Refine your search
Collections
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Barsagade, Deepak D.
- Parasites-Predators:Their Occurrence and Invasive Impact on the Tropical Tasar Silkworm Antheraea mylitta (Drury) in the Zone of Central India
Abstract Views :592 |
PDF Views:180
Authors
Affiliations
1 Department of Zoology, MJF Educational Campus, RTM Nagpur University, Nagpur 440 033, IN
1 Department of Zoology, MJF Educational Campus, RTM Nagpur University, Nagpur 440 033, IN
Source
Current Science, Vol 111, No 10 (2016), Pagination: 1649-1657Abstract
Tasar silk is produced by the wild silkworm Antheraea mylitta (Drury) (Lepidoptera: Saturniidae). Owing to its inherent wild nature, the silkworm is exposed to a complex of parasites, predators and diseases that reduce the total silk production. Occurrence and invasion by three parasites and nine predators of A. mylitta are studied here. Moreover, on the basis of their attack and symptoms of parasitism and/or predation, percentage of crop loss (mortality) of A. mylitta is calculated. The parasites including Xanthopimpla pedator (Fabricius) (Hymenoptera: Ichneumonidae) were observed as a major pupal endoparasitoid of A. mylitta, which affects about 7-12% of tasar cocoon. In addition, the beetle Dermestes ater (De Geer) (Coleoptera: Dermestidae) also affects the pupa/cocoon of A. mylitta, while the Tachnid fly, Blepharipa sp., recognized as a larval-pupal parasite of the silkworm, cause about 1- 2% and 2-3% of tasar crop loss respectively. Consequently, among the predators, Canthecona furcellata (Wolff) (Pentatomidae: Hemiptera), was observed as a major predator of A. mylitta that causes about 6-11% of tasar larval mortality. However, 2-3% and 3-4% of crop mortality occurs due to predation by Hierodula bipapilla (Serville) (Mantidae: Dictyoptera) and Vespa orientalis (Linnaeus) (Vespidae: Hymenoptera) respectively. The predatory ants Oecophylla smaragdina (Fabricius) (Formicidae: Hymenoptera) and Myrmicaria brunnea (Saunders) (Formicidae: Hymenoptera) also contribute to crop reduction by 4-5% and 3-5% respectively. Similarly, non-insect predators such as birds, lizards, squirrels, rats, etc. also affect the silkworm, which further reduces tasar silk production. Therefore, a survey was undertaken in the tasar rearing fields of Vidarbha, Maharashtra, India and the occurrence of the parasites and predators was studied.Keywords
Antheraea mylitta, Mortality, Parasites, Predators, Tasar Silk.References
- Jolly, M. S., Sen, S. K., Sonwalkar, T. N. and Prasad, G. S., Nonmulberry silks. Food Agric. Org. UN, Serv. Bull., 1979, 29, 1–178.
- Jolly, M. S., Chaturvedi, S. M. and Prasad, S. A., Survey of Tasar crops in India. Indian J. Seric., 1968, 1, 50–58.
- Mathur, S. K., Singhvi, N. R. and Khushwaha, R. V., Ecology, commercial attributes and status review of Bhandara eco-race of Indian tropical tasar silkworm, Antheraea mylitta (D). In Proceedings of Workshop on Strategies for Non-mulberry Germplasm Maintenance, 2005, 307, 143–155.
- Barsagade D. D., Thakre, M. P., Meshram, H. M., Gathalkar, G. B., Gharade, S. A. and Thakre, R. P., Vanya tasar silkworm, Antheraea mylitta eco-race Bhandara, the local race and its conservation strategy (Lepidoptera: Saturniidae). J. Sci. Inform., 2012, 3, 17–13.
- Sen, S. K., Jolly, M. S. and Jammy, T. R., Diseases of tasar silkworm Antheraea mylitta (Saturniidae). Indian J. Ser., 1989, 8, 11–14.
- Mathur, S. K., Thorat, S. Y., Rathod, G. N. and Kamdi, N. G., Tasar culture in Maharashtra. Indian Silk, 39(1), 16–18.
- Barsagade, D. D., Kadwey, M. N., Gharade, S. A., Thakre, M. P., Meshram, H. M. and Gathalkar, G. B., Biology and effects of environmental factors and pathogens on the Vanya tasar silkworm, Antheraea mylitta (D). Eco-race Bhandara. In Proceedings of UGC Sponsored National Level Conference on ‘Environmental Biology and Biodiversity’, 2011, pp. 162–169.
- Jolly, M. S., Package of Practices for Tropical Tasar Culture, Ranchi. Central Tasar Research Station (Central Silk Board, Bombay), 1976, p. 32.
- Singh, K. C., Controlling the insect enemies of oak tasar silkworms. Indian Silk, 1991, 30(7), 19–23.
- Singh, R. N. and Thangavelu, K., Parasites and predators of tasar silkworm – Antheraea mylitta has many enemies. Indian Silk, 1991, 29, 33–36.
- Yadav, G. S., Singh, B. M. K., Sinha, B. R. B. and Sinha, S. S., Eco-race Bhandara and its frequency distribution. Indian Silk, 1996, 24–26.
- Shivakumar, G. and Shamitha, G., Studies on larval mortality: diseases, pest and predator menace in outdoor and indoor reared tasar silkworm, Antheraea mylitta drury (Daba TV). Res. J. Anim. Vet. Fish. Sci., 2013, 1(4), 1–7.
- Nayak, B. K. and Dash, M. C., Save our tasar: an appeal. Bull. Ind. Acad. Seric., 1997, 1(1), 52–59.
- Kishore, R., Sharma, B. P., Sharan, S. K. and Sinha, B. R. R. P., IPM approach to optimize tasar silkworm cocoon production. In Advances in Indian Sericulture Research (eds Dandin and Gupta), 2002, pp. 402–405.
- Veer, V., Negi, B. K. and Rao, K. M., Dermestid beetles and some other insect pests associated with stored silkworm cocoons in India, including a world list of dermestid species found attacking this commodity. J. Stored Prod. Res., 1996, 32(1), 69–89.
- Dasgupta, K. P., Observation on the behaviour of uzi fly maggots. Indian J. Seric., 1962, 1, 16–18.
- Sriharan, T. P., Sampson, M. V., Krishnaswami, S. and Dutta, R. K., Laboratory investigation on uzi fly, Tricholyga bombycis, a Tachiniid parasite of silkworm (Bombyx mori). Indian J. Seric., 1971, 10, 14–22.
- Richards, A. G. and Davies, R. G., General Textbook of Entomology, Classification Biology, Chapman and Hall, London, 1973, 10th edn, vol. 2.
- Gupta, R., Chatterjee K. K. and Chakravorty, D., Yellow fly menace in tasar culture. Indian Silk, 2009, 48, 22–23.
- Velide, L. and Bhagvanulu, M. V. K., Study on infestation of Xanthopimpla pedator on the cocoons of tropical tasar silkworm Antheraea mylitta Drury. Int. J. Pl. Anim. Env Sci., 2012, 2(3), 139–142.
- Jolly, M. S., Uzi Fly: Its Identification, Prevention and Control, Bulletin of the Central Sericultural Research and Training Institute (CSR and TI), Mysore, Karnataka, India, 1981, vol. 4, pp. 1–8.
- Patil, G. M. and Savanurmath, C. J., Can tropical tasar, Antheraea paphia be reared indoor. Entomon, 1989, 14(3–4), 217–225.
- Rath, S. S. and Sinha, B. R. R. P., Parasitization of fifth instar tasar silkworm, Antheraea mylitta, by the uzi fly, Blepharipa zebina; a host–parasitoid interaction and its effect on hosts nutritional parameters and parasitoid development. J. Invert. Pathol., 2005, 88, 70–78.
- Veer, V. and Rao, K. M., A new species of Trogoderma (Coleoptera: Derrnistidae) found damaging store silkworm cocoon in India. J. Stored Prod. Res., 1994, 30, 283–295.
- Sen, S. K., Jolly, M. S. and Jammy, T. R., Biology and life cycle of Canthecona furcellata Wolff (Hemiptera: Pentatomidae). Predator of tasar silkworm Antheraea mylitta D. Indian J. Seric., 1971, 10, 53–56.
- Singh, R. N., Bajpayee, C. M., Jayaswal, J. and Thangavelu, K., Perspective of biological control in tasar culture. Indian Silk, 1992, 31(7), 48–50.
- Bidyapati, L., Noamani, M. K. R. and Das, P. K., Pest complex of oak tasar. Indian Silk, 1994, 33(3), 44–49.
- Barsagade, D. D. and Gathalkar, G. B., First predation record of Canthecona furcellata (Wolff.) (Hemiptera: Pentatomidae) on spinning stage silkworm Antheraea mylitta (Drury). Entomol. Res., 2016, 46(4), 236–245; doi:10.1111/1748-5967.12169.
- Singh, R. N. and Saratchandra, B., Biological control of the pentatomid stink bug, Eocanthecona furcellata (Wolff.), by using their parasitoid, Psix striaticeps Dodd, in sericulture (review). Int. J. Indust. Entomol., 2002, 5(1), 13–22.
- Rai, P. S., Canthecona furcellata Wolff (Pentatomidae: Heteroptera), a predator of leaf feeding caterpillars of rice. Curr. Sci., 1978, 47, 556–557.
- Usha Rani, P. and Havukkala, I., Predatory and mating behaviour of Eocanthecona furcellata (Wolff) (Heteroptera: Pentatomidae), a promising natural enemy of Lepidopterous larvae. J. Biol. Control, 1993, 7, 9–11.
- Ahmad, M., Singh, A. P., Sharma, S., Mishra, R. K. and Ahmad, M. J., Potential estimation of predatory bug, Canthecona furcellata Wolff (Hemiptera: Pentatimidae) against poplar defoliator Clostera cupreata (Lepidoptera: Notodontidae). Ann. For., 1996, 4(2), 133–138.
- Chang, C. P., Mass rearing and utilization of the predatory stink bug Eocanthecona furcellata. Form. Entomol., 2002, 3, 175–181.
- Ray, S. N. and Khan, M. A., Biology of a predatory bug, Canthecona furcellata Wolff. (Hemiptera: Pentatomidae) on poplar defoliator, Clostera fulgurita walker (Lepidoptera: Notodontidae). J. Biopesticides, 2011, 4(2), 109–111.
- Gillham, F. E. M., Introduction to cotton insect pest control in Burma. Seed Development Project Report no. 22. Ministry of Agriculture and Forests, Rangoon, Burma, 1980, p. 77.
- Yi, N. N. and Kyi, W., Biological control of cotton bollworm and chickpea pod borer, Helicoverpa armigera by using predator Eocanthecona furcellata and parasitoid Campoletis chlorideae. In Proceeding of the Annual Research Conference, Yangon, Myanmar, 2000, pp. 58–74.
- Breland, O. P. and Dobson, J. W., Specificity of mantid oothecae (Orthoptera: Mantidae). Ann. Ent. Soc. America, 1948, 40, 557–575.
- Reddy, K. J., Singh, M. K., Krishnamurthy, T. S. and Maruthi, R. A., New method to control wasps in tasar culture. Indian Silk, 1995, 34(9), 34–35.
- Negi, B. K., Siddiqui, A. A. and Sengupta, A. K., Insect pests of muga silkworms and their management. Indian Silk, 1993, 37–38.
- Hingston, R. W. C., The habits of Oecophylla smaragdina. Proc. Ent. Soc. London, 1957, 90–94.
- Kenne, M., Schatz, B., Durand, J. L. and Dejean, A., Hunting strategy of a generalist ant species proposed as a biological control agent against termites. Entomol. Exp. Appl., 2000, 94, 31–40.
- Barman, H., Mammalian pests of muga silkworm crop. Mun. Ent. Zool., 2011, 6(1), 512.
- Immunocytochemical localization of leptin hormone in the neurosecretory cells of brain–suboesophageal ganglion complex of tropical tasar silkworm, Antheraea mylitta (D.) eco-race Bhandara
Abstract Views :408 |
PDF Views:131
Authors
Affiliations
1 P.G. Department of Zoology, MJF Educational Campus, RTM Nagpur University, Nagpur 440 033, IN
2 Department of Zoology, R. S. Bidkar Arts, Commerce and Science College, Hinganghat Dist., Wardha 442 301, IN
3 Department of Zoology, Nabira Mahavidyalaya, Katol Dist., Nagpur 441 302, IN
1 P.G. Department of Zoology, MJF Educational Campus, RTM Nagpur University, Nagpur 440 033, IN
2 Department of Zoology, R. S. Bidkar Arts, Commerce and Science College, Hinganghat Dist., Wardha 442 301, IN
3 Department of Zoology, Nabira Mahavidyalaya, Katol Dist., Nagpur 441 302, IN
Source
Current Science, Vol 120, No 10 (2021), Pagination: 1611-1615Abstract
Leptin is a peripheral agent known for its function in feeding behaviour in vertebrates. In this study, we demonstrated leptin immunoreactivity in the brain and suboesophageal ganglion (SOG) of tropical tasar silkworm, Antheraea mylitta (D.) by immunohistochemistry using polyclonal antibody against mammalian leptin. Leptin immunoreactivity was not observed in the adult brain, whereas, intense reactivity was detected in the single neuronal group of cells in SOG. This study provides an essential groundwork to further elucidate the involvement of leptin in insect development and appetite regulatory systems of tropical tasar silkworm, Antheraea mylitta (D.) as well as in other insects.Keywords
Antheraea mylitta, leptin, suboesophageal ganglion, tasar silkworm.References
- Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J. M., Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372, 425–431.
- Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Flier-Maratos, E. and Flier, J. S., Role of leptin in the neuroendocrine response to fasting. Nature, 1996, 382, 250–252.
- Tinoco, A. et al., Leptin expression is rhythmic in brain and liver of goldfish (Carassius auratus). Role of feeding time. Gen. Comp. Endocr., 2014, 1(204), 239–247.
- Mietlicki-Baase, E. et al., Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am. J. Physiol. – Endocr. Metab., 2015, 308(12), 1116–1122; doi:10.1152/ajpendo.00087.2015.
- Loughton, B. G. and Saleuddin, A. S. M. (eds), Neurobiology and Endocrinology of Selected Invertebrates, Captus University Publications, North York, Canada, 1990.
- Naya, S. et al., Eclosion hormone like immunoreactivity in the nervous system of Bombyx mori (Lepidoptera: Bombycidae) and Antheraea yamamai (Lepidoptera: Saturniidae) before after hatching. Eur. J. Entomol., 1994, 91, 189–196.
- Nässel, D. and Wegener, C., A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides, 2011, 32, 1335– 1355.
- Hiroshi, U., Yukiko, S., Kyohei, Y., Yoshiomi, K. and Kunihiro, S., An FXPRL amide neuropeptide induces seasonal reproductive polyphenism underlying a life history tradeoff in the Tussock moth. PLoS ONE, 2011, 6(8), 1–10.
- Landau, M., Biggers, W. J. and Laufer, H., Invertebrate endocrinology, Comprehensive physiology, 2011.
- Tembhare, D., Invertebrate Endocrinology, Himalaya publishing House, Mumbai, India, 2012, 1st edn.
- Kramer, K. J., Vertebrate hormones in insects. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 7 (eds Kerkut, G. A. and Gilbert, L. I.), Pergamon Press, Oxford, UK, 1985, pp. 511–536.
- Raabe, M., Comparative immunocytochemical study of release sites of insulin, glucagon and AKH-like products in Locusta migratoria, Periplaneta americana, and Carausius morosus. Cell Tissue Res., 1986, 245, 267–271.
- Hazelwood, R., The pancreatic polypeptide (PP-fold) family: gastrointestinal, vascular, and feeding behavioral implications. Proc. Soc. Exp. Biol. Med., 1993, 202, 44–63.
- Hu, Y. et al., Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. J. Biol. Chem., 1996, 271, 26315–26319.
- Gade, G. and Auerswald, L., Insect neuropeptides regulating substrate mobilization. S. Afr. J. Zoo., 1998, 33, 65–70.
- Nassel, D. R., Tachykinin-related peptides in invertebrates: a review. Peptides, 1999, 20, 141–158.
- Nassel, D. R., Neuropeptides in the nervous system of Drosophila and other insect: multiple role as neuromodulators and neurohormones. Prog. Neurobiol., 2002, 68, 1–84.
- Predel, R., Peptidergic neurohemal system of an insect: mass spectrometric morphology. J. Comp. Neurol., 2001, 436, 363–375.
- Nichols, R., Signaling pathways and physiological function of Drosophila melanogaster FMRF amide-related peptides. Annu.Rev. Entomol., 2003, 48, 485–503.
- Patel, H. et al., Reprint of the distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide. Gen. Comp. Endocr., 2014, 203, 307–314.
- Fukuda, S. and Takeuchi, S., Diapause factor producing cells in the suboesophageal ganglion of the silkworm Bombyx mori L.Proc. Jpn Acad., 1967, 43, 51–56.
- Fukuda, S. and Takeuchi, S., Studies on the diapuse factor producing cells in the sub-osophageal ganglion of the silk worm, Bombyx mori L. Embryologia (Nagoya), 1967, 9, 333–353.
- Ichikawa, T., Hasegawa, K., Shimizu, I., Katsuno, K., Kataoka, H. and Suzuki, A., Structure of neurosecretory cells with immunoreactive diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. Zool. Sci., 1995, 12, 703–712.
- Davis, N. T., Homberg, U., Teal, P. E. A., Altstein, M., Agricola, H. J. and Hildebrand, J. G., Neuroanatomy and immunocytochemistry of the median neuroendocrine cells of suboesophageal ganglion of the tobacco hawkmoth, Manduca Sexta. Immunoreactivities to PBAN and other peptides. Microsc. Res. Techniq., 1996, 35, 201–229.
- Barsagade, D. D., Rathee, S. D. and Tembhare, D. B., Structure of cephalic neuroendocrine system and immunocytochemical lacalization of neurohormones FMRF amide and neuropeptide-Y (NPY) in the cerebral neurosecretory cells in the tropical tasar silkworm, Antheraea mylitta (D.). In Applications of Biotechnology in Sericulture, Stardium Press (India), New Delhi, 2011, pp. 189–202.
- Ando, T., Hase, T., Funayoshi, A., Arima, R. and Uchiyama, M., Sex pheromone biosynthesis from 14C-hexadecanoic acid in the silkworm moth. Agric. Biol. Chem., 1988, 52, 141–147.
- Barsagade, D. and Gharade, S., Ultrastructural studies on the neurosecretory cells in the pars intercerebralis of larvae of tasar silkworm, Antheraea mylitta (D) eco-race Bhandara (Lepidoptera:Saturniidae). Int. J. Indust. Entomol., 2014, 29(1), 120–127.
- Tembhare, D. and Barsagade, D., Cephalic neuroendocrine system in the tropical tasar silkworm, Antheraea mylitta (D) (Lepidoptera:Saturniidae): metamorphic and sericotropic functions. Int. J. Wild Silkmoth Silk, 2000, 4, 1–9.
- Copenhaver, P. F. and Truman, J. W., Metamorphosis of the cerebral neuroendocrine system in the moth Manduca sexta. J. Neurol., 1986, 54, 814–826.
- Huetteroth, W., el Jundi, S. and Schachtner, J., 3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta. Front. Syst. Neurosci., 2010, 4(7), 1–15.
- Sato, Y., Ikeda, M. and Yamashita, O., Neurosecretory cells expressing the gene for common precursor for diapause hormone and pheromone biosynthesis activating neuropeptide in the suboesophageal ganglion of the silkworm, Bombyx mori. Gen. Comp. Endocr., 1994, 96, 27–36.
- Ajitha, V. S. and Muraleedharan, D., Tissue localization and partial characterization of pheromone biosynthesis activating neuropeptide in Achaea janata. J. Biosci., 2005, 30(2), 191–200.
- Blackburn, M., Kingan, T. G., Raina, A. K. and Ma, M. C., Colocalization and differential expression of PBAN – and FMRF amide – like immuno reactivity in the suboesophageal ganglion of Heliothis zea during development. Arch. Insect. Biochem. Physiol., 1992, 21, 225–238.
- Altman, J. S. and Kien, J., Functional organization of the suboesophageal ganglion in arthropods. In Arthropod Brain: Its Evolution, Development, Structure and Functions (ed. Gupta, A. P.), Wiley, New York, 1987, pp. 265–301.
- Mitsumasu, K. et al., Molecular cloning and characterization of cDNAs encoding dopamine receptor-1 and -2 from brainsuboesophageal ganglion of the silkworm, Bombyx mori. Insect. Mol. Biol., 2008, 17, 185–195.
- Ichikawa, T., Architecture of cerebral neurosecretory cell systems in the silkworm Bombyx mori. J. Exp. Biol., 1991, 161, 217–237.
- Mitchell, B., Itagaki, H. and Pascale, R., Peripheral and central structures involved in insect gustation. Microsc. Res. Techniq., 1999, 47, 401–415.
- Bader, R., Colomb, J., Pankratz, B., Schrock, A., Stocker, R. F. and Pankratz, M. J., Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons. J. Comp. Neurol., 2007, 502(5), 848–856.
- Pawar, K. R. and Tembhare, D. B., Immunocytochemical localization of some neurotransmitters in the neurosecretory cells in the brain and ventral ganglia of the water beetle, Cybister tripunctatus Ol. (Coleoptera: Dytiscidae). J. Ent. Res., 2010, 34(3), 181–185.
- Sun, J.-S., Zhang, T.-Y., Zhang, Q.-R. and Xu, W. H., Effect of the brain and suboesophageal ganglion on pupal development in Helicoverpa armigera through regulation of FXPRL amide neuropeptides. Regul. Peptides, 2003, 116, 163–171.
- Morita, A., Niimi, T. and Yamashita, O., Physiological differentiation of DH-PBAN-producing neurosecretory cells in the silkworm embryo. J. Insect. Physiol., 2003, 49(12), 1093–1102.