, P. A., Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 1977, 20, 325–343.
- Hooper, P. R. and Hawkesworth, C. J., Isotopic and geochemical constraints on the origin and evolution of the Columbia River basalt. J. Petrol., 1993, 34, 1203–1246.
- Blundy, J. D., Robinson, J. A. C. and Wood, B. J., Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet. Sci. Lett., 1998, 160, 493–504.
- McDonough, W. F. and Sun, S. S., Composition of the Earth. Chem. Geol., 1995, 120, 223–253.
- Xia, L. Q., The geochemical criteria to distinguish continental basalts from arc related ones. Earth Sci. Rev., 2014, 139, 195–212.
- Wilson, M., Igneous petrogenesis. Unwin Hyman, London, UK, 1989, p. 466.
- Shervais, J. W., Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., 1982, 59, 101–118.
- Pearce, J. A. and Norry, M. J., Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 1979, 69, 33–37.
- Pearce, J. A., Trace element characteristics of lavas from destructive plate boundaries. In Andesites (ed. Thrope, R. S.), Wiley, New York, 1982, pp. 525–548.
- Sun, S. S. and McDonough, W. F., Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. and Norry, M. J.), Geological Society Special Publication, 1989, vol. 42, 313–345.
- Rudnick, R. L. and Gao, S., Composition of the Continental Crust. Treatise on Geochemistry, Elsevier, Amsterdam, 2003, 3, 1–64.
- Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., Blake, S., Naldrett, A. J., Doherty, W. and Gorbachev, N. S., Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos, 1995, 34, 61–88.
- Puffer, J. H., Contrasting high field strength element contents of continental flood basalts from plume versus reactivated-arc sources. Geology, 2001, 29, 675–678.
- Murphy, J. B. and Dostal, J., Continental mafic magmatism of different ages in the same terrane: constraints on the evolution of an enriched mantle source. Geology, 2007, 35, 335–338.
- Hutchison, C. S., Geological Evolution of South-East Asia, Geological Society of Malaysia, Malaysia, 2007, 2nd edn.
- Morgan, W. J., Convection plumes in the lower mantle. Nature, 1971, 230, 42–43.
- Fitton, J. G., Coupled molybdenum and niobium depletion in continental basalts. Earth Planet. Sci. Lett., 1995, 136, 715–721.
- Gibson, S. A., Thompson, R. N., Leonardos, O. H., Dickin, A. P. and Mitchell, J. G., The limited extent of plume–lithosphere interactions during continental flood-basalt genesis: geochemical evidence from Cretaceous magmatism in southern Brazil. Contrib. Mineral. Petrol., 1999, 137, 147–169.
- Le Roex, A. P., Dick, H. J. B., Erlank, A. J., Reid, A. M., Frey, F. A. and Hart, S. R., Geochemistry, mineralogy and petrogenesis of lavas erupted along the south west Indian ridge between the Bouvet triple junction and 11 degrees east. J. Petrol., 1983, 24, 267–318.
- Thompson, R. N. and Morrison, M. A., Asthenospheric and lower-lithospheric mantle contributions to continental extension magmatism: an example from the British Tertiary Province. Chem. Geol., 1988, 68, 1–15.
- Dupuy, C., Liotard, J. M. and Dostal, J., Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochim. Cosmochim. Acta, 1992, 56, 2417–2423.
- Jorg, A., Pfänder, J. A., Munker, C., Stracke, A. and Mezger, K., Nb/Ta and Zr/Hf in ocean island basalts – implications for crustmantle differentiation and the fate of Niobium. Earth Planet. Sci. Lett., 2007, 254, 158–172.
- Chen, Y. et al., Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Res., 2014, 26(2), 449–463.
- Kepezhinskas, P., McDermott, F., Defant, M. J., Hochstaedter, A. and Drummond, M. S., Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta, 1997, 61, 577–600.
- Absolute Age Evidence of Early to Middle Ordovician Volcanism in Peninsular Malaysia
Authors
1 Department of Geology, University of Malaya, Kuala Lumpur 50603, MY
2 Department of Earth Sciences, National Taiwan Normal University, Taipei 116, TW
3 Institute of Earth Sciences, Academia Sinica, Taipei 115, TW
4 Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia, Penang 11800, Pulau Pinang, MY
5 School of Environmental Sciences and Natural Resources,Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, MY
Source
Current Science, Vol 115, No 12 (2018), Pagination: 2291-2296Abstract
Evidence of Early Palaeozoic volcanism in Peninsular Malaysia is largely represented by felsic Gerik– Dinding meta-volcanic rocks; however, reliable absolute ages for the meta-volcanic rocks are still lacking. This restricts correlation of these meta-volcanic rocks with other Early Palaeozoic East Gondwana Proto- Tethys margin tectonic elements identified in the evolution of Southeast Asia. Here, we report petrographic data and zircon U–Pb age of the Gerik–Dinding metavolcanic rocks. Zircons from three Gerik–Dinding meta-volcanic rock samples yield Early to Middle Ordovician weighted mean 206Pb/238U ages between 480 and 460 Ma.
The formation age of the meta-volcanic rocks coincides with the post-collision stage from the final amalgamation of Asian micro-continental fragments with the East Gondwana Proto-Tethys margin. Tectonic processes such as lithospheric delamination during the post-collision period could have induced the hot asthenosphere to underplate the continental crust and trigger crustal anatexis. With these findings, the Early Palaeozoic tectonic history of Peninsular Malaysia needs careful review.
Keywords
Absolute Age, Meta-Volcanic Rocks, Petrographic Data, Tectonic Elements.References
- Cawood, P. A., Johnson, M. R. and Nemchin, A. A., Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth Planet. Sci. Lett., 2007, 255, 70–84.
- Liu, S. et al., U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong–Baoshan Block, Western Yunnan Province, SW China. J. Asian Earth Sci., 2009, 36, 168–182.
- Zhu, D. C. et al., Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chem. Geol., 2012, 328, 290–308.
- Hu, P., Li, C., Wang, M., Xie, C. and Wu, Y., Cambrian volcanism in the Lhasa terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin. J. Asian Earth Sci., 2013, 77, 91–107.
- Hu, P. Y., Zhai, Q. G., Jahn, B. M., Wang, J., Li, C., Lee, H. Y. and Tang, S. H., Early Ordovician granites from the South Qiangtang terrane, northern Tibet: implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin. Lithos, 2015, 220, 318–338.
- Li, G., Wang, Q. F., Huang, Y. H., Gao, L. and Yu, L., Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block: implications for the early Paleozoic tectonic evolution along East Gondwana. Lithos, 2016, 245, 76–92.
- Zhao, S. W., Lai, S. C., Gao, L., Qin, J. F. and Zhu, R. Z., Evolution of the Proto-Tethys in the Baoshan block along the East Gondwana margin: constraints from early Palaeozoic magmatism. Int. Geol. Rev., 2017, 59, 1–15.
- Jones, C. R., The Geology and Mineral Resources of the Grik Area, Upper Perak, Geological Survey Headquarters, Ipoh, Malaysia, 1970.
- Jones, C. R., Lower Paleozoic. In Geology of Malay Peninsula (eds Gobbett, D. J. and Hutchison, C. S.), Wiley-Interscience, New York, USA, 1973, pp. 25–60.
- Hutchison, C. S., Volcanic activity. In Geology of Malay Peninsula (eds Gobbett, D. J. and Hutchison, C. S.), Wiley-Interscience, New York, USA, 1973, pp. 177–214.
- Metcalfe, I., Tectonic evolution of the Malay Peninsula. J. Asian Earth Sci., 2013, 76, 195–213.
- Metcalfe, I., Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci., 2013, 66, 1–33.
- Metcalfe, I., The Bentong–Raub suture zone. J. Asian Earth Sci., 2000, 18, 691–712.
- Hutchison, C. S., Ophiolite in Southeast Asia. Geol. Soc. Am. Bull., 1975, 86, 797–806.
- Sevastjanova, I., Clements, B., Hall, R., Belousova, E. A., Griffin, W. L. and Pearson, N., Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: insights from detrital zircon U–Pb and Hf-isotope data. Gondwana Res., 2011, 19, 1024–1039.
- Ng, S. W. P. et al., Petrogenesis of Malaysian tin granites: Part 2. High precision U–Pb zircon geochronology of the Malaysian tin granites and tectonic model for their emplacement history. Geol. Soc. Am. Bull., 2015, 127, 1238–1258.
- Searle, M. P. et al., Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: constraints from new U–Pb zircon chronology of SE Asian tin granitoids. J. Geol. Soc., 2012, 169, 489–500.
- Oliver, G., Zaw, K., Hotson, M., Meffre, S. and Manka, T., U–Pb zircon geochronology of Early Permian to Late Triassic rocks from Singapore and Johor: a plate tectonic reinterpretation. Gondwana Res., 2014, 26, 132–143.
- Ghani, A. A., Searle, M., Robb, L. and Chung, S. L., Transitional I S type characteristic in the Main Range Granite, Peninsular Malaysia. J. Asian Earth Sci., 2013, 76, 225–240.
- Ng, S. W. P. et al., Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr–Nd isotopic characteristics. Geol. Soc. Am. Bull., 2015, 127, 1209–1237.
- Quek, L. X., Jamil, A., Ghani, A. A. and Saidin, M., Highly potassic granite of Bintang batholith, Main Range Granite, Peninsular Malaysia. Curr. Sci., 2015, 108, 2159–2163.
- Quek, L. X. et al., Mafic microgranular enclaves (MMEs) in amphibolebearing granites of the Bintang batholith, Main Range Granite Province: evidence for a meta-igneous basement in Western Peninsular Malaysia. J. Asian Earth Sci., 2017, 143, 11–29.
- Jamil, A., Ghani, A. A., Zaw, K., Othman, S. and Quek, L. X., Origin and tectonic implications of the ~200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia. J. Asian Earth Sci., 2016, 127, 32–46.
- Shu, Y. K., Geology and Mineral Resources of the Kuala Kelawang Area, Jelebu, Negeri Sembilan, Geological Survey Headquarters, Ipoh, Malaysia, 1989.
- Liew, T. C., Petrogenesis of the Peninsular Malaysia granitoid batholiths. Ph D thesis, Australia National University, Canberra, Australia, 1983.
- Ghani, A. A. and Singh, N., Petrology and geochemistry of the Sempah volcanic complex: Peninsular Malaysia. Geol. Soc. Malays. Bull., 2005, 51, 103–121.
- Lee, C. P., Leman, M. S., Nasib, B. M. and Karim, R., Stratigraphic lexicon of Malaysia. Geological Society of Malaysia, Kuala Lumpur, 2004.
- Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M. and Iizuka, Y., Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 2013, 162, 70–87.
- Jackson, S. E., Pearson, N. J., Griffin, W. L. and Belousova, E. A., The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol., 2004, 211, 47–69.
- Andersen, T., Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol., 2002, 192, 59–79.
- Ludwig, K. J., User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronological Center, Berkeley, USA, 2003.
- Corfu, F., Hanchar, J. M., Hoskin, P. W. and Kinny, P., Atlas of zircon textures. Rev. Mineral. Geochem., 2003, 53, 469–500.
- Hoskin, P. W. and Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem., 2003, 53, 27–62.
- Rubatto, D. and Gebauer, D., Use of cathodoluminescence for U–Pb zircon dating by ion microprobe: some examples from the Western Alps. In Cathodoluminescence in Geosciences (eds Pagel, M. et al.), Springer, Berlin, Heidelberg, Germany, 2000, pp. 373– 400.
- Condie, K. C., Belousova, E., Griffin, W. L. and Sircombe, K. N., Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Res., 2009, 15, 228–242.
- Burrett, C. et al., The configuration of Greater Gondwana–evidence from LA ICPMS, U–Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Res., 2014, 26, 31–51.
- Hu, P. Y., Zhai, Q. G., Jahn, B. M., Wang, J., Li, C., Lee, H. Y. and Tang, S. H., Early Ordovician granites from the South Qiangtang terrane, northern Tibet: implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin. Lithos, 2015, 220, 318–338.
- Xing, X., Wang, Y., Cawood, P. A. and Zhang, Y., Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan. Int. J. Earth Sci., 2017, 106, 1469–1486.
- Yang, X. J., Jia, X. C., Xiong, C. L., Bai, X. Z., Huang, B. X., Gai, L. and Yang, C. B., LA-ICP-MS zircon U–Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, Western Yunnan Province, and its geological significance. Geol. Bull. China, 2012, 31, 264–276.
- Lin, Y. L., Yeh, M. W., Lee, T. Y., Chung, S. L., Iizuka, Y. and Charusiri, P., First evidence of the Cambrian basement in Upper Peninsula of Thailand and its implication for crustal and tectonic evolution of the Sibumasu terrane. Gondwana Res., 2013, 24, 1031–1037.