Open Access Open Access  Restricted Access Subscription Access

Viral diseases in Indian freshwater and marine water pisciculture


Affiliations
1 ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India
 

Intensification of aquaculture allows emergent and resurgent viral pathogens to cause large die-offs in the wild and farms. The inherent capability of viruses to exist in multiple forms outside the hosts gives them an edge for easy transmission and translocation increasing the chances of infection. More efforts are needed for an in-depth understanding of viral epidemiology. Quantification of factors determining the virulence mechanisms and variability in disease expression is necessary to strengthen the basic knowledge on viro­logy. The article is an update on the current understanding on viral diseases in fish causing loss to Indian aquaculture systems.

Keywords

Aquaculture, fish, freshwater, marine water, viral diseases.
User
Notifications
Font Size

  • Walker, J. and Winton, J. R., Emerging viral diseases of fish and shrimp. Vet. Res., 2010, 41(6), 51.
  • Raja, K., Aanand, P., Padmavathy, S. and Sampathkumar, J. S., Present and future market trends of Indian ornamental fish sector. Int. J. Fish. Aquat. Stud., 2019, 7(2), 6–15.
  • Crane, M. and Hyatt, A., Viruses of fish: an overview of significant pathogens. Viruses, 2011, 3(11), 2025–2046.
  • Sahoo, P. K. et al., Detection of goldfish haematopoietic necrosis herpes virus (Cyprinid herpesvirus-2) with multi-drug resistant infection in goldfish: first evidence of any viral disease outbreak in ornamental freshwater aquaculture farms in India. Acta Trop., 2016, 161, 8–17.
  • Granoff, A., Came, P. E. and Breeze, D. C., Viruses and renal carcinoma of Rana pipiens: I. The isolation and properties of virus from normal and tumor tissue. Virology, 1996, 29(1), 133–148.
  • Gray, M. J., Brunner, J. L., Earl, J. E. and Ariel, E., Design and analysis of ranavirus studies: surveillance and assessing risk. In Ranaviruses. Lethal Pathogens of Ectothermic Vertebrates (eds Gray, M. J. and Chinchar, V. G.), Springer Open, Heidelberg, Germany, 2015, pp. 209–240.
  • Jancovich, J. K., Qin, Q., Zhang, Q. Y. and Chinchar, V. G., Ranavirus replication: molecular, cellular, and immunological events. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates (eds Gray, M. J. and Chinchar, V. G.), Springer, Cham, 2015, pp. 105–139.
  • Duffus, A. L. J., Pauli, B. D., Wozney, K., Brunetti, C. R. and Berrill, M., Frog virus 3-like infections in aquatic amphibian communities. J. Wildl. Dis., 2008, 44(1), 109–120.
  • Jancovich, J. K., Chinchar, V. G., Hyatt, A., Miyazaki, T., Williams, T. and Zhang, Q. Y., Family Iridoviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses (eds King, A. M. Q. et al.), Elsevier, Amsterdam, The Netherlands, 2012, pp. 193–210.
  • George, M. R., John, K. R., Mansoor, M. M., Saravanakumar, R., Sundar, P. and Pradeep, V., Isolation and characterization of a ranavirus from koi, Cyprinus carpio L., experiencing mass mortalities in India. J. Fish Dis., 2015, 38(4), 389–403.
  • Mao, J., Green, D. E., Fellers, G. and Chinchar, V. G., Molecular characterization of iridoviruses isolated from sympatric amphibians and fish. Virus Res., 1999, 63(1–2), 45–52.
  • Waltzek, T. B. et al., New disease records for hatchery-reared sturgeon. I. Expansion of frog virus 3 host range into Scaphirhynchus albus. Dis. Aquat. Organ., 2014, 111(3), 219–227.
  • Grizzle, J. M. and Brunner, C. J., Review of largemouth bass virus. Fisheries, 2003, 28(11), 10–14.
  • Whittington, R. J., Philbey, A., Reddacliff, G. L. and Macgown, A. R., Epidemiology of epizootic haematopoietic necrosis virus (EHNV) infection in farmed rainbow trout, Oncorhynchus mykiss (Walbaum): findings based on virus isolation, antigen capture ELISA and serology. J. Fish Dis., 1994, 17(3), 205–218.
  • Brunner, J. L., Storfer, A., Gray, M. J. and Hoverman, J. T., Ranavirus ecology and evolution: from epidemiology to extinction. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates (eds Gray, M. J. and Chinchar, V. G.), Springer, New York, USA, 2015, pp. 71–104.
  • Whittington, R. J., Becker, J. A. and Dennis, M. M., Iridovirus infections in finfish–critical review with emphasis on ranaviruses. J. Fish Dis., 2010, 33(2), 95–122.
  • Becker, J. A., Tweedie, A., Gilligan, D., Asmus, M. and Whittington, R. J., Experimental infection of Australian freshwater fish with epizootic haematopoietic necrosis virus (EHNV). J. Aquat. Anim. Health, 2013, 25(1), 66–76.
  • John, K. R., George, M. R., Kar, D., Mansoor, M. M., Kumar P. M., Singha, R. and Waikhom, G., Detection of Ranavirus infection in cultivated carps of Northeast India. Fish Pathol. (Spec. Issue), 2016, 51, S66–S74.
  • Sivasankar, P., John, K. R., George, M. R., Mageshkumar, P., Manzoor, M. M. and Jeyaseelan, M. P., Characterization of a virulent ranavirus isolated from marine ornamental fish in India. Virus Dis., 2017, 28(4), 373–382.
  • Jancovich, J. K., Steckler, N. and Waltzek, T, B., Ranavirus taxonomy and phylogeny. In Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates (eds Gray, M. J. and Chinchar, V. G.), Springer, New York, USA, 2015, pp. 59–70.
  • Hick, P., Becker, J. and Whittington, R., Iridoviruses of fish. In Aquaculture Virology, Academic Press, London, 2016, pp. 127– 152.
  • Holopainen, R., Ohlemeyer, S., Schütze, H., Bergmann, S. M. and Tapiovaara, H., Ranavirus phylogeny and differentiation based on major capsid protein, DNA polymerase and neurofilament triplet H1-like protein genes. Dis. Aquat. Organ., 2009, 85(2), 81–91.
  • Jancovich, J. K. et al., Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Mol. Ecol., 2005, 14(1), 213–224.
  • Kurita, J. and Nakajima, K., Megalocytiviruses. Viruses, 2012, 4(4), 521–538.
  • Hyatt, A. D. et al., Comparative studies of piscine and amphibian iridoviruses. Arch. Virol., 2000, 145(2), 301–331.
  • Chou, H. Y., Hsu, C. C. and Peng, T. Y., Isolation and characterization of a pathogenic iridovirus from cultured grouper (Epinephelus sp.) in Taiwan. Fish Pathol., 1998, 33(4), 201–206.
  • Inouye, K., Yamano, K., Maeno, Y., Nakajima, K., Matsuoka, M., Wada, Y. and Sorimachi, M., Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathol., 1992, 27(1), 19–27.
  • Subramaniam, K., Shariff, M., Omar, A. R. and Hair-Bejo, M., Megalocytivirus infection in fish. Rev. Aquacult., 2012, 4(4), 221–233.
  • Gias, E., Johnston, C., Keeling, S., Spence, R. P. and McDonald, W. L., Development of real-time PCR assays for detection of megalocytiviruses in imported ornamental fish. J. Fish Dis., 2011, 34(8), 609–618.
  • Pattanayak, S., Paul, A. and Sahoo, P. K., Detection and genetic analysis of infectious spleen and kidney necrosis virus (ISKNV) in ornamental fish from non-clinical cases: first report from India. bioRxiv, 12 August 2020; doi:https://doi.org/10.1101/2020.08.12.247650.
  • Kurita, J., Nakajima, K., Hirono, I. and Aoki, T., Complete genome sequencing of red sea bream iridovirus (RSIV). Fish. Sci., 2002, 68, 1113–1115.
  • He, J. G., Deng, M., Weng, S. P., Li, Z., Zhou, S. Y., Long, Q. X., Wang, X. Z. and Chan, S. M., Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology, 2001, 291(1), 126–139.
  • Kim, W. S., Oh, M. J., Jung, S. J., Kim, Y. J. and Kitamura, S. I., Characterization of an iridovirus detected from cultured turbot Scophthalmus maximus in Korea. Dis. Aquat. Organ., 2005, 64(2), 175–180.
  • He, J. G., Wang, S. P., Zeng, K., Huang, Z. J. and Chan, S. M., Systemic disease caused by an iridovirus-like agent in cultured mandarin fish, Siniperca chuatsi (Basilewsky), in China. J. Fish Dis., 2000, 23, 219–222.
  • Sudthongkong, C., Miyata, M. and Miyazaki, T., Viral DNA sequences of genes encoding the ATPase and the major capsid protein of tropical iridovirus isolates which are pathogenic to fishes in Japan, South China Sea and Southeast Asian countries. Arch. Virol., 2002, 147(11), 2089–2109.
  • Fu, X. et al., Genotype and host range analysis of infectious spleen and kidney necrosis virus (ISKNV). Virus Genes, 2011, 42(1), 97–109.
  • Oh, M. J., Kitamura, S. I., Kim, W. S., Park, M. K., Jung, S. J., Miyadai, T. and Ohtani, M., Susceptibility of marine fish species to a megalocytivirus, turbot iridovirus, isolated from turbot, Psetta maximus (L.). J. Fish Dis., 2006, 29(7), 415–421.
  • Chinchar, V. G., Hyatt, A., Miyazaki, T. and Williams, T., Family Iridoviridae: poor viral relations no longer. In Lesser Known Large dsDNA Viruses (ed. Etten, J. L. V.), Springer, Berlin, Germany, 2009, pp. 123–170.
  • Song, J. Y. et al., Genetic variation and geographic distribution of megalocytiviruses. J. Microbiol., 2008, 46(1), 29–33.
  • Anon., Megalocytivirus infection in ornamental fish. ICAR-CIFA News, 2018, 24(4), 5.
  • Williams, T., Barbosa-Solomieu, V. and Chinchar, V. G., A decade of advances in iridovirus research. Adv. Virus Res., 2005, 65, 173–248.
  • Go, J. and Whittington, R., Experimental transmission and virulence of a megalocytivirus (family Iridoviridae) of dwarf gourami (Colisa lalia) from Asia in Murray cod (Maccullochella peelii peelii) in Australia. Aquaculture, 2006, 258(1–4), 140–149.
  • Nakajima, K. and Sorimachi, M., Production of monoclonal antibodies against red sea bream iridovirus. Fish Pathol., 1995, 30(1), 47–52.
  • Dong, C., Weng, S., Shi, X., Xu, X., Shi, N. and He, J., Development of a mandarin fish Siniperca chuatsi fry cell line suitable for the study of infectious spleen and kidney necrosis virus (ISKNV). Virus Res., 2008, 135(2), 273–281.
  • Goodwin, A. E., Merry, G. E. and Sadler, J., Detection of the herpesviral hematopoietic necrosis disease agent (cyprinid herpesvirus 2) in moribund and healthy goldfish: validation of a quantitative PCR diagnostic method. Dis. Aquat. Organ., 2006, 69(2–3), 137–143.
  • Liu, B., Zhou, Y., Li, K., Hu, X., Wang, C., Cao, G., Xue, R. and Gong, C., The complete genome of cyprinid herpesvirus 2, a new strain isolated from allogynogenetic crucian carp. Virus Res., 2018, 256, 6–10.
  • Jung, S. J. and Miyazaki, T., Herpesviral haematopoietic necrosis of goldfish, Carassius auratus (L.). J. Fish Dis., 1995, 18(3), 211–220.
  • Chang, P. H., Lee, S. H., Chiang, H. C. and Jong, M. H., Epizootic of herpes-like virus infection in goldfish, Carassius auratus in Taiwan. Fish Pathol., 1999, 34(4), 209–210.
  • Luo, Y. Z., Lin, L., Liu, Y., Wu, Z. X., Gu, Z. M., Li, L. J. and Yuan, J. F., Haematopoietic necrosis of cultured Prussian carp, Carassius gibelio (Bloch), associated with Cyprinid herpesvirus 2. J. Fish Dis., 2013, 36(12), 1035–1039.
  • Groff, J. M., LaPatra, S. E., Munn, R. J. and Zinkl, J. G., A viral epizootic in cultured populations of juvenile goldfish due to a putative herpesvirus etiology. J. Vet. Diagn. Invest., 1988, 10(4), 375–378.
  • Hedrick, R. P., Waltzek, T. B. and McDowell, T. S., Susceptibility of koi carp, common carp, goldfish, and goldfish × common carp hybrids to cyprinid herpesvirus-2 and herpesvirus-3. J. Aquat. Anim. Health, 2006, 18(1), 26–34.
  • Jeffery, K. R. et al., Emergence of a cyprinid herpesvirus (CyHV2) in goldfish Carassius auratus in the UK. In Proceeding of the Annual Conference, Institute of Fisheries Management, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, 2006.
  • Danek, T. et al., Massive mortality of Prussian carp Carassius gibelio in the upper Elbe basin associated with herpesviral hematopoietic necrosis (CyHV-2). Dis. Aquat. Organ., 2012, 102(2), 87–95.
  • Zhu, M. et al., Host range and vertical transmission of cyprinid herpesvirus 2. Turkish J. Fish. Aquat. Sci., 2019, 19(8), 645–652.
  • Jung, S. J. and Miyazaki, T., Herpesviral haematopoietic necrosis of goldfish, Carassius auratus (L.). J. Fish Dis., 1995, 18(3), 211–220.
  • Goodwin, A. E., Sadler, J., Merry, G. E. and Marecaux, E. N., Herpesviral haematopoietic necrosis virus (CyHV-2) infection: case studies from commercial goldfish farms. J. Fish Dis., 2009, 32(3), 271–278.
  • Murakami, Y., Shitanaka, M., Toshida, S. and Matsuzato, T., Studies on mass mortality of juvenile carp: about mass mortality showing edema. Bull. Hiroshima Fresh Water Fish Exp. Stn., 1976, 19–36.
  • Gjessing, M. C., Thoen, E., Tengs, T., Skotheim, S. A. and Dale, O. B., Salmon gill poxvirus, a recently characterized infectious agent of multifactorial gill disease in freshwater-and seawaterreared Atlantic salmon. J. Fish Dis., 2017, 40(10), 1253–1265.
  • Matras, M. et al., Carp edema virus in Polish aquaculture – evidence of significant sequence divergence and a new lineage in common carp Cyprinus carpio (L.). J. Fish Dis., 2017, 40(3), 319–325.
  • Way, K. et al., Emergence of carp edema virus (CEV) and its significance to European common carp and koi Cyprinus carpio. Dis. Aquat. Organ., 2017, 126(2), 155–166.
  • Lewisch, E., Gorgoglione, B., Way, K. and El-Matbouli, M., Carp edema virus/koi sleepy disease: an emerging disease in Central–East Europe. Transbound. Emerg. Dis., 2015, 62(1), 6–12.
  • Adamek, M. et al., Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture. Vet. Res., 2017, 48(1), 12.
  • Ono, S. I., Nagai, A. and Sugai, N., A histopathological study on juvenile color carp, Cyprinus carpio, showing edema. Fish Pathol., 1986, 21(3), 167–175.
  • Hedrick, R. P., Antonio, D. B. and Munn, R. J., Poxvirus like agent associated with epizootic mortality in juvenile koi (Cyprinus carpio). FHS Newsl., 1997, 25, 1–2.
  • Swaminathan, T. R. et al., Emergence of carp edema virus in cultured ornamental koi carp, Cyprinus carpio koi, in India. J. Gen. Virol., 2016, 97(12), 3392–3399.
  • Way, K., and Stone, D., Emergence of carp edema virus-like (CEV-like) disease in the UK. Finfish News, 2013, 15, 32–34.
  • Jung-Schroers, V. et al., Another potential carp killer?: Carp edema virus disease in Germany. BMC Vet. Res., 2015, 11(1), 114.
  • Pragyan, D., Bajpai, V., Suman, K., Mohanty, J. and Sahoo, P. K., A review of current understanding on carp edema virus (CEV): a threatful entity in disguise. Int. J. Fish. Aquat. Stud., 2019, 7(5), 87–93.
  • Hurisa, T. T., Jia, H., Chen, G., Xiang, F. Y., He, X. B., Oxia Wang, X. and Jing, Z., Methodical review on poxvirus replication, genes responsible for the development of infection and host immune response against the disease. Arch. Microbiol., 2019, 3(2), 3–19.
  • Buller, R. M. and Palumbo, G. J., Poxvirus pathogenesis. Microbiol. Mol. Biol. Rev., 1991, 55(1), 80–122.
  • Soliman, H. and El-Matbouli, M., Rapid detection and differentiation of carp oedema virus and cyprinid herpes virus-3 in koi and common carp. J. Fish Dis., 2018, 41(5), 761–772.
  • Stevens, B. N. et al., Outbreak and treatment of carp edema virus in koi (Cyprinus carpio) from northern California. J. Zoo Wildl. Med., 2018, 49(3), 755–764.
  • Bacharach, E. et al., Characterization of a novel orthomyxo-like virus causing mass die-offs of tilapia. MBio, 2016, 7(2), e00431–16.
  • Eyngor, M. et al., Identification of a novel RNA virus lethal to tilapia. J. Clin. Microbiol., 2014, 52(12), 4137–4146.
  • Al-Hussinee, L. et al.., Tilapia Lake virus (TiLv): a globally emerging threat to Tilapia aquaculture: FA213, 2019, EDIS, 2019(2). UF/IFAS Extensions.
  • Jansen, M. D., Dong, H. T. and Mohan, C. V., Tilapia lake virus: a threat to the global tilapia industry?. Rev. Aquacult., 2018, 11(3), 1–15.
  • Behera, B. K. et al., Emergence of tilapia lake virus associated with mortalities of farmed Nile tilapia Oreochromis niloticus (Linnaeus 1758) in India. Aquaculture, 2018, 484, 168–174.
  • Mushtaq, Z., Qayoom, U., Mir, I. N. and Mir, S., Tilapia lake virus: an emerging viral disease of tilapia industry. J. Entomol. Zool. Stud., 2018, 6(5), 141–144.
  • Surachetpong, W., Janetanakit, T., Nonthabenjawan, N., Tattiyapong, P., Sirikanchana, K. and Amonsin, A., Outbreaks of tilapia lake virus infection, Thailand, 2015–2016. Emerg. Infect. Dis., 2017, 23(6), 1031.
  • Yamkasem, J., Tattiyapong, P., Kamlangdee, A. and Surachetpong, W., Evidence of potential vertical transmission of tilapia lake virus. J. Fish Dis., 2019, 42(9), 1293–1300.
  • Tattiyapong, P., Dachavichitlead, W. and Surachetpong, W., Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.). Vet. Microbiol., 2017, 207, 170–177.
  • Phusantisampan, T., Tattiyapong, P., Mutrakulcharoen, P., Sriariyanun, M. and Surachetpong, W., Rapid detection of tilapia lake virus using a one-step reverse transcription loop-mediated isothermal amplification assay. Aquaculture, 2019, 507, 35–39.
  • Munday, B. L., Kwang, J. and Moody, N., Betanodavirus infections of teleost fish: a review. J. Fish Dis., 2002, 25(3), 127–142.
  • Glazebrook, J. S. and Campbell, R. S. F., Diseases of barramundi (Lates calcarifer) in Australia: a review. In Management of Wild and Cultured Sea Bass/Barramundi Lates calcarifer (eds Copland, J. W. and Grey, D. I.), Canberra, Australia, 1987, pp. 204–206.
  • Shetty, M., Maiti, B., Santhosh, K. S., Venugopal, M. N. and Karunasagar, I., Betanodavirus of marine and freshwater fish: distribution, genomic organization, diagnosis and control measures. Indian J. Virol., 2012, 23(2), 114–123.
  • Panzarin, V. et al., Molecular epidemiology and evolutionary dynamics of betanodavirus in southern Europe. Infect. Genet. Evol., 2012, 12(1), 63–70.
  • Iwamoto, T., Nakai, T., Mori, K. I., Arimoto, M. and Furusawa, I., Cloning of the fish cell line SSN-1 for piscine nodaviruses. Dis. Aquat. Organ., 2000, 43(2), 81–89.
  • Toffolo, V., Negrisolo, E., Maltese, C., Bovo, G., Belvedere, P., Colombo, L. and Dalla Valle, L., Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins. Mol. Phylogenet. Evol., 2007, 43(1), 298–308.
  • Azad, I. S. et al., Nodavirus infection causes mortalities in hatchery produced larvae of Lates calcarifer: first report from India. Dis. Aquat. Organ., 2005, 63(2–3), 113–118.
  • Parameswaran, V., Kumar, S. R., Ahmed, V. I. and Hameed, A. S., A fish nodavirus associated with mass mortality in hatcheryreared Asian Sea bass, Lates calcarifer. Aquaculture, 2008, 275(1–4), 366–369.
  • Jithendran, K. P., Shekhar, M. S., Kannappan, S. and Azad, I. S., Nodavirus infection in freshwater ornamental fishes in India: diagnostic histopathology and nested RT-PCR. Asian Fish. Sci., 2011, 24, 12–19.
  • Binesh, C. P., Renuka, K., Malaichami, N. and Greeshma, C., First report of viral nervous necrosis-induced mass mortality in hatchery-reared larvae of clownfish, Amphiprion sebae Bleeker. J. Fish Dis., 2013, 36(12), 1017–1020.
  • Binesh, C. P., Mortality due to viral nervous necrosis in zebrafish Danio rerio and goldfish Carassius auratus. Dis. Aquat. Organ., 2013, 104(3), 257–260.
  • Banerjee, D., Hamod, M. A., Suresh, T. and Karunasagar, I., Isolation and characterization of a nodavirus associated with mass mortality in Asian seabass (Lates calcarifer) from the west coast of India. Virus Dis., 2014, 25(4), 425–429.
  • Banu, H., Pattanayak, S., Sundaray, J. K. and Sahoo, P. K., Genetic diversity and latency status of betanodavirus in wild seeds of Asian seabass Lates calcarifer (Bloch) sampled along Indian coasts. Indian J. Mar. Sci., 2019, 48(3), 288–293.
  • Kai, Y. H., Su, H. M., Tai, K. T. and Chi, S. C., Vaccination of grouper broodfish (Epinephelus tukula) reduces the risk of vertical transmission by nervous necrosis virus. Vaccine, 2010, 28(4), 996–1001.
  • Hodneland, K., Garcia, R., Balbuena, J. A., Zarza, C. and Fouz, B., Real-time RT-PCR detection of betanodavirus in naturally and experimentally infected fish from Spain. J. Fish Dis., 2011, 34(3), 189–202.
  • Yong, C. Y., Yeap, S. K., Omar, A. R. and Tan, W. S., Advances in the study of nodavirus. Peer J., 2017, 5, 3841.
  • Zorriehzahra, M. J., Adel, M., Dadar, M., Ullah, S. and Ghasemi, M., Viral nervous necrosis (VNN) an emerging disease caused by Nodaviridae in aquatic hosts: diagnosis, control and prevention: a
  • review. Iran. J. Fish. Sci., 2019, 18(1), 30–47.
  • Vimal, S. et al., Delivery of DNA vaccine using chitosan–tripolyphosphate (CS/TPP) nanoparticles in Asian sea bass, Lates calcarifer (Bloch, 1790) for protection against nodavirus infection. Aquaculture, 2014, 420, 240–246.
  • Subramaniam, K., Gotesman, M., Smith, C. E., Steckler, N. K., Kelley, K. L., Groff, J. M. and Waltzek, T. B., Megalocytivirus infection in cultured Nile tilapia Oreochromis niloticus. Dis. Aquat. Organ., 2016, 119(3), 253–258.
  • Chen, M. H. et al., Red sea bream iridovirus infection in marble goby (Bleeker, Oxyeleotris marmoratus) in Taiwan. Afr. J. Microbiol. Res., 2013, 7(12), 1009–1014.

Abstract Views: 185

PDF Views: 75




  • Viral diseases in Indian freshwater and marine water pisciculture

Abstract Views: 185  |  PDF Views: 75

Authors

Vertika Bajpai
ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India
Divya Pragyan
ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India
Kirty Suman
ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India
Jyotirmaya Mohanty
ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India
Pramoda Kumar Sahoo
ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India

Abstract


Intensification of aquaculture allows emergent and resurgent viral pathogens to cause large die-offs in the wild and farms. The inherent capability of viruses to exist in multiple forms outside the hosts gives them an edge for easy transmission and translocation increasing the chances of infection. More efforts are needed for an in-depth understanding of viral epidemiology. Quantification of factors determining the virulence mechanisms and variability in disease expression is necessary to strengthen the basic knowledge on viro­logy. The article is an update on the current understanding on viral diseases in fish causing loss to Indian aquaculture systems.

Keywords


Aquaculture, fish, freshwater, marine water, viral diseases.

References





DOI: https://doi.org/10.18520/cs%2Fv122%2Fi3%2F267-280