Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Negi, H. S.
- Snow and Glacier Investigations Using Hyperspectral Data in the Himalaya
Abstract Views :176 |
PDF Views:37
Authors
Affiliations
1 Snow and Avalanche Study Establishment, Him Parisar, Sector-37A, Chandigarh 160 036, IN
2 Space Applications Centre, ISRO, Ahmedabad 380 015, IN
1 Snow and Avalanche Study Establishment, Him Parisar, Sector-37A, Chandigarh 160 036, IN
2 Space Applications Centre, ISRO, Ahmedabad 380 015, IN
Source
Current Science, Vol 108, No 5 (2015), Pagination: 892-902Abstract
This article presents highlights of the research work done in hyperspectral remote sensing in the Himalayan cryosphere. Hyperspectral radiometric investigations conducted at different field locations of NW Himalaya and cold laboratory are discussed. Spectral signatures were collected for varying snow grain size, contamination, liquid water content, vegetation/soilmixed snow, glacier ice, moraines and other ambient objects. The important wavelengths for snow applications are found to be 440, 550, 590, 660, 860, 1050, 1240 and 1650 nm. Further, the retrieval of snow parameters such as grain size, spectral albedo and snow contamination using imaging data at the above wavelength channels is discussed. Wavelengths 550, 1240 and 1660 nm are found to be useful for discriminating different glacier features. Limitations in hyperspectral remote sensing such as availability of imaging data, rugged topography and further research issues such as multi-sensor mapping and data fusion, multiangle measurements, 3D adjacency effect and improved algorithms for quantitative retrieval of contaminants are identified.Keywords
Albedo, Hyperspectral, Hyperion, Reflectance, Snow Cover Monitoring, Spectroradiometer.- Estimation of Snow Accumulation on Samudra Tapu Glacier, Western Himalaya Using Airborne Ground Penetrating Radar
Abstract Views :111 |
PDF Views:19
Authors
K. K. Singh
1,
H. S. Negi
1,
A. Kumar
2,
A. V. Kulkarni
3,
S. K. Dewali
1,
P. Datt
1,
A. Ganju
1,
S. Kumar
1
Affiliations
1 Snow and Avalanche Study Establishment, Chandigarh 160 036, IN
2 National Institute of Technology, Kurukshetra 136 119, IN
3 Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
1 Snow and Avalanche Study Establishment, Chandigarh 160 036, IN
2 National Institute of Technology, Kurukshetra 136 119, IN
3 Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
Source
Current Science, Vol 112, No 06 (2017), Pagination: 1208-1218Abstract
In this study an airborne ground penetrating radar (GPR) is used to estimate spatial distribution of snow accumulation in the Samudra Tapu glacier (the Great Himalayan Range), Western Himalaya, India. An impulse radar system with 350 MHz antenna was mounted on a helicopter for the estimation of snow depth. The dielectric properties of snow were measured at a representative site (Patseo Observatory) using a snow fork to calibrate GPR data. The snow depths estimated from GPR signal were found to be in good agreement with those measured on ground with an absolute error of 0.04 m. The GPR survey was conducted over Samudra Tapu glacier in March 2009 and 2010. A kriging-based geostatistical interpolation method was used to generate a spatial snow accumulation map of the glacier with the GPR-collected data. The average accumulated snow depth and snow water equivalent (SWE) for a part of the glacier were found to be 2.23 m and 0.624 m for 2009 and 2.06 m and 0.496 m for 2010 respectively. Further, the snow accumulation data were analysed with various topographical parameters such as altitude, aspect and slope. The accumulated snow depth showed good correlation with altitude, having correlation coefficient varying between 0.57 and 0.84 for different parts of the glacier. Higher snow accumulation was observed in the north- and east-facing regions, and decrease in snow accumulation was found with an increase in the slope of the glacier. Thus, in this study we generate snow accumulation/SWE information using airborne GPR in the Himalayan terrain.Keywords
Glacier, Ground Penetrating Radar, Snow Accumulation, Snow Water Equivalent.References
- Bolch, T. et al., The state and fate of Himalayan glaciers. Science, 2012, 336, 310–314; doi: 10.1126/science.1215828
- Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K. and Dhar, S., Glacial retreat in Himalayas using Indian remote sensing satellite data. Curr. Sci., 2007, 92, 69–74.
- Lau, W. K. M., Kim, M. K., Kim, K. M. and Lee, W. S., Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 2010, 5; doi:10.1088/1748-9326/5/2/025204
- Cogley, J. G., Present and future states of Himalaya and Karakoram glaciers. Ann. Glaciol., 2011, 52, 69–73.
- Gurung, D. R., Kulkarni, A. V., Giriraj, A., Aung, K. S. and Shrestha, B., Monitoring of seasonal snow cover in Bhutan using remote sensing technique. Curr. Sci., 2011, 101(10), 1364–1370.
- Vincent, C. et al., Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere, 2013, 7, 569–582.
- IPCC, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.), Cambridge University Press, Cambridge, United Kingdom, 2014.
- Lozej, A. and Tabacco, I., Radio echo sounding on Strandline Glacier, Terra Nova Bay (Antarctica). Boll. Geofis. Teor. Appl., 1993, 35, 231–244.
- Holmund, P., Radar measurement of annual snow accumulation rates. Z. Gletscherkd. Glazialgeol., 1996, 32, 193–196.
- Marshall, H. P. and Koh, G., FMCW radars for snow research. Cold Reg. Sci. Technol., 2008, 52, 118–131.
- Peduzzi, P., Herold, C. and Silverio, W., Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru). Cryosphere, 2010, 4, 313–323.
- Mitterer, C., Heilig, A., Schweizer, J. and Eisen, O., Upwardlooking ground-penetrating radar for measuring wet-snow properties. Cold Reg. Sci. Technol., 2011, 69, 129–138.
- Williams, R. M., Ray, L. E., Lever, J. H. and Burzynski, A. M., Crevasse detection in ice sheets using ground penetrating radar and machine learning. IEEE J. Sel. Top. Appl. Earth Obs., 2014, 7, 4836–4848.
- Schmid, L., Heilig, A., Mitterer, C., Schweizer, J., Maurer, H., Okorn, R. and Eisen, O., Continuous snowpack monitoring using upward-looking ground-penetrating radar technology. J. Glaciol., 2014, 60, 509–525; doi:10.3189/2014JoG13J084
- Van Pelt, W. J. J., Pettersson, R., Pohjola, V. A., Marchenko, S., Claremar, B. and Oerlemans, J., Inverse estimation of snow accumulation along a radar transect on Nordenskiöldbreen, Svalbard. J. Geophys. Res.: Earth Surf., 2014, 119, 816–835; doi:10.1002/2013JF003040
- Singh, K. K., Datt, P., Sharma, V., Ganju, A., Mishra, V. D., Parashar, A. and Chauhan, R., Snow depth and snow layer interface estimation using GPR. Curr. Sci., 2011, 100, 1532–1539.
- Loveson, V. J., Khare, R., Mayappan, S. and Gujar, A. R., Remote-sensing perspective and GPR subsurface perception on the growth of a recently emerged spit at Talashil coast, west coast of India. GISci. Remote Sensing, 2014, 51, 644–661.
- Forte, E., Dossi, M., Colucci, R. R. and Pipan, M., A new fast methodology to estimate the density of frozen materials by means of common offset GPR data. J. Appl. Geophys., 2013, 99, 135–145; doi:10.1016/j.jappgeo.2013.08.013
- Forte, E., Dossi, M., Pipan, M. and Colucci, R. R., Velocity analysis from common offset GPR data inversion: theory and application on synthetic and real data. Geophys. J. Int., 2014, 197(3), 1471–1483; doi:10.1093/gji/ggu103
- Colucci, R. R., Forte, E., Boccali, C., Dossi, M., Lanza, L., Pipan, M. and Guglielmin, M., Evaluation of internal structure, volume and mass of glacial bodies by integrated LiDAR and ground penetrating radar (GPR) surveys: the case study of Canin Eastern Glacieret (Julian Alps, Italy). Surv. Geophys., 2015, 36, 231–525; doi:10.1007/s10712-014-9311-1
- Machguth, H., Eisen, O., Paul, F. and Hoelzle, M., Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers. Geophys. Res. Lett., 2006, 33, L13503; doi:10.1029/2006GL026576
- Sold, L., Huss, M., Hoelzle, M., Andereggen, H., Joerg, P. C. and Zemp, M., Methodological approaches to infer end-of-winter snow distribution on alpine glaciers. J. Glaciol., 2013, 59, 1047–1059; doi:10.3189/2013JoG13J015
- Conway, H., Smith, B., Vaswani, P., Matsuoka, K., Rignot, E. and Claus, P., A low frequency ice-penetrating radar system adopted for use from an airplane: test results from Bering and Malaspina glacier, Alaska, USA. Ann. Glaciol., 2009, 51, 93–104.
- Das, I. et al., Influence of persistent wind-scour on the surface mass balance of Antarctica. Nature Geosci., 2013, 6, 367–371.
- Bell, R. E. et al., Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 2011, 331, 1592–1595.
- Arcone, S. A., Jacobel, R. and Hamilton, G., Unconformable stratigraphy in East Antarctica: Part 1. Large firncosets, recrystallized growth, and model evidence for intensified accumulation. J. Glaciol., 2012, 58, 240–252.
- Gergen, J. T., Dobhal, D. P. and Kaushik, R., Ground penetrating radar ice thickness measurements of Dokrianibamak (glacier), Garhwal Himalaya. Curr. Sci., 1999, 77, 169–173.
- Singh, K. K., Kulkarni, A. V. and Mishra, V. D., Estimation of glacier depth and moraine cover study using ground penetrating radar (GPR) in the Himalayan region. J. Indian Soc. Remote Sensing, 2010, 38, 1–9.
- Azam, M. F. et al., From balance to imbalance: a shift in the dynamic behavior of Chhota Shigri glacier, western Himalaya, India. J. Glaciol., 2012, 58, 315–324.
- Singh, S. K., Rathore, B. P., Bahuguna, I. M., Ramnathan, A. L. and Ajai, Estimation of glacier ice thickness using ground penetrating radar in the Himalayan region. Curr. Sci., 2012, 103, 68–73.
- Negi, H. S., Mishra, V. D., Singh, K. K. and Mathur, P., Application of ground penetrating radar for snow, ice and glacier studies. In Proceedings of the International Symposium on Snow Monitoring and Avalanches, Snow and Avalanche Study Establishment, Manali, 12–16 April 2004.
- Negi, H. S., Snehmani, Thakur, N. K. and Sharma, J. K., Estimation of snow depth and detection of buried objects using airborne ground penetrating radar in Indian Himalaya. Curr. Sci., 2008, 94, 865–870.
- Gusain, H. S., Singh, A., Ganju, A. and Singh, D., Characteristics of the seasonal snow cover of Pir Panjal and Great Himalayan ranges in Indian Himalaya. In Proceedings of the International Symposium on Snow Monitoring and Avalanches, Manali, 12–16 April 2004.
- Gusain, H. S., Chand, D., Thakur, N. K., Singh, A. and Ganju, A., Snow avalanche climatology of Indian Western Himalaya. In Proceedings of the International Symposium on Snow and Avalanches, SASE Manali, 6–10 April 2009.
- Sharma, S. S. and Ganju, A., Complexities of avalanche forecasting in Western Himalaya – an overview. Cold Reg. Sci. Technol., 2000, 31, 95–102.
- Jaedicke, C., Snow mass quantification and avalanche victim search by ground penetrating radar. Surv. Geophys., 2003, 24, 431–445.
- Daniels, D., Ground Penetrating Radar – 2nd Edition, The Institution of Electrical Engineers, London, 2004.
- Sihvola, A. and Tiuri, M., Snow fork for field determination of the density and wetness profiles of a snowpack. IEEE Trans. Geosci. Remote Sensing, 1986, 24, 717–721.
- User/Technical Manual of Snow Fork, the Portable Snow Properties Measuring Instrument, Ins. Toimisto Toikka Oy, Hannuntie 18,02360 Espoo, Finland, 2010.
- Hengl, T., A Practical Guide to Geostatistical Mapping (2nd extended edn). 2009; http://spatial-analyst.net/book/system/files/Hengl_2009_GEOSTATe2c1w.pdf
- Heilig, A., Schneebeli, M. and Eisen, O., Upward looking ground penetrating radar for monitoring snowpack starigraphy. Cold Reg. Sci. Technol., 2009, 59, 152–162.
- Ambach, W. and Denoth, A., The dielectric behavior of snow: a study versus liquid water content. In NASA Workshop on Microwave Remote Sensing of Snowpack Properties (ed. Rango, A.), NASA Conference Publication, 1980, NASA CP-2153, pp. 59–62.
- Johnson, G. L. and Hanson, C. L., Topographic and atmospheric influences on precipitation variability over a mountainous watershed. J. Appl. Meteorol., 1995, 34, 68–87; doi:10.1175/15200450-34.1.68
- Roe, G. H. and Baker, M. B., Microphysical and geometrical controls on the pattern of orographic precipitation. J. Atmos. Sci., 2006, 63, 861–880; doi:10.1175/jas3619.1
- Farinotti, D., Magnusson, J., Huss, M. and Bauder, A., Snow accumulation distribution inferred from time-lapse photography and simple modelling. Hydrol. Process., 2010, 24, 2087–2097; doi:10.1002/hyp.7629
- Asaoka, Y. and Kominami, Y., Spatial snowfall distribution in mountainous areas estimated with a snow model and satellite remote sensing. Hydrol. Res. Lett., 2012, 6, 1–6.
- Grünewald, T., Bühler, Y. and Lehning, M., Elevation dependency of mountain snow depth. Cryosphere, 2014, 8, 2381–2394, doi:10.5194/tc-8-2381-2014
- Kirchner, P. B., Bales, R. C., Molotch, N. P., Flanagan, J. and Guo, Q., LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California. Hydrol. Earth Syst. Sci., 2014, 18, 4261–4275.
- Jain, S. K., Goswami, A. and Saraf, A. K., Accuracy assessment of MODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions. Int. J. Remote Sensing, 2008, 29, 5863–5878.
- SASE Annual Technical Reports, 2009 and 2010, Snow and Avalanche Study Establishment, Manali.
- Recent Wintertime Climatic Variability over the North West Himalayan Cryosphere
Abstract Views :161 |
PDF Views:16
Authors
Affiliations
1 Snow and Avalanche Study Establishment, Him Parisar, Sector 37A, Chandigarh 160 036, IN
1 Snow and Avalanche Study Establishment, Him Parisar, Sector 37A, Chandigarh 160 036, IN
Source
Current Science, Vol 114, No 04 (2018), Pagination: 760-770Abstract
This study discusses the observed long-term (1991–2015) and short-term (1991–2000 and 2001–2015) trends in winter temperature and precipitation over Northwestern Himalaya (NWH) along with its constituents, i.e. Lower Himalaya (LH), Greater Himalaya (GH) and Karakoram Himalaya (KH). An overall warming signature was observed over NWH since maximum, minimum and mean temperatures followed rising trends with a total increase of 0.9°C, 0.19°C and 0.65°C respectively, in 25 years, the increase being statistically significant for maximum and mean temperatures. However, warming was not consistent over all zones of NWH with minimum temperature at LH showing anomalous cooling by 0.83°C (statistically significant at α = 0.05) during 25 years. The rise in mean temperature was observed highest at GH, i.e. 0.87°C (1991–2015) followed by KH, i.e. 0.56°C, which is in agreement with observations of comparatively higher rate of glacier retreat over GH than KH as reported in several studies. Total precipitation (rainfall + snowfall) was found to increase whereas snowfall was found to decrease with concurrent significant increase in rainfall at all zones of NWH. The spatiotemporal winter climatic variations over NWH support the impact on recently reported findings on the Himalayan snow cover and glacier variations at different durations.Keywords
Climate Change, Cryosphere, Rainfall, Winter Warming and Precipitation.References
- Kapos, V., Rhind, J., Edwards, M., Ravilious, C. and Price, M., Developing a map of the world’s mountain forests. In Forests in a Sustainable Mountain Environment (eds Price, M. F. and Butt, N.), CAB International, Wallingford, UK, 2000.
- Meybeck, M., Green, P. and Vörösmarty, C., A new typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt. Res. Develop., 2000, 21, 34–45.
- Beniston, M., Variations in snow depth and duration in the Swiss Alps over the last 50 years: links to changes in the large scale climatic forcing. Climate Change, 1997, 36, 281–300.
- Broccoli, A. J. and Manabe, S., The effect of orography on mid latitude Northern hemisphere dry climates. J. Clim., 1992, 5, 1181–1201.
- Nepal, S., Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydroenviron. Res., 2016, 10, 76–89.
- Thompson, L. G., Ice core evidence for climate changes in the tropics: implications for our future. Quaternary Sci. Rev., 2000, 19, 19–35.
- Diaz, H. F., Grosjean, M. and Graumlich, L., Climatic variability and change in high elevation regions: past, present and future. Climate Change, 2003, 59, 1–4.
- Rees, H. G. and Collins, D. N., Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol. Process., 2006, 20, 2157–2169.
- UN Environmental Program and World Glacier Monitoring Service. Global Glacier Change: Facts and Figures, UNEP Publ., Zurich, Switzerland, 2008; http://www.grid.unep.ch/glaciers/
- Scherler, D., Bookhagen, B. and Strecker, M. R., Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci., 2011, 4, 156; doi:10.1038/NGEO1068.
- Bhutiyani, M. R., Kale, V. S. and Pawar, N. J., Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climate Change, 2007, 85, 159–177; doi:10.1007/s10584-006-9196-1.
- Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K. and Ganju, A., Climate-change studies in the western Himalaya. Ann. Glaciol., 2010, 51, 105–112; doi:10.3189/172756410791386508.
- Dimri, A. P. and Dash, S. K., Wintertime climatic trends in the western Himalayas. Climate Change, 2012, 111(3–4), 775–800.
- Singh, D., Sharma, V. and Juyal, V., Observed linear trend in few surface weather elements over the Northwest Himalayas (NWH) during winter season. J. Earth Syst. Sci., 2015, 124(3), 553–565.
- Fowler, H. J. and Archer, D. R., Conflicting signals of climatic change in the upper Indus Basin. J. Climate, 2006, 19, 4276–4293, doi:10.1175/jcli3860.1.
- Khattak, M. S., Babel, M. S. and Sharif, M., Hydro meteorological trends in the upper Indus River Basin in Pakistan. Climate Res., 2011, 46, 103–119; doi:10.3354/cr00957.
- Yadav, R. R., Park, W.-K., Singh, J. and Dubey, B., Do the western Himalayas defy global warming? Geophys. Res. Lett., 2004, 31, L17201; doi:10.1029/2004GL020201.
- Gusain, H. S., Mishra, V. D. and Bhutiyani, M. R., Winter temperature and snowfall trends in the cryospheric region of North-west Himalaya. MAUSAM, 2014, 65(3), 425–432.
- Sharma, S. S. and Ganju, A., Complexities of avalanche forecasting in Western Himalaya – an overview. Cold Region Sci. Technol., 2000, 31, 95–102.
- Negi, H. S., Datt, P., Thakur, N. K., Ganju, A., Bhatia, V. K. and Vinay Kumar, G., Observed spatio-temporal changes of winter snow albedo over the north-west Himalaya. Int. J. Climatol., 2016, 37(5), 2304–2317; doi:10.1002/joc.4846.
- Bolch, T. et al., The state and fate of Himayan glaciers. Science, 2012, 336(6079), 310–314.
- Kulkarni, A. V. and Karyakarte, Y., Observed changes in Himalayan glaciers. Curr. Sci., 2014, 106(02), 237–244.
- Hewitt, K., The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram, Himalaya. Mountain Res. Develop., 2005, 25(4), 332–340.
- Bhambri, R., Bolch, T., Kawishwar, P., Dobhal, D. P., Srivastava, D. and Pratap, B., Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. Cryosphere, 2013, 7(5), 1385–1398; doi:10.5194/tc-7-1385-2013.
- Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A., Linda, A. and Singh, V. B., Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Ann. Glaciol., 2014, 55(66), 69–80.
- Vijay, S. and Braun, M., Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sensing, 2016, 8, 1038.
- Gardelle, J., Berthier, E. and Arnaud, Y., Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geosci. Lett., 2012, 5, 322–325; doi:10.1038/NGEO1450.
- Kaab, A., Berthier, E., Nuth, C., Gardelle, J. and Arnaud, Y., Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature Lett., 2012, 488, 495–498; doi:10.1038/nature11324.
- Gurung, D. R., Kulkarni, A. V., Giriraj, A., Aung, K. S., Shrestha, B. and Srinivasan, J., Changes in seasonal snow cover in Hindu Kush-Himalayan region. Cryosphere Discuss, 2011, 5, 755–777; doi:10.5194/tcd-5-755-2011.
- Immerzeel, W. W., Droogers, P., de Jong, S. M. and Bierkens, M. F. P., Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing Environ., 2009, 113, 40–49; doi:10.1016/j.rse.2008.08.010.
- Singh, S. K., Rathore, B. P., Bahuguna, I. M. and Ajai, Snow cover variability in the Himalayan–Tibetan region. Int. J. Climatol., 2014, 34, 446–452.
- Negi, H. S., Shekhar, M. S., Gusain, H. S. and Ganju, A., Winter climate and snow cover variability over north-west Himalaya. In Science Geopolitics of the White World – Arctic–Antarctic–Himalaya, Springer, 2017, pp. 127–142.
- Prasad, A. K., Yang, K. H. S., El-Askary, H. M. and Kafatos, M., Melting of major glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008). Ann. Geophys., 2009, 27, 4505–4519.
- Xu, J. Z. et al., Dust storm activity over the Tibetan Plateau recorded by a shallow ice core from the north slope of Mt. Qomolangma (Everest), Tibet–Himal region. Geophys. Res. Lett., 2007, 34, L17504; doi:10.1029/2007GL030853.
- Lee, K. et al., Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci. Total Environ., 2008, 404(1), 171–181.
- Raghunath, H. M., Hydrology, Principles, Analysis and Design, New Age International, New Delhi, 2006.
- Xia, Y., Fabian, P., Stohl, A. and Winterhalter, M., Forest climatology: estimation of missing values for Bavaria, Germany. Agric. For. Meteorol., 1999, 96, 131–144.
- Kashani, M. H. and Dinpashoh, Y., Evaluation of efficiency of different estimation methods for missing climatological data. Stochastic Environ. Res. Risk Assess., 2012, 26, 59–71.
- Kanda, N., Negi, H. S., Rishi, M. S. and Shekhar, M. S., Performance of various techniques in estimating missing climatological data over snow bound mountainous areas of Karakoram Himalaya. Meteorol. Apps., 2017 (online); doi:10.1002/met.1699.
- Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T. and Amnell, T., Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates: the Excel template application. Report, Finnish Meteorological Institute, Helsinki, 2002.
- Karl, T. R. et al., Asymmetric trends of daily maximum and minimum temperature. Bull. Am. Meteorol. Soc., 1993, 74, 1007–1023.
- Dash, S. K., Jenamani, R. K., Kalsi, S. R. and Panda, S. K., Some evidence of climate change in twentieth-century India. Climatic Change, 2007, 85(3–4), 299–321.
- Krishnan, R. and Ramanathan, V., Evidence of surface cooling from absorbing aerosols. Geophys. Res. Lett., 2002, 29(9), 1340; 10.1029/2002GL014687.
- Rupa, K. K., Krishna Kumar, K. and Pant, G. B., Diurnal asymmetry of surface temperature trends over India. Geophys. Res. Lett., 1994, 21(8), 677–680.
- Braganza, K., Karoly, D. J. and Arblaster, J. M., Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett., 2004, 31, L13217; doi:10.1029/2004GL019998.
- Dai, A., Del Genio, A. D. and Fung, I. Y., Clouds, precipitation and temperature range. Nature, 1997, 386, 665–666.
- Dai, A., Trenberth, K. E. and Karl, T. R., Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J. Clim., 1999, 12, 2451–2473.
- Lewis, S. C. and Karoly, D. J., Evaluation of historical diurnal temperature range trends in CMIP5 models. J. Climate, 2013, 26(22), 9077–9089.
- Gallo, K. P., Easterling, D. R. and Peterson, T. C., The influence of land use/land cover on climatological values of the diurnal temperature range. J. Climate, 1996, 9, 2941–2944.
- Francou, B., Vuille, M., Favier, V. and Cáceres, B., New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador, 028S. J. Geophys. Res., 2004, 109, D18106; doi:10.1029/2003JD004484.
- Shekhar, M. S., Devi, U., Paul, S., Singh, G. P. and Singh, A., Analysis of trends in extreme precipitation events over Western Himalaya Region: intensity and duration wise study. J. Indian Geophys. Union, 2017, 21(3), 225–231.
- Klein Tank, A. M. G. et al., Changes in daily temperature and precipitation extremes in central and South Asia. J. Geophys Res., 2006, 111, D16105; doi:10.1029/2005JD006316.
- Choi, G. et al., Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol., 2009, 29(13), 906–1925.
- Madhura, R. K., Krishnan, R., Revadekar, J. V., Majumdar, M. and Goswami, B. N., Changes in western disturbances over the Western Himalayas in a warming environment. Climate Dyn., 2015, 44, 1157–1168.
- Menon, S., Koch, D., Beig, G., Sahu, S., Fasullo, J. and Orlikowski, D., Black carbon aerosols and the third polar ice cap. Atmos. Chem. Phys., 2010, 10, 4559–4571; doi:10.5194/acp-10-45590.
- Bahuguna, I. M. et al., Are the Himalayan glaciers retreating? Curr. Sci., 2014, 106, 1008–1015.
- Sirguey, P., Still, H., Cullen, N. J., Dumont, M., Arnaud, Y. and Conway, J. P., Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo. Cryosphere, 2016, 10, 2465–2484.
- Temporal Change and Flow Velocity Estimation of Patseo Glacier, Western Himalaya, India
Abstract Views :151 |
PDF Views:16
Authors
K. K. Singh
1,
D. K. Singh
1,
H. S. Negi
1,
A. V. Kulkarni
2,
H. S. Gusain
1,
A. Ganju
1,
K. Babu Govindha Raj
3
Affiliations
1 Snow and Avalanche Study Establishment, Chandigarh 160 036, IN
2 Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
3 Indian Space Research Organization, Head Quarters, New BEL Road, Bengaluru 560 231, IN
1 Snow and Avalanche Study Establishment, Chandigarh 160 036, IN
2 Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
3 Indian Space Research Organization, Head Quarters, New BEL Road, Bengaluru 560 231, IN
Source
Current Science, Vol 114, No 04 (2018), Pagination: 776-784Abstract
In the present study we estimate the velocity and thickness of the Patseo glacier, Himachal Pradesh, India. The average velocity of the glacier was estimated as ~5.47 m/year using co-registration of optically sensed images and correlation (COSI-Corr) method. The glacier thickness was found to vary between 12 and 278 m, with an average value 59 m. The total glacier ice volume was estimated as ~15.8 × 107 m3, with equivalent water reservoir of ~14.5 × 107 m3. Ground penetrating radar (GPR) surveys were conducted during 2004 and 2013 for validation of the estimated glacier thickness. The glacier thickness estimated using COSI-Corr method was found to be in agreement with GPR-retrieved glacier thickness (RMSE = 4.75 m; MAE = 3.74 m). The GPR profiles collected along the same geographic locations on the glacier during 2004 and 2013 showed a reduction in ice thickness of ~1.89 m, and thus resulting in an annual ice thickness decrease of ~0.21 m. The glacier area was estimated for 2004 and 2013 using LISS IV satellite data and found to be ~2.52 and ~2.30 sq. km respectively. This shows an annual reduction of ~0.024 sq. km in glacier area. The total annual loss in glacier ice volume was estimated as ~4.55 × 105 m3. This loss in the glacier ice volume of the Patseo glacier is supported by the snow and meteorological observations collected at a nearby field observatory of Snow and Avalanche Study Establishment (SASE). The climate data collected at SASE meteorological observatory at Patseo (3800 m), between 1993–94 and 2014–15 showed an increasing trend in the mean annual temperature and a decreasing trend in winter precipitation.Keywords
Glaciers, Ground Penetrating Radar Surveys, Velocity and Thickness Estimation, Winter Precipitation.References
- Oerlemans, J., Extracting climate signals from 169 glacier records. Science, 2005, 308, 675–677.
- Wagnon, P. et al., Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. J. Glaciol., 2007, 53, 603–611.
- Kaab, A., Chiarle, M., Raup, B. and Schneider, C., Climate change impacts on mountain glaciers and permafrost. Global Planet. Change, 2007, 56, vii–ix.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., Estimation of glacier mass balance on a basin scale: an approach based on satellitederived snowlines and a temperature index model. Curr. Sci., 2016, 111(12), 1077–1989.
- Joughin, I., Ice sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann. Glaciol., 2002, 34, 195–201.
- Strozzi, T., Luckman, A., Maurray, T., Wegmuller, U. and Wener, C. I., Glacier motion estimation using SAR offset-tracking procedure. IEEE Trans. Geosci. Remote Sensing, 2002, 40(11), 2384–2391.
- Kimura, H., Kanamori, T., Wakabayashi, H. and Nishio, F., Ice sheet motion in inland Antarctica from JERS-1 SAR interferometry. IEEE Int. Geosci. Remote Sensing, 2004, 1–7, 3018–3020.
- Scambos, T. A. et al., Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing Environ., 1992, 42(3), 177–186.
- Rolstad, C. et al., Visible and near-infrared digital images for determination of ice velocities and surface elevation during a surge on Osbornebreen, a tidewater glacier in Svalbard. Ann. Glaciol., 1997, 24, 255–261.
- Herman, F., Anderson, B. and Leprince, S., Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images. J. Glaciol., 2011, 57(202), 197–207.
- Leprince, S. et al., Monitoring earth surface dynamics with optical imagery. EOS Trans., 2008, 89(1), 1–2.
- Tiwari, R. K., Gupta, R. P. and Arora, M. K., Estimation of surface ice velocity of Chhota-Shigri glacier using sub-pixel ASTER image correlation. Curr. Sci., 2014, 106(6), 853–859.
- Gantayat, P., Kulkarni, A. V. and Srinivasan, J., Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India. J. Glaciol., 2014, 60(220), 277–282.
- Negi, H. S., Saravana, G., Rout, R. and Snehmani, Monitoring of great Himalayan glaciers in Patsio region, India using remote sensing and climatic observations. Curr. Sci., 2013, 105(10), 1383–1392.
- Leprince, S., Barbot, S., Ayoub, F. and Avouac, J. P., Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sensing, 2007, 45(6), 1529–1558.
- Farinotti, D., Huss, M., Bauder, A., Funk, M. and Truffer, M., A method to estimate ice volume and ice-thickness distribution of alpine glaciers. J. Glaciol., 2009, 55(191), 422–430.
- Haeberli, W. and Hoelzle, M., Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Ann. Glaciol., 1995, 21, 206–212.
- Kamb, B. and Echelmeyer, K. A., Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope. J. Glaciol., 1986, 32(111), 267–284.
- Cuffey, K. M. and Paterson, W. S. B., The Physics of Glaciers, Butterworth-Heinemann, Oxford, 2010, 4th edn.
- Jiracek, G. R. and Bentley, C. R., Velocity of electromagnetic waves in Antarctic ice. Antarct. Res. Ser., 1971, 16, 199–208.
- Robin, G. D. E. Q., Velocity of radio waves in ice by means of a bore-hole interferometric technique. J. Glaciol., 1975, 15(73), 151–159.
- Basnett, S., Kulkarni, A. V. and Bolch, T., The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. J. Glaciol., 2013, 59(218), 1–12.
- Ulaby, F. T., More, R. K. and Fung, A. K., Microwave Remote Sensing: Active and Passive. Volume III from Theory to Applications, Artech House, Inc, USA, 1986.
- Development of Avalanche Information System using Remote Sensing and GIS Technology in the Indian Karakoram Himalaya
Abstract Views :144 |
PDF Views:14
Authors
Affiliations
1 Snow and Avalanche Study Establishment, Sector 37A, Chandigarh 160 036, IN
1 Snow and Avalanche Study Establishment, Sector 37A, Chandigarh 160 036, IN
Source
Current Science, Vol 117, No 1 (2019), Pagination: 104-109Abstract
Snow avalanches pose severe threat to lives and property in snow-bound regions of the Western Himalaya. The Karakoram Range in Western Himalaya has the highest mean elevation and is the most glaciated region compared to other ranges. Snowfall in this range is frequent even during summer season. Snow accumulation on mountain slopes results into frequent snow avalanches and several lives have been lost due to snow avalanches in the past. In this communication we discuss about the development of avalanche information system using remote sensing and geographic information system (GIS) technology for the Indian Karakoram Himalaya. High spatial resolution (0.5 m) PLEIADES satellite images and digital elevation model (DEM) of ASTER GDEM V2 (30 m) and Cartosat (10 m) have been used here. Terrain parameters, e.g. slope, aspect, elevation, etc. have been derived using DEM. Sites in avalanche-prone areas have been identified using terrain parameters and snowfall information. Villages in the region, camp locations of borderguarding personnel, pedestrian routes followed by villagers and border-guarding personnel, avalanche sites along pedestrian routes, etc. have been digitized using appropriate GIS vector features, e.g. point, line and polygons. Past avalanche accidents along pedestrian routes, past avalanche occurrences, climatology of the region, etc. have been mapped in GIS environment. Remote sensing and GIS technology proved to be useful for the development of avalanche information system in digital form. The system is being used for avalanche forecasting and mitigation of avalanche hazard in the Indian Karakoram Himalaya.Keywords
Avalanches, Geographic Information System, Remote Sensing, Snowfall.References
- Sharma, S. S. and Ganju, A., Complexities of avalanche forecasting in Western Himalaya: an overview. Cold Reg. Sci. Technol., 2000, 31, 95–102.
- Gusain, H. S., Mishra, V. D., Arora, M. K., Shailesh, M. and Singh, D. K., Operational algorithm for generation of snow depth maps from discrete data in Indian Western Himalaya. Cold Reg. Sci. Technol., 2016, 126, 22–29.
- McClung, D. M., Avalanche character and fatalities in the high mountains of Asia. Ann. Glaciol., 2016, 57(71), 114–118.
- Ganju, A., Thakur, N. K. and Rana, V., Characteristics of avalanche accidents in western Himalayan region, India. In Proceedings of the International Snow Science Workshop, Penticton, B.C., Canada, 29 September–4 October 2002, pp. 200–207.
- Singh, D. K., Gusain, H. S., Mishra, V. D. and Gupta, N., Snow cover variability in North-West Himalaya during last decade. Arab. J. Geosci., 2018, 11, 579.
- Eckerstorfer, M., Bühler, Y., Frauenfelder, R. and Malnes, E., Remote sensing of snow avalanches: recent advances, potential and limitations. Cold Reg. Sci. Technol., 2016, 121, 126–140.
- Buhler, Y., Huni, A., Christen, M., Meister, R. and Kellenberger, T., Automated detection and mapping of avalanche deposits using airborne optical remote sensing data. Cold Reg. Sci. Technol., 2009, 57, 99–106.
- Christen, M., Kowalski, J. and Bartelt, P., RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 2010, 63, 1–14.
- Gusain, H. S., Mishra, V. D. and Singh, D. K., Study of a snow avalanche accident along Chowkibal–Tangdhar road in Kupwara district, Jammu and Kashmir, India. Curr. Sci., 2018, 115(5), 969– 972.
- Biskupič, M. and Barka, I., Spatial modelling of snow avalanche run-outs using GIS. Symposium GIS, Ostrava, Czech Republic, 24–27 January 2010.
- Bourova, E., Maldonado, E., Leroy, J.-B., Alouani, R., Eckert, N., Bonnefoy-Demongeot, M. and Deschatres, M., A new web-based system to improve the monitoring of snow avalanche hazard in France. Nat. Hazards Earth Syst. Sci., 2016, 16, 1205–1216.
- Delparte, D., Jamieson, B. and Waters, N., Statistical runout modeling of snow avalanches using GIS in Glacier National Park, Canada. Cold Reg. Sci. Technol., 2008, 54, 183–192.
- Omirzhanova, Zh. T., Urazaliev, A. S. and Aimenov, A. T., GIS for predicting the avalanche zones in the mountain regions of Kazakhstan. Int. Arch. Photogramm. Remote Sensing Spat. Inf. Sci., 2015, XL-2/W4, 39–44.
- Dewali, S. K., Joshi, J. C., Ganju, A. and Snehmani, A GPS-based real-time avalanche path warning and navigation system. Geomat. Nat. Hazards Risk, 2014, 5(1), 56–80.
- Kumar, S., Srivastava, P. K. and Snehmani, GIS-based MCDAAHP modelling for avalanche susceptibility mapping of Nubra Valley region, Indian Himalaya. Geocarto Int., 2017, 32(11), 1254–1267.
- Singh, D. K., Mishra, V. D., Gusain, H. S., Gupta, N. and Singh, A. K., Geo-spatial modeling for automated demarcation of snow avalanche hazard areas using Landsat-8 satellite images and in situ data. J. Indian Soc. Remote Sensing, 2019; doi.org/10.1007/s12524-018-00936-w
- Haegeli, P., Obad, J., Harrison, B., Murray, B., Engblom, J. and Neufeld, J., InfoexTM 3.0 – advancing the data analysis capabilities of Canada’s diverse avalanche community. In Proceedings of the International Snow Science Workshop, Banff, Alberta, Canada, 29 September–3 October 2014, pp. 910–917.
- Akiyama, K. and Ikeda, S., Features of avalanches based on aerial photograph interpretation in Japan. In Proceedings of the International Snow Science Workshop, Grenoble, France, 7–11 October 2013, pp. 707–714.
- Debernardi, A. and Segor, V., The avalanche cadaster of the Valle d’Aosta Region (NW Italian Alps: the new born web portal (http://catastovalanghe.partout.it/). In Proceedings of the International Snow Science Workshop, Grenoble, France, 7–11 October 2013, pp. 446–450.
- Ruesch, M., Egloff, A., Gerber, M., Weiss, G. and Winkler, K., The software behind the interactive display of the Swiss avalanche bulletin. In Proceedings of the International Snow Science Workshop, Grenoble, France, 7–11 October 2013, pp. 406–412.
- Jaedicke, C., Syre, E. and Sverdrup-Thygeson, K., GIS-aided avalanche warning in Norway. Comput. Geosci., 2014, 66, 31–39.
- Ganju, A. and Dimri, A. P., Prevention and mitigation of avalanche disasters in Western Himalayan Region. Nat. Hazards, 2004, 31, 357–371.
- Singh, A., Srinivasan, K. and Ganju, A., Avalanche forecast using numerical weather prediction in Indian Himalaya. Cold Reg. Sci. Technol., 2005, 43, 83–92
- Joshi, J. C. and Ganju, A., Avalanche warning on Chowkibal– Tangdhar axis (J&K): a hybrid approach. Curr. Sci., 2006, 91(11), 1558
- Joshi, J. C. and Srivastava, S., A hidden Markov model for avalanche forecasting on Chowkibal–Tangdhar road axis in Indian Himalayas. J. Earth Syst. Sci., 2014, 123(8), 1771–1779.
- McClung, D. and Schaerer, P., The Avalanche Handbook, The Mountaineers Books, Seattle, WA, USA, 1993.