Open Access Open Access  Restricted Access Subscription Access

Determination of oxidant and antioxidant parameters in the serum of children with type 1 diabetes mellitus


Affiliations
1 Department of Hotel, Restaurant and Catering Services, Cookery Program, Bitlis Eren University, Bitlis, Turkey., Turkey
2 Söke Health Services Vocational School, Department of Health Care Services, Home Patient Care Program, Aydın Adnan Menderes University,Aydin, Turkey., Turkey
3 Faculty of Medicine, Department of Pediatric Endocrinology, Aydın Adnan Menderes University, Aydin, Turkey., Turkey
4 Faculty of Health Sciences, Department of Nutrition and Dietetics, Aydın Adnan Menderes University, Aydin, Turkey., Turkey
 

The primary goal of this study was to assess the oxidant/ antioxidant balance of children and adolescents with type 1 diabetes mellitus (T1DM). It was an experimental case-control study with 38 children and adolescents diagnosed with T1DM. We found that the fasting blood glucose, haemoglobinA1c, malondialdehyde, total oxidant status, and total and native thiol values of the type-1 diabetes group were significantly higher than the control group, while total antioxidant status was significantly lower. Our results corroborate other studies showing diabetic patients are more vulnerable to oxidative stress.

Keywords

Adolescents, Children, Diabetes Mellitus, Oxidant and Antioxidant Parameters.
User
Notifications
Font Size

  • Baynes, J. W. and Thorpe, S. R., Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 1999, 48(1), 1–9.
  • Avilés-Santa, M. L., Monroig-Rivera, A., Soto-Soto, A. and Lindberg, N. M., Current state of diabetes mellitus prevalence, awareness, treatment, and control in Latin America: challenges and innovative solutions to improve health outcomes across the continent. Curr. Diabetes Rep., 2020, 20(11), 62.
  • Yaribeygi, H., Sathyapalan, T., Atkin, S. L. and Sahebkar, A., Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxidat. Med. Cell. Longev., 2020; https://doi.org/10.1155/2020/ 8609213.
  • Yilmaz, M. B. et al., Temporal changes in the epidemiology of diabetes mellitus in Turkey: a systematic review and meta-analysis. Turk. Soc. Cardiol., 2018, 46(7), 546–555.
  • Dada, A., Ogbera, A., Ogundele, S., Fasanmade, O. and Ohwovoriole, A., Glycaemic responses to corn meals in type 2 diabetics and nondiabetic controls. Turk. J. Endocrinol. Metabol., 2015, 19, 79–82.
  • International Diabetes Federation, IDF Diabetes Atlas, 2021, 10th edition; https://diabetesatlas.org/en/ (accessed 10 January 2022).
  • Katsarou, A. et al., Type 1 diabetes mellitus. Nature Rev. Dis. Primers, 2017, 3.
  • Devendra, D. and Eisenbarth, G. S., Immunologic endocrine disorders. J. Allergy Clin. Immunol., 2003, 111, 624–636.
  • Giacco, F. and Brownlee, M., Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058–1070.
  • Varvarovská, J., Racek, J., Stozicky, F., Soucekc, J., Trefil, L. and Pomahacova, R., J. Diabetes Complicat., 2003, 17, 7–10.
  • Varvarovská, J. et al., Aspects of oxidative stress in children with type 1 diabetes mellitus. Biomed. Pharmacother., 2004, 58(10), 539–545.
  • Ohkawa, H., Ohishi, N. and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351–358.
  • Erel, O. and Neselioglu, S., A novel and automated assay for thiol/ disulphide homeostasis. Clin. Biochem., 2014, 47(18), 326–332.
  • Erel, O., A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem., 2004, 37(4), 277–285.
  • Erel, O., A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005, 38(12), 1103–1111.
  • Murata, M., Mizutani, M., Oikawa, S., Hiraku, Y. and Kawanishi, S., Oxidative DNA damage by hyperglycemia-related aldehydes and its marked enhancement by hydrogen peroxide. FEBS Lett., 2003, 554(1–2), 138–142.
  • Leete, P., Mallone, R., Richardson, S. J., Sosenko, J. M., Redondo, M. J. and Evans-Molina, C., The effect of age on the progression and severity of type 1 diabetes: potential effects on disease mechanisms. Curr. Diabetes Rep., 2018, 18, 115.
  • Lin, C. C., Huang, H. H., Chen, B. H., Chong, I. V., Chao, Y. Y. and Huang, Y. L., Trace elements oxidative stress and glycemic control in young people with type 1 diabetes mellitus. J. Trace Elem. Med. Biol., 2014, 28(1), 18–22.
  • Yesilkaya, E. et al., First report on the nationwide incidence and prevalence of type 1 diabetes among children in Turkey. Diabetic Med.: J. Br. Diabetic Assoc., 2017, 34(3), 405–410.
  • Weykamp, C., HbA1c: a review of analytical and clinical aspects. Ann. Lab. Med., 2013, 33(6), 393–400.
  • National Diabetes Data Group, Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes, 1979, 28, 1039–1057.
  • Alberti, K. G. and Zimmet, P. Z., Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Med.: J. Br. Diabetic Assoc., 1998, 15(7), 539–553.
  • Gallou, G., Ruelland, A., Legras, B., Maugendre, D., Allannic, H. and Cloarec, L., Plasma malondialdehyde in type 1 and type 2 diabetic patients. Clin. Chim. Acta, 1993, 214(2), 227–234.
  • Erciyas, F., Taneli, F., Arslan, B. and Uslu, Y., Glycemic control, oxidative stress, and lipid profile in children with type 1 diabetes mellitus. Arch. Med. Res., 2004, 35(2), 134–140.
  • Firoozrai, M., Nourbakhsh, M., and Razzaghy-Azar, M., Erythrocyte susceptibility to oxidative stress and antioxidant status in patients with type 1 diabetes. Diabetes Res. Clin. Pract., 2007, 77(3), 427– 432.
  • Augé, N., Pieraggi, M. T., Thiers, J. C., Nègre-Salvayre, A. and Salvayre, R., Proliferative and cytotoxic effects of mildly oxidized low-density lipoproteins on vascular smooth-muscle cells. Biochem. J., 1995, 309(3), 1015–1020.
  • Jalees, S. S. and Rosaline, M., Study of malondialdehyde and estimation of blood glucose levels in patients with diabetes mellitus with cataract. Int. J. Clin. Biochem. Res., 2017, 4(3), 319–323.
  • Djindjic, B. et al., The contributions of fasting and postprandial blood glucose increments to oxidative stress and inflammation in dyslipidemic type 2 diabetic patients with stable ischemic heart disease. Int. J. Cardiol., 2017, 227, 611–616.
  • Ates, I., Kaplan, M., Yuksel, M., Mese, D., Alısık, M., Erel, O., Yilmaz, N. and Guler, S., Determination of thiol/disulphide homeo stasis in type 1 diabetes mellitus and the factors associated with thiol oxidation. Endocrine, 2016, 51(1), 47–51.
  • Durmus, S. Y., Muratoglu Sahin, N., Ergin, M., Neselioglu, S., Aycan, Z. and Erel, O., How does thiol/disulfide homeostasis change in children with type 1 diabetes mellitus? Diabetes Res. Clin. Prac., 2019, 149, 64–68.
  • Ates, I., Kaplan, M., Inan, B., Alisik, M., Erel, O., Yilmaz, N. and Guler, S., How does thiol/disulfide homeostasis change in prediabetic patients? Diabetes Res. Clin. Pract., 2015, 110(2), 166–171.
  • Aral, C. A., Nalbantoglu, O., Bur, B. G., Altunsoy, M. and Aral, K., Metabolic control and periodontal treatment decreases elevated oxidative stress in the early phases of type 1 diabetes onset. Arch. Oral Biol., 2017, 82, 115–120.
  • Gheni, D. A. and Al-Maamori, J. A., The impact of oxidative stress and some endogenous antioxidants on type 1 diabetes mellitus. Eur. J. Mol. Clin. Med., 2020, 7(2), 4295–4310.
  • Tabur, S., Korkmaz, H., Eren, M. A., Oguz, E., Sabuncu, T., Kul, S. and Aksoy, N., Can visfatin be considered as a diagnostic marker for diabetic nephropathy? Turk. J. Endocrinol. Metab., 2016, 20(1), 10–15.
  • Beyazyıldız, E., Cankaya, A. B., Ergan, E., Anayol, M. A., Ozdamar, Y., Sezer, S. and Ozturk, F., Changes of total antioxidant capacity and total oxidant status of aqueous humor in diabetes patients and correlations with diabetic retinopathy. Int. J. Ophthalmol., 2013, 6(4), 531–536.
  • Rani, A. J. and Mythili, S. V., Study on total antioxidant status in relation to oxidative stress in type 2 diabetes mellitus. J. Clin. Diagn. Res., 2014, 8(3), 108–110.
  • Dosoo, D. K., Rana, S. V., Offe-Amoyaw, K., Tete-Donkor, D. and Maddy, S. Q., Total antioxidant status in non-insulin-dependent diabetes mellitus patients in Ghana. West Afr. J. Med., 2001, 20(3), 184–186.
  • Karacay, O. et al., A quantitative evaluation of total antioxidant status and oxidative stress markers in preeclampsia and gestational diabetic patients in 24–36 weeks of gestation. Diabetes Res. Clin. Pract., 2010, 89(3), 231–238.
  • Maxwell, S. R. J. et al., Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Europ. J. Clin. Invest., 2003, 27(6), 484–490.
  • Kharroubi, A. T., Darwish, H. M., Akkawi, M. A., Ashareef, A. A., Almasri, Z. A., Bader, K. A. and Khammas, U. M., Total antioxidant status in type 2 diabetic patients in palestine. J. Diabetes Res., 2015, 7.

Abstract Views: 119

PDF Views: 77




  • Determination of oxidant and antioxidant parameters in the serum of children with type 1 diabetes mellitus

Abstract Views: 119  |  PDF Views: 77

Authors

Yakup Enes Çam
Department of Hotel, Restaurant and Catering Services, Cookery Program, Bitlis Eren University, Bitlis, Turkey., Turkey
Murat Ari
Söke Health Services Vocational School, Department of Health Care Services, Home Patient Care Program, Aydın Adnan Menderes University,Aydin, Turkey., Turkey
Ahmet Anik
Faculty of Medicine, Department of Pediatric Endocrinology, Aydın Adnan Menderes University, Aydin, Turkey., Turkey
Serdal Öğüt
Faculty of Health Sciences, Department of Nutrition and Dietetics, Aydın Adnan Menderes University, Aydin, Turkey., Turkey

Abstract


The primary goal of this study was to assess the oxidant/ antioxidant balance of children and adolescents with type 1 diabetes mellitus (T1DM). It was an experimental case-control study with 38 children and adolescents diagnosed with T1DM. We found that the fasting blood glucose, haemoglobinA1c, malondialdehyde, total oxidant status, and total and native thiol values of the type-1 diabetes group were significantly higher than the control group, while total antioxidant status was significantly lower. Our results corroborate other studies showing diabetic patients are more vulnerable to oxidative stress.

Keywords


Adolescents, Children, Diabetes Mellitus, Oxidant and Antioxidant Parameters.

References





DOI: https://doi.org/10.18520/cs%2Fv124%2Fi7%2F807-811