Open Access Open Access  Restricted Access Subscription Access

26Al–26Mg Isotopic Studies in Some Calcium–Aluminium-Rich Inclusions and Chondrules from Unequilibrated Chondrites


Affiliations
1 Independent Researcher, Dhawalpur Village, PO Kaitha, Bhagalpur 813 211, India
2 Planetary Sciences Division, Physical Research Laboratory, Navrangpura, Ahmedabad 360 009, India
3 Klaus-Tschira-Labor für Kosmochemie, Institut für Geowissenschaften, Im Neuenheimer Feld 234-236 Ruprecht-Karls-Universität, Heidelberg, D-69210, Germany
 

Calcium–aluminium-rich inclusions (CAIs) and chondrules are the oldest dated components of chondrites. They record the events and processes during the formation and early evolution of the solar system in their morphology, mineral phases and isotopic compositions. 26Al–26Mg isotopic systematics of two CAIs from Leoville (CV3.1-3.4), two chondrules from Queen Alexandra range 99177 (CR3.00), one mega chondrule from Semarkona (LL3.00), and a plagioclase rich chondrule from Chainpur (LL3.4) were carried out to understand the formation processes of these rare kinds of objects and to obtain constraints on early solar system events and processes. Petrographic and isotopic properties of Leoville CAI 1 (Type B2) suggest its formation c. 0.1 Ma after typical non-igneous CAIs characterized by the canonical ratio of 26Al/27Al = 5.25 ´ 10–5, from a partial melt heated to a maximum temperature of ~1420°C and cooled slowly at £0.5°C/h. Leoville CAI 3 (Type A) plausibly formed early within 1 Ma of the canonical CAI value and subsequently experienced parent body aqueous alteration. The analysed chondrules did not yield significant 26Mg excess due to their small Al/Mg ratio or resetting by secondary processes

Keywords

Calcium–Aluminium-Rich Inclusions, ChondRules, Early Solar System Relative Chronology, Short-Lived Now-Extinct Radionuclide, Solar System.
User
Notifications
Font Size

  • Davis, A. M. and McKeegan, K. D., Short-lived radionuclides and early solar system chronology. In Meteorites, Comets, and Planets, Treatise on Geochemistry. Vol. 1: Meteorites and Cosmochemical Processes (ed. Davis, A. M.), Elsevier, Oxford, 2014, 2nd edn, pp. 139–179.
  • Chaussidon, M. and Liu, M.-C., Timing of nebula processes that shaped the precursors of the terrestrial planets. In The Early Earth: Accretion and Differentiation (eds Badro, J. and Walters, M. J.), AGU Monograph, John Wiley, New Jersey, 2015, pp. 1–26.
  • Larsen, K. K. et al., Episodic formation of refractory inclusions in the solar system and their presolar heritage. Earth Planet. Sci. Lett., 2020, 535, 22–24.
  • Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A. and Weisberg, M. K., Classification of meteorites and their genetic relationships. In Meteorites, Comets, and Planets, Treatise on Geochemistry. Vol. 1: Meteorites and Cosmochemical Processes (ed. Davis, A. M.), Elsevier, Oxford, 2014, 2nd edn, pp. 65–137.
  • Huss, G. R., Rubin, A. E. and Grossman, J. N., Thermal metamorphism in chondrites. In Meteorites and the Early Solar System II (eds Lauretta, D. S. and McSween Jr, H. Y.), University Arizona Press, Tuscon, 2006, pp. 567–586.
  • Bonal, L., Quirico, E., Bourot-Denise, M. and Montagnac, G., Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim. Cosmochim. Acta, 2006, 70, 1849–1863.
  • Kimura, M., Grossman, J. N. and Weisberg, M. K., Fe–Ni metal in primitive chondrites: indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteorit. Planet. Sci., 2008, 43, 1161–1177.
  • Mishra, R. K., Marhas, K. K. and Trieloff, M., 26Al–26Mg isotope systematics in Leoville CAIs and Chainpur chondrule. In 49th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, 2018, p. 1633.
  • Luu, Tu-Han, Chaussidon, M., Mishra, R. K., Rollion-Bard, C., Villeneuve, J., Srinivasan, G. and Birck, J. L., High precision Mg isotope measurements of meteoritic samples by secondary ionization mass spectrometry. J. Anal. Atom. Mass Spectrom., 2013, 28, 67–76.
  • Catanzaro, E. J., Murphy, T. J., Garner, E. L. and Shields, W. R., Absolute isotopic abundance ratios and atomic weight of magnesium. J. Res. Natl. Bur. Stand., Sect. A: Phys. Chem., 1966, 70, 453–458.
  • Davis, A. M., Richter, F. M., Mendybaev, R. A., Janney, P. E., Wadhwa, M. and McKeegan, K. D., Isotopic mass fractionation laws for magnesium and their effects on 26Al–26Mg systematics in solar system materials. Geochim. Cosmochim. Acta, 2015, 158, 245–261.
  • Russell, S. S., Srinivasan, G., Huss, G. R., Wasserburg, G. J. and MacPherson, G. J., Evidence for widespread 26Al in the solar nebula and constraints for nebula timescales. Science, 1996, 273, 757–762.
  • Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S. and Srinivasan, G., Aluminum-26 in calcium–aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 2001, 36, 975–997.
  • Itoh, S., Russell, S. S. and Yurimoto, H., Oxygen and magnesium isotopic compositions of amoeboid olivine aggregates from the Semarkona LL3.0 chondrite. Meteorit. Planet. Sci., 2007, 42, 1241-1247.
  • Mishra, R. K., Simon, J. I., Ross, D. K. and Marhas, K. K., CAIs in Semarkona (LL3.0). In 47th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, 2016, p. 2750.
  • Mishra, R. K., Marhas, K. K. and Samir, Abundance of 60Fe inferred from nanoSIMS study of QUE 97008 (L3.05) chondrules. Earth Planet. Sci. Lett., 2016, 436, 71–81.
  • Russell, S. S., Itoh, S., Salge, T., Higashi, Y., Kawasaki, N. and Sakamoto, N. A., CAI in the highly unequilibrated ordinary chondrite Northwest Africa 8276: Implications for CAI formation and processing. In 47th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, 2016, p. 1989.
  • Haugbolle, T., Weber, P., Wielandt, D. P., Benitez-Llambay, P., Bizzarro, M., Gressel, O. and Pessah, M. E., Probing the protosolar disk using dust filtering at gaps in the early solar system. Astrophys. J., 2019, 158, 17.
  • MacPherson, G. J., Krot, A. N. and Nagashima, K., Al–Mg isotopic study of spinel-rich fine-grained CAIs. Meteorit. Planet. Sci., 2020, 55, 2519–2538.
  • Mishra, R. K., Petrography and mineralogy of a large calcium, aluminum-rich inclusion in Chainpur (LL3.4) ordinary chondrite. In 52nd Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, 2021, p. 1837.
  • Kita, N. T., Nagahara, H., Togashi, S. and Morishita, Y., A short duration of chondrule formation in the solar nebula: evidence from 26Al in Semarkona ferromagnesian chondrules. Geochim. Cosmochim-. Acta, 2000, 64, 3913–3922.
  • Rudraswami, N. G., Goswami, J. N., Chattopadhyay, B., Sengupta, S. K. and Thapliyal, A. P., 26Al records in chondrules from unequilibrated ordinary chondrites: II. Duration of chondrule formation and parent body thermal metamorphism. Earth Planet. Sci. Lett., 2008, 274, 93–102.
  • Villeneuve, J., Chaussidon, M. and Libourel, G., Homogeneous distribution of 26Al in the solar system from the mg isotopic composition of chondrules. Science, 2009, 325, 985–988.
  • Mishra, R. K., Records of now-extinct nuclides in early solar system objects: an ion microprobe study. Doctoral Thesis, Gujarat University, India, 2009.
  • Mishra, R. K. and Chaussidon, M., 60Fe–60Ni isotope systematics in silicates in chondrules from unequilibrated chondrites: yet again and status quo. Meteorit. Planet. Sci., 2012, 47, 5194.
  • Mishra, R. K. and Chaussidon, M., Fossil records of high level of 60 Fe in chondrules from unequilibrated chondrites. Timing and extent of Mg and Al isotopic homogenization in the early solar system. Earth Planet. Sci. Lett., 2014, 398, 90–100.
  • Mishra, R. K., Goswami, J. N., Tachibana, S., Huss, G. R. and Rudraswami, N. G., 60Fe and 26Al in chondrules from unequilibrated chondrites: implications for early Solar system processes. Astrophys. J. Lett., 2010, 714, L217–L221.
  • MacPherson, G. J. and Huss, G. R., Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochim. Cosmochim. Acta, 2005, 69, 3099–3127.
  • Abreu, N. and Brearley, A., Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochim. Cosmochim. Acta, 2010, 74, 1146–1171.
  • Pape, J., Mezger, K., Bouvier, A.-S. and Baumgartner, L. P., Time and duration of chondrule formation: constraints from 26Al–26Mg ages of individual chondrules. Geochim. Cosmochim. Acta, 2018, 244, 416–436.
  • Stolper, E. and Paque, J. M., Crystallization sequence of Ca–Alrich inclusions from Allende: the effects of cooling rate and maximum. Geochim. Cosmochim. Acta, 1986, 50, 1785–1806.
  • Paque, J. M., Lofgren, G. E. and Loan, L., Crystallization of calcium–aluminum-rich inclusions: experimental studies on the effects of led heating events. Meteorit. Planet. Sci., 2000, 35, 363–371.
  • Ebel, D. S., Condensation of rocky material in astrophysical environments. In Meteorites and the Early Solar System II (eds Lauretta, D. S. and McSween Jr, H. Y.), University Arizona Press, Tuscon, 2006, pp. 253–277.
  • Petaev, M. I. and Jacobsen, S. B., Petrologic study of SJ101, a new forsterite-bearing CAI from the Allende CV3 chondrite. Geochim. Cosmochim. Acta, 2009, 73, 5100–5114.
  • MacPherson, G. J., Calcium-aluminum-rich inclusions in chondritic meteorites. In Meteorites, Comets, and Planets, Treatise on Geochemistry. Vol. 1: Meteorites and Cosmochemical Processes (ed. Davis, A. M.), Elsevier, Oxford, 2014, 2nd edn, pp. 201–246.
  • Amelin, Y., Kaltenbach, A., Lizuka, T., Stirling, C. H., Ireland, T. R., Petaev, M. and Jacobsen S. B., U–Pb chronology of the Solar system’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett., 2012, 300, 343–350.
  • Bouvier, A. and Wadhwa, M., The age of the solar system redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci., 2010, 3(9), 637–641.
  • Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D. and Ivanova, M. A., The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 2012, 338, 651–655.
  • Kita, N. T. et al., 26Al–26Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci., 2013, 483, 1383-1400.
  • Mishra, R. K. and Chaussidon, M., Timing and extent of Mg and Al isotopic homogenization in the early solar system. Earth Planet. Sci. Lett., 2014, 390, 318–326.
  • Kawasaki, N., Park, C., Sakamoto, N., Park, S., Kim, H., Kuroda, M. and Yurimoto, H., Variations in initial 26Al/27Al ratios among fluffy Type A Ca–Al-rich inclusions from reduced CV chondrites. Earth Planet. Sci. Lett., 2019, 511, 25–35.
  • Kawasaki, N., Itoh, S., Sakamoto, N. and Yurimoto, H., Chronological study of oxygen isotope composition for the solar protoplanetary disk recorded in a fluffy Type A CAI from Vigarano. Geochim. Cosmochim. Acta, 2017, 201, 83–102.
  • Mishra, R. K. and Marhas, K. K., Meteoritic evidences of a late superflare as source of 7 Be in the early solar system. Nat. Astron., 2019, 3, 498–505.
  • Goswami, J. N., Srinivasan, G. and Ulyanov, A. A., Ion microprobe studies of Efremovka CAIs. 1. Magnesium isotope composition. Geochim. Cosmochim. Acta, 1994, 58, 431–447.
  • Marhas, K. K. and Mishra, R. K., The vanguard of irradiation: the fourth element. In 49th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, 2018, p. 1646.
  • Kita, N. T., Ushikubo, T., Knight, K. B., Mendybeav, R. A., Davis, A. M., Ritcher, F. M. and Fournelle, J. H., Internal 26Al–26
  • Larsen, K. K. et al., Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J. Lett., 2011, 735, L37–L44.
  • Olsen, M. B., Wielandt, D., Schiller, M., Van Kooten, E. M. M. E. and Bizzarro, M., Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – insights into early disk processes. Geochim. Cosmochim. Acta, 2016, 191, 118–138.
  • Bollard, J. et al., Combined U-corrected Pb–Pb dating and 26Al–26Mg systematics of individual chondrules – evidence for a reduced initial abundance of 26Al amongst inner solar system chondrules. Geochim. Cosmochim. Acta, 2019, 260, 62–83.
  • Kööp, L. et al., A link between oxygen, calcium, and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim. Cosmochim. Acta, 2016, 189, 70–95.
  • Kööp, L. et al., New constraints on the relationship between 26Al and oxygen, calcium, and titanium isotopic variation in the early Solar system from a multiple isotopic study of spinel-hibonite inclusion. Geochim. Cosmochim. Acta, 2016, 184, 151–172.
  • Nagashima, K., Krot, A. N. and Huss, G. R., 26Al in chondrules from CR2 chondrites. Geochem. J., 2014, 48, 561–570.
  • Schrader, D. L. et al., Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta, 2017, 201, 275–302.
  • Tenner, T. J., Nakashima, D., Ushikubo, T., Tomioka, N., Kimura, M., Weisberg, M. K. and Kita, N. T., Extended chondrule formation intervals in distinct physicochemical environments: evidence from Al–Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase. Geochim. Cosmochim. Acta, 2019, 260, 133–160.
  • Rudraswami, N. G. and Goswami, J. N., 26Al in chondrules from unequilibrated L chondrites: Onset and duration of chondrule formation in the early solar system. Earth Planet. Sci. Lett., 2007, 257, 231–244.
  • Siron, G., Fukuda, K., Kimura, M. and Kita, N. T., New constraints from 26Al–26Mg chronology of anorthite bearing chondrules in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta, 2021, 293, 103–126.
  • Russell, S. S., Huss, G. R., Fahey, A. J., Greenwood, R. C., Hutchison, R. and Wasserburg, G. J., An isotopic and petrologic study of calcium–aluminum-rich inclusions from CO3 meteorites. Geochim. Cosmochim. Acta, 1998, 62, 689–714.
  • Kurahashi, E., Kita, N. T., Nagahara, H. and Morishita, Y., 26Al–26Mg isotope systematics of chondrules in primitive CO chondrite. Geochim. Cosmochim. Acta, 2008, 72, 3865–3882.
  • Hutcheon, I. D., Marhas, K. K., Krot, A. N., Goswami, J. N. and Jones, R. H., 26Al in plagioclase-rich chondrules in carbonaceous chondrites: evidence for an extended duration of chondrule formation. Geochim. Cosmochim. Acta, 2009, 73, 5080–5099

Abstract Views: 159

PDF Views: 73




  • 26Al–26Mg Isotopic Studies in Some Calcium–Aluminium-Rich Inclusions and Chondrules from Unequilibrated Chondrites

Abstract Views: 159  |  PDF Views: 73

Authors

Ritesh Kumar Mishra
Independent Researcher, Dhawalpur Village, PO Kaitha, Bhagalpur 813 211, India
Kuljeet Kaur Marhas
Planetary Sciences Division, Physical Research Laboratory, Navrangpura, Ahmedabad 360 009, India
Mario Trieloff
Klaus-Tschira-Labor für Kosmochemie, Institut für Geowissenschaften, Im Neuenheimer Feld 234-236 Ruprecht-Karls-Universität, Heidelberg, D-69210, Germany

Abstract


Calcium–aluminium-rich inclusions (CAIs) and chondrules are the oldest dated components of chondrites. They record the events and processes during the formation and early evolution of the solar system in their morphology, mineral phases and isotopic compositions. 26Al–26Mg isotopic systematics of two CAIs from Leoville (CV3.1-3.4), two chondrules from Queen Alexandra range 99177 (CR3.00), one mega chondrule from Semarkona (LL3.00), and a plagioclase rich chondrule from Chainpur (LL3.4) were carried out to understand the formation processes of these rare kinds of objects and to obtain constraints on early solar system events and processes. Petrographic and isotopic properties of Leoville CAI 1 (Type B2) suggest its formation c. 0.1 Ma after typical non-igneous CAIs characterized by the canonical ratio of 26Al/27Al = 5.25 ´ 10–5, from a partial melt heated to a maximum temperature of ~1420°C and cooled slowly at £0.5°C/h. Leoville CAI 3 (Type A) plausibly formed early within 1 Ma of the canonical CAI value and subsequently experienced parent body aqueous alteration. The analysed chondrules did not yield significant 26Mg excess due to their small Al/Mg ratio or resetting by secondary processes

Keywords


Calcium–Aluminium-Rich Inclusions, ChondRules, Early Solar System Relative Chronology, Short-Lived Now-Extinct Radionuclide, Solar System.

References





DOI: https://doi.org/10.18520/cs%2Fv125%2Fi2%2F191-203