Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Guru-Pirasanna-Pandi, Govindharaj
- Imidacloprid Efficacy against Brown Planthopper, Nilaparvata lugens under Elevated Carbon Dioxide and Temperature
Abstract Views :172 |
PDF Views:27
Authors
Govindharaj Guru-Pirasanna-Pandi
1,
Subhash Chander
1,
Madan Pal Singh
1,
P. S. Soumia
1,
M. Sujithra
1
Affiliations
1 Indian Agricultural Research Institute, New Delhi 110 012, IN
1 Indian Agricultural Research Institute, New Delhi 110 012, IN
Source
Current Science, Vol 117, No 7 (2019), Pagination: 1199-1206Abstract
Influence of elevated CO2 and temperature (elevated condition (EC)) vis-à-vis ambient CO2 and tempera-ture (ambient condition (AC)) on plant (rice) growth, insect Nilaparvata lugens (brown planthopper (BPH)) population and insecticide (Imidacloprid) efficacy was evaluated under open top chamber conditions. EC had a positive effect on rice crop through increase in tillers numbers (18.4%), reproductive tillers (20.5%) but in-flicted negative effect on 1000-grain weight (11.7%) and grain yield (11.9%). Likewise, higher canopy cover of the plant was noticed under EC (16.1 cm) when compared to AC (12.9 cm). With respect to BPH population during 2013 and 2014, EC exhibited posi-tive effect by enhancing its mean population to 66.1 and 49.4 hoppers hill–1 respectively, compared to cor-responding 36.8 and 29.5 hoppers hill–1 under AC. With respect to Imidacloprid efficacy against BPH, LC50 was significantly lower under EC (0.044%) in comparison to AC (0.065). Similarly, in 2013 under AC, 500, 600, 700 l ha–1 spray volume caused >50% BPH mortality than 400 l ha–1 at 5 day after spray. However, during the same exposure period under EC, only 700 and 600 l ha–1 produced more than 50% mortality compared to 500 and 400 l ha–1. Positive in-fluence of EC on BPH population resulted in signifi-cantly higher yield loss (41.1%) compared to ambient (26.5%) in untreated check. Though LC50 under EC was less, higher canopy size and more BPH population resulted in increase in spray volume to cause similar mortality as of AC. The present results indicated that spray volumes of 400 and 500 l ha–1 was found insuffi-cient to manage BPH population under EC; hence the current management strategies for BPH needs to be redefined under changing climatic conditions.Keywords
Basmati Rice, Brown Planthopper, Climate Change, Elevated CO2, Insecticide.References
- Stocker, T. F. et al. (eds), IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013, pp. 7–22, 1535; doi:10.1017/CBO9781107415324.
- Moore, F. C., Baldos, U., Hertel, T. and Diaz, D., New science of climate change impacts on agriculture implies higher social cost of carbon. Nature Commun., 2017, 8, 1607; doi:10.1038/s41467-017-01792-x.
- Parry, M. A. J., Madgwick, P. J., Carvalho, J. F. C. and Andralojc, P. J., Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J. Agric. Sci., 2007, 145, 31–43.
- Timmer, C. P., Behavioral dimensions of food security. Proc. Natl. Acad. Sci., 2010, 109(31), 12315–12320.
- Khush, G. S., Harnessing science and technology for sustainable rice-based production systems. In FAO Rice Conference 04/CRS.14, Rome, Italy, 12–13 February 2004,, p. 13; http:// www.fao.org/rice2004/en/pdf/khush.pdf.
- Indiastat, Rice production statistics, 2018; http://www.indiastat. com/table/agriculture/2/rice/17194/56320/data.aspx (accessed on 8 December 2018).
- Krishnaiah, N. V., Lakshmi, V. J., Pasalu, I. C., Katti, G. R. and Padmavathi, C., Insecticides in rice – IPM, past, present and future. Technical Bulletin No. 30, Directorate of Rice Research, ICAR, Hyderabad, 2008, p. 146.
- Behura, N., Sen, P. and Kar, M. K., Introgression of yellow stem borer (Scirphophaga oryzae) resistance gene, into cultivated rice (Oryza sp.) from wild spp. Indian J. Agric. Sci., 2011, 81, 359–362.
- Chander, S., Aggarwal, P. K., Kalra, N. and Swaruparani, D. N., Changes in pest profiles in rice-wheat cropping system in Indo-gangetic plains. Ann. Plant Protect. Sci., 2003, 11(2), 258–263.
- Mishra, H. P. and Jena, B. C., Integrated pest management in rice. In Entomology: Novel Approaches (eds Jain, P. C. and Bhargava, M. C.), New India Publishing Agency, New Delhi, 2007, p. 268.
- Nguyen, N. V. and Ferrero, A., Meeting the challenges of global rice production. Paddy Water Environ., 2006, 4, 1–9.
- Bale, J. S. B. et al., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol., 2002, 8, 1–16.
- Parmesan, C., Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biol., 2007, 13, 1860–1872; doi:10.1111/j.1365-2486. 2007.01404.x.
- Lastuvka, Z., Climate change and its possible influence on the occurrence and importance of insect pests. Plant Prot. Sci., 2009, 45, S53–S62.
- Thomson, L. J., Macfadyen, S. and Hoffmann, A. A., Predicting the effects of climate change on natural enemies of agricultural pests. Biology, 2010, 52, 296–306.
- Coakley, S. M., Scherm, H. and Chakraborty, S., Climate change and disease management. Annu. Rev. Phytopathol., 1999, 37, 399–426.
- Sudderth, E. A., Stinson, K. A. and Bazzaz, F. A., Host-specific aphid population responses to elevated CO2 and increased N availability. Global Change Biol., 2005, 11, 1997–2008.
- Flynn, D. F. B., Sudderth, E. A. and Bazzaz, F. A., Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2. Environ. Exp. Bot., 2006, 56, 10–18.
- Dermody, O., Long, S. P. and McConnaughay, K., How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy? Global Change Biol., 2008, 14, 556–564.
- Pandi, P. G. G., Chander, S., Pal, M. and Soumia, P. S., Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr. Sci., 2018, 114(8), 1767–1777.
- Guo, H., Sun, Y., Li, Y., Liu, X., Zhang, Z. and Ge, F., Elevated CO2 decreases the response of the ethylene signalling pathway in Medicago truncatula and increases the abundance of the pea aphid. New Phytol., 2014, 201, 279–291; doi:10.1111/nph.12484.
- Xie, H., Zhao, L., Wang, W., Wang, Z., Ni, X., Cai, W. and He, K., Changes in life history parameters of Rhopalosiphum maidis (Homoptera: Aphididae) under four different elevated temperature and CO2 combinations. J. Econ. Entomol., 2014, 107(4), 1411–1418.
- Pandi, P. G. G., Chander, S., Pal, M. and Pathak, H., Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc. Natl. Acad. Sci. B, 2016; doi:10.1007/ s40011-016-0727-x.
- Pandi, P. G. G., Chander, S. and Pal, M., Impact of elevated CO2 on rice brown planthopper, Nilaparvata lugens (stal.). Indian J. Entomol., 2017, 79(1), 82–85.
- Chen, C. C. and McCarl, B. A., An investigation of the relationship between pesticide usage and climate change. Climate Change, 2001, 61, 475–487.
- McCarl, B. A. and Reilly, J., Chapter 3 sector level economics. In Agricultural Sector Assessment Report for US Global Change Research Program, US National Assessment, The potential consequences of climate variability and change, 2000; http://www.nacc.usgcrp.gov/sectors/agriculture.
- Koleva, N. G., Schneider, U. A. and Tol, R. S. J., The impact of weather variability and climate change on pesticide applications in the US – An empirical investigation. Summer, 2009, 18, 10.
- Delcour, I., Spanoghe, P. and Uyttendaele, M., Literature review: impact of climate change on pesticide use. Food Res. Int., 2015, 68, 7–15.
- Abebe, A., Pathak, H., Singh, S. D., Bhatia, A., Harit, R. C. and Kumar, V., Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India. Agric. Ecosyst. Environ., 2016, 218, 66–72.
- Zhuang, Y. L. and Shen, J. L., A method for monitoring of resistance to buprofezin in the brown planthopper. J. Nanjing Agric. Univ., 2000, 23, 114–117.
- Abbott, W. S., A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 1925, 18(2), 265–267.
- Gomez, K. A. and Gomez, A., Statistical Procedures for Agricultural Research, Wiley, New York, USA, 1984, 2nd edn, p. 704
- Ugine, T. A., Wraight, S. P. and Sanderson, J. P., Effects of manipulating spray application parameters on efficacy of the entomopathogenic fungus Beauveria bassiana against Western flower thrips, Frankliniella occidentalis, infesting greenhouse impatiens crops. Biocontrol Sci. Technol., 2007, 17, 193–219.
- Wise, J. C., Jenkins, P. E., Schilder, A. M. C., Vandervoort, C. and Isaacs, R., Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Protect., 2010, 29, 378–385.
- Studebaker, G. E. and Lancaster, S., Effect of spray volume on the efficacy of insecticides recommended for tarnished plant bugs. AAES Res. Ser., 2011, 602, 129–131.
- Coviella, C. E. and Trumble, J. T., Effect of elevated atmospheric carbon dioxide on the use of foliar application of Bacillus thuringiensis. Biocontrol, 2000, 45(3), 325–336.
- Himanen, S. J., Nerg, A., Nissinen, A., Stewart, C. N., Poppy, G. M. and Holopainen, J. K., Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent. Environ. Pollut., 2009, 157, 181–185.
- Ge, L. Q., Wu, J. C., Sun, Y. C., Ouyang, F. and Ge, F., Effects of triazophos on biochemical substances of transgenic Bt rice and its nontarget pest Nilaparvata lugens Stål under elevated CO2. Pesticide Biochem. Physiol., 2013, 107, 188–199.
- Baker, J. T., Allen, L. H. and Boote, K. J., Temperature effects on rice at elevated CO2 concentration. J. Exp. Bot., 1992, 43(7), 959–964.
- Pal, M. I., Rao, S., Srivastava, A. C., Jain, V. and Sengupta, U. K., Impact of CO2 enrichment and variable composition and partitioning of essential nutrients of wheat. Biol. Plantarum, 2003, 47, 27–32.
- Oh-e, I., Saitoh, K. and Kuroda, T., Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Product. Sci., 2007, 10, 412–422.
- Conroy, J. P., Seneweera, S., Basra, A. S., Rogers, G. and Nissen-Wooller, B., Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Aust. J. Plant Physiol., 1994, 21, 741–758.
- Chaturvedi, A. K., Bahuguna, R. N., Shah, D., Pal, M. and Jagadish, S. V. K., High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice. Sci. Rep., 2017, 7, 8227; doi:10.1038/s41598-017-07464-6.
- Gregory, P. J., Johnson, S. N., Newton, A. C. and Ingram, J. S. I., Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot., 2009, 60, 2827–2838.
- Predicting the Brown Planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) Potential Distribution Under Climatic Change Scenarios in India
Abstract Views :121 |
PDF Views:30
Authors
Govindharaj Guru-Pirasanna-Pandi
1,
Jaipal Singh Choudhary
2,
Abel Chemura
3,
G. Basana-Gowda
1,
Mahendran Annamalai
1,
Naveenkumar Patil
1,
Totan Adak
1,
Prakash Chandra Rath
4
Affiliations
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 ICAR-RCER, Farming System Research Centre for Hill and Plateau Region, Ranchi 834 010, IN
3 Potsdam Institute for Climate Impact Research (PIK), A Member of the Leibniz Association, Potsdam, DE
4 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India, IN
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 ICAR-RCER, Farming System Research Centre for Hill and Plateau Region, Ranchi 834 010, IN
3 Potsdam Institute for Climate Impact Research (PIK), A Member of the Leibniz Association, Potsdam, DE
4 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India, IN
Source
Current Science, Vol 121, No 12 (2021), Pagination: 1600-1609Abstract
The brown planthopper, Nilaparvata lugens (Stål) is the most serious pest of rice across the world. It is also known to transmit stunted viral disease; the insect alone or in combination with a virus causes the breakdown of rice vascular system, leading to economic losses in commercial rice production. Despite its immense economic importance, information on its potential distribution and factors governing the present and future distribution patterns is limited. Thus, in the present study we used maximum entropy modelling with bioclimatic variables to predict the present and future potential distribution of N. lugens in India as an indicator of risk. The predictions were mapped for spatio-temporal variation and area was analysed under suitability ranges. Jackknife analysis indicated that N. lugens geographic distribution was mostly influenced by temperature-based variables that explain up to 68.7% of the distribution, with precipitation factors explaining the rest. Among individual factors, the most important for distribution of N. lugens was annual mean temperature followed by precipitation of coldest quarter and precipitation seasonality. Our results highlight that the highly suitable areas under current climate conditions are 7.3%, whereas all projections show an increase under changing climatic conditions with time up to 2090, and with emission scenarios and a corresponding decrease in low-risk areas. We conclude that climate change increases the risk of N. lugens with increased temperature as it is likely to spread to the previously unsuitable areas in India, demanding adaptation strategies.Keywords
Climate Change, Maximum Entropy Modeling, Nilaparvata lugens, Potential Distribution, Rice.References
- Lobell, D. B. and Gourdji, S. M., The influence of climate change on global crop productivity. Plant Physiol., 2012, 160(4), 1686–1697.
- Liu, D., Mishra, A. K. and Ray, D. K., Sensitivity of global major crop yields to climate variables: a non-parametric elasticity analysis. Sci. Total Environ., 2020, 748, 141431.
- Ceglar, A., Zampieri, M., Toreti, A. and Dentener, F., Observed northward migration of agro‐climate zones in Europe will further accelerate under climate change. Earths Future, 2019, 7(9), 1088–1101.
- Taylor, R. A., Ryan, S. J., Lippi, C. A., Hall, D. G., Narouei‐ Khandan, H. A., Rohr, J. R. and Johnson, L. R., Predicting the fundamental thermal niche of crop pests and diseases in a changing world: a case study on citrus greening. J. Appl. Ecol., 2019, 56(8), 2057–2068.
- Juroszek, P., Racca, P., Link, S., Farhumand, J. and Kleinhenz, B., Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol., 2020, 69(2), 179–193.
- Yang, L., Huang, L. F., Wang, W. L., Chen, E. H., Chen, H. S. and Jiang, J. J., Effects of temperature on growth and development of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Environ. Entomol., 2021, 50(1), 1–11.
- Berzitis, E. A., Minigan, J. N., Hallett, R. H. and Newman, J. A., Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Global Change Biol., 2014, 20, 2778–2792.
- Pandi, G. G. P., Chander, S., Pal, M. and Soumia, P. S., Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr. Sci., 2018, 114(8), 1767–1777.
- Rao, V. T., Nilaparvata lugens Stal (Fulgoridae: Homoptera) as a pest of paddy cultivation in North Madras and its control. Indian J. Entomol., 1950, 12, 241–248.
- Jena, M. et al., Paradigm shift of insect pests in rice ecosystem and their management strategy. Oryza, 2018, 55, 82–89.
- Pandi, G. G. P., Chander, S. and Pal, M., Impact of elevated CO2 on brown planthopper, Nilaparvata lugens (Stal). Indian J. Entomol., 2017, 79(1), 82–85.
- Du, B., Chen, R., Guo, J. and He, J., Current understanding of the genomic, genetic, and molecular control of insect resistance in rice. Mol. Breed., 2020, 40, 24.
- Pandi, G. G. P., Chander, S., Pal, M. and Pathak, H., Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc. Natl. Acad. Sci. India Sect. B, 2016, 88(1), 57–64.
- Wu, S. F. et al., The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012–2016. Sci. Rep., 2018, 8(1), 1–11.
- Bale, J. S. B., Masters, G. J. and Hodkinson, I. D., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol., 2002, 8, 1–16.
- Piyaphongkul, J., Pritchard, J. and Bale, J., Can tropical insects stand the heat? A case study with the brown planthopper Nilaparvata lugens (Stål). PLOS ONE, 2012, 7(1), e29409.
- Hallman, G. J. and Denlinger, D. L., Temperature Sensitivity in Insects and Application in Integrated Pest Management, CRC Press, New York, USA, 2019, pp. 6–47.
- Sujithra, M. and Chander, S., Simulation of rice brown planthopper, Nilaparvata lugens (Stal.) population and crop–pest interactions to assess climate change impact. Climatic Change, 2013, 121, 331–347.
- Bentlage, B., Peterson, A. T., Barve, N. and Cartwright, P., Plumbing the depths: extending ecological niche modelling and species distribution modelling in three dimensions. Global Ecol. Biogeogr., 2013, 22(8), 952–961.
- Kumar, S., Graham, J., West, A. M. and Evangelista, P. H., Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Comput. Electron. Agric., 2014, 103, 55–62.
- Evangelista, P. H., Kumar, S., Stohlgren, T. J. and Young, N. E., Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. For. Ecol. Manage., 2011, 262(3), 307–316.
- Choudhary, J. S., Kumari, M., Mali, S. S., Dhakar, M. K., Das, B., Singh, A. K. and Bhatt, B. P., Predicting impact of climate change on habitat suitability of guava fruit fly, Bactrocera correcta (Bezzi) using MaxEnt modeling in India. J. Agrometeorol., 2019, 21(1), 24–30.
- AICRIP, All India Co-ordianted Rice Improvement Programme progress report. Volume 2: entomology and plant pathology. ICAR-Indian Institute of Rice Research, Hyderabad, 2019, pp. 18–20.
- EPPO, Global database on insect pest distribution, European and Mediterranean Plant Protection Organization, 2020; https://gd.eppo.int/taxon/NILALU/distribution (accessed on 14 December 2020).
- CABI, Datasheet on invasive species compendium, Centre for Agriculture and Bioscience International, 2020; https://www.cabi.org/isc/datasheet/36301 (accessed on 14 December 2020).
- Guevara, L., Gerstner, B. E., Kass, J. M. and Anderson, R. P., Toward ecologically realistic predictions of species distributions: a cross-time example from tropical montane cloud forests. Global Change Biol., 2018, 24, 1511–1522.
- Fourcade, Y., Engler, J. O., Rödder, D. and Secondi, J., Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLOS ONE, 2014, 9(5), e97122.
- Hortal, J., Roura-Pascual, N., Sanders, N. J. and Rahbek, C., Understanding (insect) species distributions across spatial scales. Ecography, 2010, 33, 51–53.
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A., Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 2005, 25(15), 195–204.
- Moss, R. H. et al., The next generation of scenarios for climate change research and assessment. Nature, 2010, 463(7282), 747–756.
- Taylor, K. E., Stouffer, R. J. and Meehl, G. A., An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 2012, 93, 485–498.
- Gao, T., Xu, Q., Liu, Y., Zhao, J. and Shi, J., Predicting the potential geographic distribution of Sirex nitobei in China under climate change using maximum entropy model. Forests, 2021, 12, 151.
- Rajpoot, R. et al., Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India. Global Ecol. Conserv., 2020, 23, e01040.
- Wei, J., Zhang, H., Zhao, W. and Zhao, Q., Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change. PLOS ONE, 2017, 12(7), e0180913.
- Warren, D. L., Glor, R. E. and Turelli, M., ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 2010, 33(3), 607–611.
- Phillips, S. J., Anderson, R. P. and Schapire, R. E., Maximum entropy modeling of species geographic distributions. Ecol. Model., 2006, 190(3–4), 231–259.
- Elith, J., Graham, C. H., Anderson, R. P., Dudik, M. and Ferrier, S., Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29, 129–151.
- Pearson, R. G., Raxworthy, C. J., Nakamura, M. and Peterson, A. T., Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr., 2007, 34, 102–117.
- Pearce, J. and Ferrier, S., An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol. Model., 2000, 128, 127–147.
- Qin, Y., Wang, C., Zhao, Z., Pan, X. and Li, Z., Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Climatic Change, 2019, 155, 145–156.
- Chemura, A., Musundire, R. and Chiwona-Karltun, L., Modelling habitat and spatial distribution of the edible insect Henicus whellani Chop (Orthoptera: Stenopelmatidae) in south-eastern districts of Zimbabwe. J. Insects Food Feed, 2018, 4(4), 229–238.
- Liu, C., Newell, G. and White, M., The effect of sample size on the accuracy of species distribution models: considering both presences and pseudo‐absences or background sites. Ecography, 2019, 42(3), 535–548.
- Fois, M., Cuena-Lombraña, A., Fenu, G. and Bacchetta, G., Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol. Model., 2018, 385, 124–132.
- West, A. M., Kumar, S., Brownb, C. S., Stohlgren, T. J. and Bromberg, J., Field validation of an invasive species Maxent model. Ecol. Inform., 2016, 36, 126–134.
- Warren, D. L. and Seifert, S. N., Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl., 2011, 21, 335–342.
- Ali, M. P., Huang, D. and Nachman, G., Ahmed, N., Begum, M. A. and Rabbi, M. F., Will climate change affect outbreak patterns of planthoppers in Bangladesh? PLOS ONE, 2014, 9(3), 1–10.
- Hu, G. et al., Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: immigration or local reproduction? PLOS ONE, 2014, 9, e88973.
- Yadav, D. S., Chander, S. and Selvaraj, K., Agro-ecological zoning of brown planthopper Nilaparvata lugens (Stal) incidence on rice (Oryza sativa L.). J. Sci. Ind. Res., 2010, 69, 818–822.
- Thomson, L. J., Macfadyen, S. and Hoffmann, A. A., Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control, 2010, 52(3), 296–306.
- Pandi, G. G. P., Chander, S. and Soumia, P. S., Elevated CO2 reared brown plant hopper as prey on feeding potential of wolf spider Pardosa pseudoannulata. Indian J. Entomol., 2018, 80(1), 127–130.
- Molecular diversity of Nilaparvata lugens (Stål.) (Hemiptera: Delphacidae) from India based on internal transcribed spacer 1 gene
Abstract Views :92 |
PDF Views:34
Authors
Govindharaj Guru-Pirasanna-Pandi
1,
Aashish Kumar Anant
1,
Jaipal Singh Choudhary
2,
Soumya Bharati Babu
1,
G. Basana-Gowda
1,
M. Annamalai
1,
Naveenkumar Patil
1,
Totan Adak
1,
P. Panneerselvam
1,
Prakash Chandra Rath
1
Affiliations
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 ICAR-RCER Farming System Research Centre for Hill and Plateau Region, Ranchi 834 010, IN
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 ICAR-RCER Farming System Research Centre for Hill and Plateau Region, Ranchi 834 010, IN
Source
Current Science, Vol 122, No 12 (2022), Pagination: 1392-1400Abstract
Brown planthopper, Nilaparvata lugens, is the major pest of rice in India and causes significant yield loss. It causes damage by sucking the plant sap leading to a characteristic symptom called ‘hopper burn’. The present study was undertaken to assess the genetic variability of N. lugens populations from different rice ecologies in India, to comprehend and assist in planning proper management strategies. We evaluated the molecular diversity in 17 N. lugens populations based on internal transcribed spacer 1 (ITSI) gene sequences. In all, 53 unique haplotypes were identified and their numbers varied from 1 to 10 in the sampled populations. Genetic diversity indices like nucleotide diversity, haplotype number, haplotype diversity and average number of nucleotide differences revealed low to high levels of genetic diversity among the populations. A highly significant negative relation of Fu’s F and Tajima’s D tests with insignificant sum of square deviation (SSD) values indicated possible recent expansion of N. lugens in different Indian regions with a population expansion time of 3.9 million years. A non-significant correlation in isolation pattern by distance indicated that geographic barriers present in India are inadequate to bring genetic differentiation among N. lugens from different migratory populations. In the present study, the ITSI gene sequence was used to analyse genetic structure among N. lugens in India.Keywords
Genetic Structure, Haplotypes, Molecular Diversity, Nilaparvata Lugens, RiceReferences
- Pandi, G. G. P., Chander, S., Pal, M. and Pathak, H., Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc. Natl. Acad. Sci. India, Sect. B, 2016, 88(1), 57–64.
- Jena, M. et al., Paradigm shift of insect pests in rice ecosystem and their management strategy. Oryza, 2018, 55, 82–89.
- Pandi, G. G. P., Chander, S., Pal, M. and Soumia, P. S., Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr.
- Sci., 2018, 114(8), 767–777.
- Li, S., Wang, H. and Zhoum, G. S., Synergism between Southern rice black-streaked dwarf virus and Rice ragged stunt virus enhances their insect vector acquisition. Phytopathology, 2014, 104, 794–799.
- Bottrell, D. G. and Schoenly, K. G., Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical. J. Asia Pac. Entomol., 2012, 15(1), 122–140.
- Otuka, A., Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Front. Microbiol., 2013, 4, 309.
- Hu, G., Lu, M. H., Tuan, H. A. and Liu, W. C., Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae) in Central Vietnam and its effects on their spring migration to China. Bull. Entomol. Res., 2017, 107, 369–381.
- Anant, A. K. et al., Genetic dissection and identification of candidate genes for brown planthopper, Nilaparvata lugens (Delphacidae: Hemiptera) resistance in farmers’ varieties of rice in Odisha. Crop Prot., 2021, 144, 105600 9. Mahapatra, B. et al., Imidacloprid application changes microbial dynamics and enzymes in rice soil. Ecotoxicol. Environ. Saf., 2017, 144, 123–130.
- Sahu, M. et al., Dissipation of chlorantraniliprole in contrasting soil and its effect on soil microbes and enzymes. Ecotoxicol. Environ. Saf., 2019, 180, 288–294.
- Hu, J., Xiao, C. and He, Y., Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice, 2016, 9(1), 30.
- Matsumura, M., Takeuchi, H., Satoh, M., Sanada-Morimura, S., Otuka, A., Watanabe, T. and Van, T. D., Species specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and Southeast Asia. Pest Manage. Sci., 2008, 64, 1115–1121.
- Matsumoto, Y., Matsumura, M., Sanada-Morimura, S., Hirai, Y., Sato, Y. and Noda, H., Mitochondrial COX sequences of Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae): low specificity among Asian planthopper populations. Bull. Entomol. Res., 2013, 103, 382–392.
- Naeemullah, M., Sharma, P. N., Tufail, M., Mori, N., Matsumura, M., Takeda, M. and Nakamura, C., Characterization of brown planthopper strains based on their differential responses to introgressed resistance genes and on mitochondrial DNA polymorphism. Appl. Entomol. Zool., 2009, 44, 475–483.
- Rollins, L. A., Woolnough, A. P., Sinclair, R., Mooney, N. J. and Sherwin, W. B., Mitochondrial DNA offers unique insights into invasion history of the common starling. Mol. Ecol., 2011, 20, 2307–2317.
- Wan, X., Liu, Y. and Zhang, B., Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: two main invasion routes. PLoS ONE, 2012, 7(5), e36176.
- Choudhary, J. S., Naaz, N., Prabhakar, C. S and Lemtur, M., Genetic analysis of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) populations based on mitochondrial COX1 and NAD1 gene sequences from India and other Asian countries. Genetica, 2016, 144, 611–623.
- Choudhary, J. S., Naaz, N., Lemtur, M., Das, B., Singh, A. K., Bhatt, B. P. and Prabhakar, C. S., Genetic analysis of Bactrocera zonata (Diptera: Tephritidae) populations from India based on COX1 and NAD1 gene sequences. Mitochondrial DNA A, 2018, 29(5), 727–736.
- Giantsis, I. A., Chaskopoulou, A. and Claude, B. M., Direct multiplex PCR (dmPCR) for the identification of six phlebotomine sand fly species (Diptera: Psychodidae), including major Leishmania vectors of the Mediterranean. J. Econ. Entomol., 2017, 110, 245–249.
- Watanabe, S. and Melzer, M. J., A multiplex PCR assay for differentiating coconut rhinoceros beetle (Coleoptera: Scarabaeidae) from oriental flower beetle (Coleoptera: Scarabaeidae) in early life stages and excrement. J. Econ. Entomol., 2017, 110, 678–682.
- Noda, H., How can planthopper genomics be useful for planthopper management? In Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia (eds Heong, K. L. and Hardy, B.), International Rice Research Institute, Los Banos, Philippines, 2009, pp. 429–446.
- Roderick, G. K. and Navajas, M., Genes in new environments: genetics and evolution in biological control. Nature Rev. Genet., 2003, 4, 889–899.
- Wilson, M. R. and Claridge, M. F., In Handbook for the Identification of Leafhoppers and Planthoppers of Rice, CAB International, London, UK, 1991, pp. 1–143; ISBN: 0-85198-692-7.
- Mun, J. H., Song, Y. H., Heong, K. L. and Roderick, G. K. Genetic variation among Asian populations of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae): mitochondrial DNA sequences. Bull. Entomol. Res., 1999, 89, 245–253.
- Liu, S. et al., Identification of Nilaparvata lugens and its two sibling species (N. bakeri and N. muiri) by direct multiplex PCR J. Econ. Entomol., 2018, 111(6), 2869–2875.
- Huang, X. and Madan, A., CAP3: a DNA sequence assembly program. Genome Res., 1999, 9, 868–877.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 2003, 30, 2725–2729.
- Librado, P. and Rozas, J., DnaSP V5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11), 1451–1452.
- Excoffier, L. and Lischer, H. E. L., Arlequin suite ver. 3.5, a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 2010, 10(3), 564–567.
- Bandelt, H., Forster, P. and Roehl, A., Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 1999, 16(1), 37–48.
- Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123(3), 585–595.
- Fu, Y. X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1997, 147, 915–925.
- Rogers, A. R. and Harpending, H., Population growth makes waves in the distribution of pairwise differences. Mol. Biol. Evol., 1992, 9, 552–569.
- Mantel, N., The detection of disease and a generalized regression approach. Cancer Res., 1967, 27, 209–220.
- Miller, M. P., Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered., 2005, 96(6), 722–724.
- Rosetti, N. and Remis, M. I., Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus. PLoS ONE, 2012, 7(7), e40807.
- Nei, M. and Li, W. H., Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA, 1979, 76(10), 5269–5273.
- Grant, W. S. and Bowen, B. W., Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered., 1998, 89, 415–426.
- AICRIP, All-India Co-ordinated Rice Improvement Programme progress report, volume 2: entomology and plant pathology. ICAR-Indian Institute of Rice Research, 2018, pp. 19–20.
- Anant, A. et al., Evaluation of brown planthopper, Nilaparvata
- lugens (Stal.) resistance. Indian J. Entomol., 2021, 83(2), 223– 225; doi:10.5958/0974-8172.2021.00065.1.
- Suarez, A. V. and Tsutsui, N. D., The evolutionary consequences of biological invasions. Mol. Ecol., 2008, 17, 351–360.
- Shi, W., Kerdelhue, C. and Ye, H., Genetic structure and inferences on potential source areas for Bactrocera dorsalis (Hendel) based on mitochondrial and microsatellite markers. PLoS ONE, 2012, 7(5), e37083.
- Grapputo, A., Bisazza, A. and Pilastro, A., Invasion success despite reduction of genetic diversity in the European populations of eastern mosquito fish (Gambusia holbrooki). Ital. J. Zool., 2006, 73, 67–73.
- Hoshizaki, S., Detection of isozyme polymorphism and estimation of geographic variation in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Bull. Entomol. Res., 1994, 84, 502–508.
- Wan, X., Nardi, F., Zhang, B. and Liu, Y., The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLoS ONE, 2011, 6(10), e25238
- Slatkin, M. and Hudson, R. R., Pairwise comparison of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 1991, 129, 555–562.
- Hereward, J. P., Cai, X., Matias, A. M. A., Walter, G. H., Xu, C. and Wang, Y., Migration dynamics of important rice pest: the brown planthopper (Nilaparvata lugens) across Asia – insights from population genomics. Evol. Appl., 2020, 13(9), 2449–2459.
- Harpending, H. C., Batzer, M. A., Gurven, M., Jorde, L. B., Rogers, A. R. and Sherry, S. T., Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA, 1998, 95, 1691–1697.
- Slatkin, M., Gene flow in natural populations. Annu. Rev. Ecol. Syst., 1985, 16, 393–430.