Open Access Open Access  Restricted Access Subscription Access

Insects: biodiversity, threat status and conservation approaches


Affiliations
1 ICAR-National Research Centre for Integrated Pest Management, New Delhi - 110 012, India
2 ICAR-Indian Institute of Oilseeds Research, Hyderabad - 500 030, India
3 ICAR-National Bureau of Plant Genetics Resources, New Delhi - 110 012, India
4 ICAR-Indian Grassland and Fodder Research Institute, Jhansi - 284 001, India
5 ICAR-Indian Agricultural Research Institute, New Delhi - 110 012, India
6 ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387 310, India
7 ICAR-Central Potato Research Institute, Regional Station, Modipuram - 250 110, India
8 ICAR-National Research Centre for Integrated Pest Management, New Delhi 110 012, India
 

Insects are an important component of the ecosystem and fast dwindling of its diversity is reported globally. The International Union for Conservation of Nature has assessed a total of 77,435 species of insects between 1996 and 2020, of which 18,180 (23.47%) species are reported to be threatened and the majority of threate­ned species was reported in Odonata followed by Ortho­ptera, Coleoptera, Lepidoptera and Hymenoptera. Out of 1843 species listed as critically endangered, endangered, extinct, extinct in wild and vulnerable, from the literature it was found that 596 are predators, 40 are pollinators, 164 are saprophagous, 620 are herbivores, 272 are omnivores, 137 are parasites and 14 are unknown. This study provides concise information on insect diversity, global threat status and major driving factors for population decline, which will be helpful in determining the priority insect groups that require conservation.

Keywords

Conservation Approaches, Ecological Indicators, Insect Biodiversity, Population Decline, Threatened Species
User
Notifications
Font Size

  • Hill, D. S., The Economic Importance of Insects, Springer Science and Business Media, 2012.
  • Scudder, G. G., The importance of insects. In Insect Biodiversity: Science and Society, Wiley Blackwell, Oxford, United Kingdom, 2017, pp. 9–13.
  • Samways, M. J., Insect conservation for the twenty-first century. In Insect Science-Diversity, Conservation and Nutrition, Intech Open, London, 2018, p. 98.
  • Weisser, W. W. and Siemann, E., The various effects of insects on ecosystem functioning. In Insects and Ecosystem Dunction, Springer, Berlin, Germany, 2008, pp. 3–24.
  • Chown, S. L. and Terblanche, J. S., Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect Phys., 2006, 33, 50–152.
  • Garrouste, R. et al., A complete insect from the Late Devonian period. Nature, 2012, 488(7409), 82–85.
  • Labandeira, C. C., Johnson, K. R. and Wilf, P., Impact of the terminal Cretaceous event on plant–insect associations. Proc. Natl. Acad. Sci. USA, 2002, 99(4), 2061–2066.
  • Ponel, P. et al., 110,000 years of Quaternary beetle diversity change. Biodivers. Conserv., 2003, 12(10), 2077–2089.
  • Hallmann, C. A. et al., More than 75 per cent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 2017, 12(10), e0185809.
  • Mace, G. M. et al., Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol., 2008, 22(6), 1424–1442.
  • Rodrigues, A. S., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M.and Brooks, T. M., The value of the IUCN Red List for conservation. Trends Ecol. Evol., 2006, 21(2), 71–76.
  • Samways, M. J., Insect Diversity Conservation, University of Cambridge, Cambridge, UK, 2005. p. 342.
  • Fox, R., Warren, M. S., Brereton, T. M., Roy, D. B. and Robinson, A., A new Red List of British butterflies. Insect Conserv. Divers., 2011, 4, 159–172.
  • Warren, M. S., Barnett, L. K., Gibbons, D. W. and Avery, M. I., Assessing national conservation priorities: an improved Red List of British butterflies. Biol. Conserv., 1997, 82, 317–328.
  • van Strien, A. J., van Swaay, C. A., can Strien-van Liempt, W. T., Poot, M. J. and Wallis DeVries, M. F., Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv., 2019, 234, 116–122.
  • Nemesio, A., Are orchid bees at risk? First comparative survey suggests declining populations of forest-dependent species. Braz. J. Biol., 2013, 73(2), 367–374.
  • Kuussaari, M., Heliölä, J., Pöyry, J. and Saarinen, K., Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J. Insect Conserv., 2007, 11, 351–366.
  • Fox, R., The decline of moths in Great Britain: a review of possible causes. Insect Conserv. Divers., 2013, 6, 5–19.
  • McKinney, M. L., High rates of extinction and threat in poorly studied taxa. Conserv. Biol., 1999, 13, 1273–1281.
  • Thomas, J. A. et al., Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 2004, 303, 1879–1881.
  • Relyea, R. A. and Hoverman, J. T., Interactive effects of predators and a pesticide on aquatic communities. Oikos, 2008, 117(11), 1647–1658.
  • Suhonen, J., Hilli Lukkarinen, M. I. L. L. A., Korkeamaeki, E. S. A., Kuitunen, M., Kullas, J., Penttinen, J. and Salmela, J., Local extinction of dragonfly and damselfly populations in low and high quality habitat patches. Conserv. Biol., 2010, 24(4), 1148–1153.
  • Hannon, E. R. and Hafernik, J. E., Reintroduction of the rare damselfly, Ischnura gemina (Odonata: Coenagrionidae) into an urban California park. J. Insect Conserv., 2007, 11(2), 141–149.
  • Clausnitzer, V. et al., Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol. Conserv., 2009, 142(8), 1864–1869.
  • Sánchez-Bayo, F. and Wyckhuys, K. A., Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv., 2019, 232, 8–27.
  • Alignan, J. F., Debras, J. F. and Dutoit, T., Effects of ecological restoration on Orthoptera assemblages in a Mediterranean steppe rangeland. J. Insect Conserv., 2014, 18, 1073–1085.
  • Tiwari, U. and Gupta, U. S., Diversity of orthoptera fauna of Sagar district, Madhya Pradesh. Int. J. Adv. Res. Rev., 2020, 5(12), 15–21.
  • Hochkirch, A. et al., European Red List of grasshoppers, crickets and bush-crickets. Publications Office of the European Union, Luxembourg, 2016, p. 86.
  • Grzędzicka, E. and Vahed, K., Habitat requirements of the endangered heath bush-cricket Gampsocleis glabra (Orthoptera, Tettigoniidae) in an isolated population. J. Insect Conserv., 2020, 24(6), 935–945.
  • Fattorini, S., Beetle species – area relationships and extinction rates in protected areas. Insects, 2020, 11(9), 646.
  • Foit, J., Kašák, J. and Nevoral, J., Habitat requirements of the endangered longhorn beetle Aegosoma scabricorne (Coleoptera: Cerambycidae): a possible umbrella species for saproxylic beetles in European lowland forests. J. Insect Conserv., 2016, 20(5), 837–844.
  • Mittal, I. C., Diversity and Coleoptera) in North India. Bull. Natl. Inst. Ecol., 2005, 15, 43–51.
  • Numa, C. et al., The conservation status and distribution of Mediterranean dung beetles. IUCN, Gland, Switzerland, 2020, p. 55.
  • New, T. R., Hymenoptera and Conservation, Wiley Blackwell, Hoboken, NJ, USA, 2012, p. 232.
  • Ollerton, J., Winfree, R. and Tarrant, S., How many flowering plants are pollinated by animals? Oikos, 2011, 120, 321–326.
  • Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C. and Tscharntke, T., Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. Royal Soc., 2007, 274(1608), 303–313.
  • Biesmeijer, J. C. et al., Parallel declines in pollinators and insectpollinated plants in Britain and the Netherlands. Science, 2006, 313(5785), 351–354.
  • Kwon, T. S., Lee, C. M. and Sung, J. H., Diversity decrease of ant (Formicidae, Hymenoptera) after a forest disturbance: different responses among functional guilds. Zool. Stud., 2014, 53(1), 1–11.
  • Graham, J. H. et al., Habitat disturbance and the diversity and abundance of ants (Formicidae) in the southeastern Fall-Line Sandhills. J. Insect Sci., 2004, 4(1), 30.
  • Anderson, K. E., Sheehan, T. H., Eckholm, B. J., Mott, B. M. and DeGrandi-Hoffman, G., An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insectes Soc., 2011, 58(4), 431–444.
  • Smart, M., Pettis, J., Rice, N., Browning, Z. and Spivak, M., Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE, 2016, 11, e0152685.
  • Huang, Z., Pollen nutrition affects honey bee stress resistance. Terr. Arthropod Rev., 2012, 5, 75–189.
  • http://www.fao.org/pollination/background/bees-and-other-pollinators/ en/ (accessed on 19 July 2021).
  • Jauker, F., Bondarenko, B., Becker, H. C. and Steffan-Dewenter, I., Pollination efficiency of wild bees and hoverflies provided to oilseed rape. Agric. For. Entomol., 2012, 14(1), 81–87.
  • Forister, M. L. et al., Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol. Lett., 2016, 12(8), p. 20160475.
  • Harmon, J. P., Stephens, E. and Losey, J., The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J. Insect Conserv., 2007, 11, 85–94.
  • Brown, M. and Miller, S., Coccinellidae (Coleoptera) in apple orchards of eastern West Virginia and the impact of invasion by Harmonia axyridis. Entomol. News, 1998, 109, 143–151.
  • Honek, A., Martinkova, Z., Kindlmann, P., Ameixa Olga, M. C. C. and Dixon Anthony, F. G., Long-term trends in the composition of aphidophagous coccinellid communities in Central Europe. Insect Conserv. Divers., 2014, 7, 55–63.
  • Maes, D. and Van Dyck, H., Butterfly diversity loss in Flanders (North Belgium): Europe’s worst case scenario. Biol. Conserv., 2001, 99, 263–276.
  • Swaay, C. V. et al., European Red List of butterflies, IUCN Red List of threatened species – regional assessment, Office for Official Publications of the European Communities, Luxembourg, 2010.
  • Habel, J. C., Segerer, A., Ulrich, W., Torchyk, O., Weisser, W. W. and Schmitt, T., Butterfly community shifts over two centuries. Conserv. Biol., 2016, 30(4), 754–762.
  • van Swaay, C. A. M., An assessment of the changes in butterfly abundance in The Netherlands during the 20th century. Biol. Conserv., 1990, 52(4), 287–302.
  • van Strien, A. J. et al., Modest recovery of biodiversity in a western European country: the Living Planet Index for the Netherlands. Biol. Conserv., 2016, 200, 44–50.
  • Bartomeus, I., Ascher, J. S., Gibbs, J., Danforth, B. N., Wagner, D. L., Hedtke, S. M. and Winfree, R., Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. USA, 2013, 110(12), 4656–4660.
  • Brooks, D. R. et al., Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss of insect biodiversity. J. Appl. Ecol., 2012, 49, 1009–1019.
  • Brower, L. P., Taylor, O. R., Williams, E. H., Slayback, D. A., Zubieta, R. R. and Ramírez, M. I., Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv. Divers., 2011, 5(2), 95–100.
  • Brown, P. M. J., Frost, R., Doberski, J., Sparks, T., Harrington, R. and Roy, H. E., Decline in native ladybirds in response to the arrival of Harmonia axyridis: early evidence from England. Ecol. Entomol., 2011, 36(2), 231–240.
  • Burkle, L. A., Markin, J. C. and Knight, T. M., Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science, 2013, 339, 1611–1615.
  • Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F. and Griswold, T. L., Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA, 2011, 108(2), 662–667.
  • Carpaneto, G. M., Mazziotta, A. and Valerio, L., Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae). Divers. Distrib., 2007, 13(6), 903–919.
  • Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. and Woiwod, I. P., Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv., 2006, 132(3), 279–291.
  • Conrad, K. F., Woiwod, I. P., Parsons, M., Fox, R. and Warren, M. S., Long-term population trends in widespread British moths. J. Insect Conserv., 2006, 8(2–3), 119–136.
  • Dennis, E. B., Brereton, T. M., Morgan, B. J. T., Fox, R., Shortall, C. R., Prescott, T. and Foster, S., Trends and indicators for quantifying moth abundance and occupancy in Scotland. J. Insect Conserv., 2019, 23(2), 369–380.
  • Desender, K. and Turin, H., Loss of habitats and changes in the composition of the ground and tiger beetle fauna in four West European countries since 1950 (Coleoptera: Carabidae, Cicindelidae). Biol. Conserv., 1989, 48(4), 277–294.
  • Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B. and Collen, B., Defaunation in the Anthropocene. Science, 2014, 345(6195), 401–406.
  • Forister, M. L., Fordyce, J. A., Nice, C. C., Thorne, J. H., Waetjen, D. P. and Shapiro, A. M., Impacts of a millennium drought on butterfly faunal dynamics. Climate Change Responses, 2018, 5(1), 3.
  • Fox, R., The decline of moths in Great Britain: a review of possible causes. Insect Conserv. Divers., 2012, 6(1), 5–19.
  • Fox, R. et al., The state of the UKs butterflies 2015. Butterfly Conservation and the Centre for Ecology and Hydrology, Wareham, Dorset, UK, 2015. p. 27.
  • Fox, R., Oliver, T. H., Harrower, C., Parsons, M. S., Thomas, C. D. and Roy, D. B., Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. Appl. Ecol., 2014, 51(4), 949–957.
  • Gordon, W., Frankie, Mark Rizzardi, S., Vinson, B. and Griswold, T. L., Decline in bee diversity and abundance from 1972–2004 on a flowering leguminous tree, Andira inermis in Costa Rica at the interface of disturbed dry forest and the urban environment. J. Kansas. Entomol. Soc., 2009, 82(1), 1–20.
  • Cranston, P. S. and Gullan, P. J., Phylogeny of insects. In Encyclopedia of Insects, 2009, pp. 780–793.
  • Zhang, Z. Q., Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness, Magnolia Press, 2011.

Abstract Views: 155

PDF Views: 76




  • Insects: biodiversity, threat status and conservation approaches

Abstract Views: 155  |  PDF Views: 76

Authors

Kerur Vishwanath Raghavendra
ICAR-National Research Centre for Integrated Pest Management, New Delhi - 110 012, India
Thangavel Bhoopathi
ICAR-Indian Institute of Oilseeds Research, Hyderabad - 500 030, India
Ravi Gowthami
ICAR-National Bureau of Plant Genetics Resources, New Delhi - 110 012, India
Manikyanahalli Chandrashekara Keerthi
ICAR-Indian Grassland and Fodder Research Institute, Jhansi - 284 001, India
Sachin Suresh Suroshe
ICAR-Indian Agricultural Research Institute, New Delhi - 110 012, India
K. B. Ramesh
ICAR-Indian Agricultural Research Institute, New Delhi - 110 012, India
Shivakumara Kadanakuppe Thammayya
ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387 310, India
Subhash Shivaramu
ICAR-Central Potato Research Institute, Regional Station, Modipuram - 250 110, India
Subhash Chander
ICAR-National Research Centre for Integrated Pest Management, New Delhi 110 012, India

Abstract


Insects are an important component of the ecosystem and fast dwindling of its diversity is reported globally. The International Union for Conservation of Nature has assessed a total of 77,435 species of insects between 1996 and 2020, of which 18,180 (23.47%) species are reported to be threatened and the majority of threate­ned species was reported in Odonata followed by Ortho­ptera, Coleoptera, Lepidoptera and Hymenoptera. Out of 1843 species listed as critically endangered, endangered, extinct, extinct in wild and vulnerable, from the literature it was found that 596 are predators, 40 are pollinators, 164 are saprophagous, 620 are herbivores, 272 are omnivores, 137 are parasites and 14 are unknown. This study provides concise information on insect diversity, global threat status and major driving factors for population decline, which will be helpful in determining the priority insect groups that require conservation.

Keywords


Conservation Approaches, Ecological Indicators, Insect Biodiversity, Population Decline, Threatened Species

References





DOI: https://doi.org/10.18520/cs%2Fv122%2Fi12%2F1374-1384