Refine your search
Collections
Co-Authors
- P. Janardhan
- Santosh Vadawale
- Bhas Bapat
- K. P. Subramanian
- D. Chakrabarty
- Prashant Kumar
- Aveek Sarkar
- Nandita Srivastava
- R. Satheesh Thampi
- Vipin K. Yadav
- M. B. Dhanya
- Govind G. Nampoothiri
- Anil Bhardwaj
- K. Subhalakshmi
- Tirtha Pratim Das
- Smitha V. Thampi
- Neha Naik
- P. Sreelatha
- P. Pradeepkumar
- G. Padma Padmanabhan
- B. Sundar
- Dinakar Prasad Vajja
- Amarnath Nandi
- Md. Nazeer
- P. T. Lali
- Rosmy John
- A. V. Aliyas
- Vijay Kumar Sen
- M. Ramprabhu
- A. Ajay Krishna
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Abhishek, J. K.
- Probing the Heliosphere Using in Situ Payloads On-Board Aditya-L1
Abstract Views :302 |
PDF Views:134
Authors
P. Janardhan
1,
Santosh Vadawale
1,
Bhas Bapat
2,
K. P. Subramanian
1,
D. Chakrabarty
1,
Prashant Kumar
1,
Aveek Sarkar
1,
Nandita Srivastava
1,
R. Satheesh Thampi
3,
Vipin K. Yadav
3,
M. B. Dhanya
3,
Govind G. Nampoothiri
3,
J. K. Abhishek
3,
Anil Bhardwaj
1,
K. Subhalakshmi
4
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Indian Institute of Science Education and Research, Pashan, Pune 411 008, IN
3 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, IN
4 Laboratory for Electro-Optics Systems, ISRO, Bengaluru 560 058, IN
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Indian Institute of Science Education and Research, Pashan, Pune 411 008, IN
3 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, IN
4 Laboratory for Electro-Optics Systems, ISRO, Bengaluru 560 058, IN
Source
Current Science, Vol 113, No 04 (2017), Pagination: 620-624Abstract
Aditya-L1, the first ever Indian scientific space mission dedicated to probe the Sun, our nearest star, is slated for launch by the Indian Space Research Organisation (ISRO) most likely in 2020, the year coinciding with the expected start of the rising phase of solar cycle 25. Of the seven science payloads on-board Aditya-L1, three are in situ instruments, namely the Aditya Solar wind Particle Experiment, the Plasma Analyser Package for Aditya and a magnetometer package. These three payloads will sample heliospheric data from the L1 Lagrangian point of the Sun-Earth system, at a distance of ~1% of the distance to the Sun, along the Sun-Earth line. This is therefore a unique opportunity for the solar physics community to gain a better understanding of the inner heliosphere and predict space weather more accurately.Keywords
Aditya-L1, Heliosphere, Payload, Solar Wind Plasma.References
- Holzer, T. E., In ESA Special Publication, Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere (eds Fleck, B., Zurbuchen, T. H. and Lacoste, H.), 2005, Vol. 592, p. 115.
- Bridge, H. S., Plasmas in space. Phys. Today, 1963, 16, 31.
- Ness, N. F., The Interplanetary Medium. In Introduction to Space Science, 1965, p. 323.
- Parker, E. N., Dynamics of the interplanetary gas and magnetic fields. ApJ, 1958, 128, 664.
- Holzer, T. E. and Axford, W. I., The theory of stellar winds and related flows. Ann. Rev. Astron. Astrophys., 1970, 8, 31.
- Belcher, J. W. and Davis Jr, L., Large-amplitude Alfvén waves in the interplanetary medium 2. JGR, 1971, 76, 3534.
- Leer, E. and Holzer, T. E., Energy addition in the solar wind, JGR, 1980, 85, 4681.
- Bame, S. J., Asbridge, J. R., Feldman, W. C., Montgomery, M. D. and Gary, S. P., Evidence for local ion heating in solar wind high speed streams. GRL, 1975, 2, 373.
- Kasper, J. C., Lazarus, A. J. and Gary, S. P., Hot solar-wind helium: direct evidence for local heating by Alfven-cyclotron dissipation. Phys. Rev. Lett., 2008, 101, 261103.
- Pilipp, W. G. et al., Variations of electron distribution functions in the solar wind. JGR, 1987, 92, 1103.
- Marsch, E. et al., Solar wind protons – three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. JGR, 1982, 87, 52.
- Bale, S. D. et al., Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett., 2009, 103, 211101.
- Lie-Svendsen, Ø., Holzer, T. E. and Leer, E., Electron heat conduction in the solar transition region: validity of the classical description. ApJ, 1999, 525, 1056.
- Rosenbauer, H. et al., A survey on initial results of the HELIOS plasma experiment. J. Geophys., 1977, 42, 561.
- Pierrard, V., Maksimovic, M. and Lemaire, J., Electron velocity distribution functions from the solar wind to the corona. JGR, 1999, 104, 17021.
- Vocks, C. and Mann, G., Generation of suprathermal electrons by resonant wave–particle interaction in the solar corona and wind. ApJ, 2003, 593, 1134.
- Vourlidas, A. et al., Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. ApJ, 2010, 722, 1522.
- Howard, R. A., Michels, D. J., Sheeley Jr, N. R. and Koomen, M. J., The observation of a coronal transient directed at earth. ApJL, 1982, 263, L101.
- Hirshberg, J., Asbridge, J. R. and Robbins, D. E., Velocity and flux dependence of the solar–wind helium abundance. JGR, 1972, 77, 3583.
- Lepri, S. T. and Zurbuchen, T. H., Iron charge state distributions as an indicator of hot ICMEs: possible sources and temporal and spatial variations during solar maximum. JGR, 2004, 109, A01112.
- Lepri, S. T. et al., Iron charge distribution as an identifier of interplanetary coronal mass ejections. JGR, 2001, 106, 29231.
- Henke, T. et al., Ionization state and magnetic topology of coronal mass ejections. JGR, 2001, 106, 10597.
- Marsch, E., Yao, S. and Tu, C.-Y., Proton beam velocity distributions in an interplanetary coronal mass ejection. Ann. Geophys., 2009, 27, 869.
- Reames, D. V., Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 1999, 90, 413.
- Feynman, J. and Gabriel, S. B., On space weather consequences and predictions. JGR, 2000, 105, 10543.
- Barth, J. L., Dyer, C. S. and Stassinopoulos, E. G., Space, atmospheric and terrestrial radiation environments. Nucl. Sci., IEEE Trans., 2003, 50, 466.
- Gargate, L., Fonseca, R. A., Silva, L. O., Bamford, R. A. and Bingham, R., SEP acceleration in CME driven shocks using a hybrid code. ApJ, 2014, 792, 9.
- Asbridge, J. R., Bame, S. J. and Strong, I. B., Outward flow of protons from the Earth’s bow shock. JGR, 1968, 73, 5777.
- Anagnostopoulos, G. C., Kaliabetsos, G., Argyropoulos, G. and Sarris, E. T., High energy ions and electrons upstream from the Earth’s bow shock and their dependence on geomagnetic conditions: statistical results between years 1982–1988. GRL, 1999, 26, 2151.
- Desai, M. I. et al., Characteristics of energetic (>30 keV/nucleon) ions observed by the Wind/STEP instrument upstream of the Earth’s bow shock. JGR, 2000, 105, 61.
- Janardhan, P., Bisoi, S. K. and Gosain, S., Solar polar fields during cycles 21–23: correlation with meridional flows. Solar Phys., 2010, 267, 267.
- Janardhan, P., Bisoi, S. K., Ananthakrishnan, S., Tokumaru, M. and Fujiki, K., The prelude to the deep minimum between solar cycles 23 and 24: interplanetary scintillation signatures in the inner heliosphere. GRL, 2011, 38, L20108.
- Bisoi, S. K., Janardhan, P., Chakrabarty, D., Ananthakrishnan, S. and Divekar, A., Changes in quasi-periodic variations of solar photospheric fields: precursor to the deep solar minimum in cycle 23? Solar Phys., 2014, 289, 41.
- Janardhan, P., Bisoi, S. K., Ananthakrishnan, S., Sridharan, R. and Jose, L., Solar and interplanetary signatures of a Maunder-like grand solar minimum around the corner – implications to near-earth space. Sun Geosphere, 2015, 10, 147.
- Janardhan, P. et al., A 20 year decline in solar photospheric magnetic fields: inner-heliospheric signatures and possible implications. JGR, 2015, 120, 5306.
- Rout, D., Chakrabarty, D., Janardhan, P., Sekar, R., Maniya, V. and Pandey, K., Solar wind flow angle and geoeffectiveness of co-rotating interaction regions: first results. GRL, 2017, 44, 4532.
- Cane, H. V., Reames, D. V. and von Rosenvinge, T. T., The role of interplanetary shocks in the longitude distribution of solar energetic particles. JGR, 1988, 93, 9555.
- Chandra’s Atmospheric Composition Explorer-2 Onboard Chandrayaan-2 to Study the Lunar Neutral Exosphere
Abstract Views :440 |
PDF Views:113
Authors
Tirtha Pratim Das
1,
Smitha V. Thampi
2,
M. B. Dhanya
2,
Neha Naik
2,
P. Sreelatha
2,
P. Pradeepkumar
2,
G. Padma Padmanabhan
2,
B. Sundar
2,
Dinakar Prasad Vajja
2,
Amarnath Nandi
2,
R. Satheesh Thampi
2,
Vipin K. Yadav
2,
J. K. Abhishek
2,
Md. Nazeer
2,
P. T. Lali
2,
Rosmy John
2,
A. V. Aliyas
2,
Vijay Kumar Sen
2,
M. Ramprabhu
2,
A. Ajay Krishna
2
Affiliations
1 Directorate of Technology Development and Innovation, Department of Space, ISRO Headquarters, Antariksh Bhavan, New BEL Road, Bengaluru 560 094, IN
2 Vikram Sarabhai Space Centre, ISRO, Thiruvananthapuram 695 022, IN
1 Directorate of Technology Development and Innovation, Department of Space, ISRO Headquarters, Antariksh Bhavan, New BEL Road, Bengaluru 560 094, IN
2 Vikram Sarabhai Space Centre, ISRO, Thiruvananthapuram 695 022, IN
Source
Current Science, Vol 118, No 2 (2020), Pagination: 202-209Abstract
The CHandra’s Atmospheric Composition Explorer-2 (CHACE-2) experiment aboard Chandrayaan-2 orbiter will study in situ, the composition of the lunar neutral exosphere in the mass range 1–300 amu with mass resolution of 0.5 amu. It will address the spatial and temporal variations of the lunar exosphere, and examine water vapour as well as heavier species in it. In this article, results of the major characterization and calibration experiments of CHACE-2 are presented, with an outline of the qualification tests for both the payload and ground segment.Keywords
CHACE-2, Chandrayaan-2, Exosphere, Mass Spectrometer.References
- Stern, S. A., The lunar atmosphere: history, status, current problems, and context. Rev. Geophys., 1999, 37, 453–491.
- Hoffman, J. H., Hodges Jr, R. R., Johnson, F. S. and Evans, D. E., Lunar atmospheric composition: results from Apollo 17. In Lunar and Planetary Science Conference Proceedings, 1973, vol. 4, p. 2875.
- Sridharan, R., Ahmed, S. M., Das, T. P., Sreelatha, P., Pradeepkumar, P., Naik, N. and Supriya, G., The sunlit lunar atmosphere: a comprehensive study by CHACE on the moon impact probe of Chandrayaan-1. Planet. Space Sci., 2010, 58, 1567–1577.
- Sridharan, R., Das, T. P., Ahmed, S. M. and Bhardwaj, A., Indicators for localized regions of heavier species in the lunar surface from CHACE on Chandrayaan-1. Curr. Sci., 2013, 105(11), 1470– 1472.
- Sridharan, R., Das, T. P., Ahmed, S. M., Supriya, G., Bhardwaj, A. and Kamalakar, J. A., Spatial heterogeneity in the radiogenic activity of the lunar interior: Inferences from CHACE and LLRI on Chandrayaan-1. Adv. Space Res., 2013, 51, 168–178.
- Thampi, S. V., Sridharan, R., Das, T. P., Ahmed, S. M., Kamalakar, J. A. and Bhardwaj, A., The spatial distribution of molecular hydrogen in the lunar atmosphere – new results. Planet. Space Sci., 2015, 106, 142–147.
- Tirtha Pratim Das, Thampi, S. V., Bhardwaj, A., Ahmed, S. M. and Sridharan, R., Observation of Ne at mid and high latitudes in the sunlit lunar exosphere: results from CHACE aboard MIP/ Chandrayaan-1. Icarus, 2016, 272, 206–211.
- Tirtha Pratim Das, Smitha V. Thampi, Dhanya, M. B., Anil Bhardwaj, Ahmed, S. M. and Sridharan, R., Upper limit of helium-4 in the sunlit lunar exosphere during magnetotail passage under low solar wind condition: result from CHACE aboard MIP in Chandrayaan-1. Icarus, 2017, 297, 189–194.
- Colaprete, A. et al., Detection of water in the LCROSS ejecta plume. Science, 2010, 330(6003), 463–468.
- Elphic, R. C. et al. The Lunar Atmosphere and Dust Environment Explorer Mission. Space Sci. Rev., 2014, 185, 3–25.
- Benna, M., Mahaffy, P. R., Halekas, J. S., Elphic, R. C. and Delory, G. T., Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument. Geophys. Res. Lett., 2015, 42, 3723–3729.
- Hodges, R. R. and Mahaffy, P. R., Synodic and semiannual oscillations of argon-40 in the lunar exosphere. Geophys. Res. Lett., 2016, 43, 22–27.
- Cook, J. C., Stern, S. A., Feldman, P. D., Gladstone, G. R., Retherford, K. D. and Tsang, C. C. C., New upper limits on numerous atmospheric species in the native lunar atmosphere. Icarus, 2013, 225, 681–687.
- Sridharan, R., Ahmed, S. M., Das, T. P., Sreelatha, P., Pradeepkumar, P., Naik, N. and Supriya, G., ‘Direct’ evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I. Planet. Space Sci., 2010, 58, 947–950.
- Pieters, C. M. et al., Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on Chandrayaan-1. Science, 2009, 326, 568.
- Amanda, R. H. et al., Diurnally-migrating lunar water: evidence from ultraviolet data. Geophys. Rev. Lett., 2019; doi: 10.1029/2018GL081821.
- Lawrence, D., Miller, R., Ozimek, M., Peplowski, P. and Scott, C., High-resolution mapping of lunar polar hydrogen with a lowresource orbital mission. Acta Astronaut., 2015, 115, 452–462.
- Kumar, A. et al., The moon impact probe on Chandrayaan-I. Curr. Sci., 2009, 96(4), 540–543.
- Bhardwaj, A. et al., MENCA experiment aboard India’s mars orbiter mission. Curr. Sci., 2015, 109(6), 1106–1113; doi:10.18520/v109/i6/1106-1113.
- Chapman, J. R., Practical Organic Mass Spectrometry, John Wiley, Chichester, UK, 1995, 2nd edn.